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ABSTRACT. The restrictions placed on the ultra-low sulfur content of diesel fuels by stringent legislation have 

instigated the search for alternative cost-effective and complimentary methods for the deep desulfurization of fossil 

fuel derived oil. Current technology for oxidative fuel desulfurization/denitrification is hampered by mass transfer 

efficiency, post-treatment purification and process costs. Owing to their mild operative conditions, ultrasonic-

assisted oxidative desulfurization (UAOD) processes are currently a hot investigation topic. In this piece of work we 

have applied UAOD to two model compounds: dibenzotiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-

DMDBT) as well as to a mild hydro-treated diesel feedstock using a number of different solid oxidants including 

Oxone®, sodium persulfate and potassium superoxide. The oxidized organic sulfur compounds (sulfones) were 
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extracted using a suitable polar solvent or adsorbent. Oxone® was the most efficient of all the solid oxidants tested 

under high-intensity ultrasound. After 30 min sonication, this protocol enabled the consistent reduction of S and N 

content in treated diesel to less than 10 ppm and 2 ppm respectively.  

1. INTRODUCTION 

The presence of sulfur compounds in fuels (thiols, sulfides, disulfides and thiophenes) is still 

the largest source of SOx and sulfate particulate matter (SPM) emissions into the atmosphere. 

These all contribute to acid rain, air pollution and endanger public health and the environment.1,2 

In recent years, many countries have introduced more stringent regulations in an effort to reduce 

the sulfur levels in fuel oil to ultra-low levels (10-15 ppm).3 As a consequence, the removal of 

sulfur from transportation fuel is extremely important in the petrochemical industry and the 

development of deep desulfurization technology for the production of ultra-low sulfur fuel oil 

has become a huge target for worldwide researchers. Most organosulfur compounds are 

generally removed from hydrocarbon fuels by high temperature (300-400°C) 

hydrodesulfurization (HDS) that operates at high hydrogen pressures (20-100 bar) over 

CoMo/Al2O3 or NiMo/Al2O3 catalysts.4 Although the HDS process can effectively remove 

aliphatic and acrylic sulfur compounds such as thiols, sulfides and disulfides, some S-

heterocycles such as benzothiophene (BT), dibenzothiophene (DBT), and their alkyl derivatives, 

4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT), are 

quite refractory to this treatment.5,6 This limitation can be attributed to both the steric hindrance 

of the aromatic sulfur species and to the high electron density around the sulfur atom. Therefore, 

conventional hydrotreatment must be modified and revamped if it is to produce ultra-low sulfur 

diesel (ULSD).7 In the last few decades, alternative deep desulfurization techniques have been 

extensively investigated, these include; extractive desulfurization (EDS), which can even make 
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use of task specific ionic-liquids;8,9 adsorptive desulfurization (ADS);10,11,12 oxidative 

desulfurization (ODS);13 and bio-desulfurization (BDS).14,15 ODS has perhaps drawn the most 

widespread attention,16 because of its mild operative conditions (atmospheric pressure, <100°C) 

and the fact it proceeds without hydrogen consumption. This process generally involves two 

steps; oxidation17,18 followed by extraction.19 The greatest advantage of this process is the fact 

that sulfur compounds that are refractory in HDS, such as alkyl benzothiophenes, are easily 

oxidized to sulfoxides or sulfones in high yields in ODS.20 The higher polarity of sulfur oxides 

means that these compounds are easy removed from hydrocarbons by solvent extraction (NMP, 

DMF, DMSO and MeOH),21 or solid adsorption (silica, alumina, zeolites and metal organic 

frameworks).22 ODS is thus a complementary process to classic HDS in producing deeply 

desulfurized light oil. Hitherto, many oxidizing agents have been investigated, which include 

organic and inorganic peroxyacids, catalyzed hydroperoxides, t-butyl-peroxide, nitrogen oxides, 

ozone and some O2/aldehyde/transition metal (Co, Ni) systems.23 Peracids are widely exploited 

because of their high reactivity. However, there are some drawbacks to scaling-up a peracid 

based ODS procedure. These compounds are highly corrosive and instable and so have to be 

produced in situ by hydrogen peroxide and carboxylic acid (formic acid or acetic acid). 

Hydrogen peroxide is not a common feedstock in refinery plants; the price is relatively high and 

storage of large amounts entails safety concerns. Moreover peracid based ODS processes are 

two-phase reaction systems. Mass transfer limitations make this reaction too slow for industrial 

use and would warrant phase transfer catalysts,20 microemulsions24 or microstructured reactors.25 

However, optimal mass transfer across the interphase can be achieved under mild reaction 

conditions using UAOD.26-32 For a heterogeneous liquid-liquid reaction system such as fuel 

ODS, both the physical and chemical effects of acoustic cavitation influence reaction kinetics 
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and yield. Intense microturbulence, created by cavitation, generates radicals in the medium due 

to the extreme conditions of temperature and pressure (~5000 K and ~500 bar) generated in the 

bubble at transient collapse, it disrupts the liquid/liquid interface and creates a very fine emulsion 

between the phases.33,34 In fact, most published UAOD studies have focused on liquid-liquid 

biphasic systems.35 In this piece of work, three different solid oxidants have been tested: 

Oxone®, sodium persulfate (Na2S2O8) and potassium superoxide (KO2), which have been used 

both in the oxidation of a model sulfur compound (DBT) and on a mildly hydro-treated diesel 

feedstock (S = 226 ± 2.17 ppm; N = 158 ± 2.81ppm). Classic UAOD with H2O2 / acetic acid was 

also carried out for comparison. 

 

2. EXPERIMENTAL SECTION 

2.1 Materials 

Reagents, oxidizing agents (Oxone®, sodium persulfate and potassium superoxide) and model 

sulfur (DBT and DMDBT) and nitrogen (quinoline) compounds were all purchased from Sigma 

Aldrich - Italy. Silica gel 60 by MERCK (0.063-0.200 mm) was used for column 

chromatography. Hydro-treated diesel feedstock (S and N content of 226 ppm and 158 ppm 

respectively) was provided by PETROBRAS (Brazil). 

 

2.2. Instruments 

UAOD experiments were performed in two different ultrasonic devices: a cup-horn like 

cavitating tube (Danacamerini - Italy) working at 19.9 kHz and a probe system with a titanium 

horn (Danacamerini - Italy) working at 21.1 kHz. US power, reaction time and temperature were 
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defined as follows: 80 W, 90 min and 80°C. Experiments were carried out in batch mode and 

under temperature control. Tests under mechanical stirring (350 rpm) were carried out for 

comparison with US. 

 

2.3. Analysis  

The treated DBT, DMDBT and quinoline model solutions (in toluene) were analyzed by GC-

MS (gas-chromatograph Agilent 6890 with mass detector Agilent Network 5973) using a 30 m 

long capillary column, i.d of 0.25 mm and film thickness 0.25 μm. Temperature program: from 

80°C (3 min) to 300°C at 5°C/min. 

Sulfur and nitrogen elemental analyses of fuel samples were performed by Multi EA® 5000 

Analytik Jena - Germany, in accordance with national and international standards (ASTM D 

5453 and D 4629). Fuel samples viscosity and density were measured with the viscometer 

Stabinger SVM 3000 (Anton Paar GmbH, Graz, Austria), according to ASTM D 7042-04. 

Diesel oil acidity was determined using the titration system Titrando 836, (Metrohm, Herisau, 

Switzerland) equipped with a magnetic stirrer (module 803 Ti Stand), 20 mL burette (Dosino 

800) and pH electrode (LL Electrode plus, model 6.0262.100). 

 

2.4. General procedures 

2.4.1 Techniques 

Oil bath (OB): stirring at 350 rpm, 80°C, time 10 to 90 min. 

US horn: 21.1 kHz, 80 W, 80°C, time 10 to 90 min. 
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US cup horn: 19.9 kHz, 80 W, 80°C, time 10 to 90 min. 

2.4.2 Procedures 

Oxone®: Diesel samples and DBT or DMDBT (1.2 mg/ml) model solutions (25 ml) were 

oxidized with Oxone®. S+N: Oxone® tested molar ratios were: 

- 1 : 10 = 25 ml : 2.66 g  

- 1 : 20 = 25 ml : 5.32 g 

- 1 : 30 = 25 ml : 7.96 g. 

 

Na2S2O8/CH3COOH: Diesel samples and DBT or DMDBT (1.2 mg/ml) model solutions 

(25 ml) were oxidized with a mixture of Na2S2O8 that had previously been dissolved in water and 

glacial acetic acid.  

S+N : Na2S2O8 : CH3COOH tested molar ratios were: 

- 1 : 10 : 63 = 25 ml : 1.03 g in H2O (2 ml) : 1.55 ml 

- 1 : 20 : 126 = 25 ml : 2.06 g in H2O (3.5ml) : 3.11 ml 

- 1 : 30 : 190 = 25 ml : 3.08 g in H2O (5 ml) : 4.69 ml. 

 

KO2/CH3COOH: Diesel samples and DBT or DMDBT (1.2 mg/ml) model solutions (25 ml) 

were oxidized with a mixture of KO2 and glacial acetic acid.  

S+N : KO2 : CH3COOH tested molar ratios were: 

- 1 : 10 : 69 = 25 ml : 0.306 g : 1.72 ml 
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- 1 : 20 : 139 = 25 ml : 0.613 g : 3.43 ml 

- 1 : 30 : 208 = 25 ml : 0.92 g : 5.13 ml. 

 

H2O2/CH3COOH: Diesel samples and DBT or DMDBT (1.2 mg/ml) model solutions (25 ml) 

were oxidized with a mixture of hydrogen peroxide and glacial acetic acid.  

S+N : H2O2 : CH3COOH tested molar ratios were: 

- 1 : 10 : 198 = 25 ml : 0.257ml (50% wt) : 4.88 ml 

- 1 : 20 : 396 = 25 ml : 0.513 ml (50% wt) : 9.76 ml 

- 1 : 30 : 594 = 25 ml : 0.77 ml (50% wt) : 14.64 ml. 

 

2.4.3 Reaction workup 

For the model solutions, the oxidized organic phase was washed with water (3 x 15 ml), dried 

with anhydrous Na2SO4 and, after paper filtration, analyzed by GC-MS. 

In the case of Oxone®, the reaction mixture (solid/liquid) was directly filtered on paper and 

analyzed by GC-MS. 

For diesel oxidation, two different workup methods were performed: 

- oxidized diesel (2 ml) was filtered on silica gel (1.2 g) and then analyzed with the N/S 

elemental analyzer. 

- oxidized diesel (2 ml) was shaken in a separating funnel with MeOH (2 ml) and then 

analyzed with the N/S elemental analyzer. 



 8 

3. RESULTS AND DISCUSSION 

3.1. Characterization of the raw materials 

UAOD with solid oxidants is underexploited because of critical mass transfer. In this present 

work, the effect of US in solid/liquid heterogeneous systems is evaluated, using different types of 

solid oxidants. DBT, DMDBT and quinoline solutions were used as model S and N compounds 

respectively, with KO2, Na2S2O8 and Oxone® so as to create a better comparison with typical 

liquid/liquid oxidation using peracetic acid. The optimized protocols were repeated with the mild 

hydro-treated diesel feedstock. The effect of acoustic cavitation was evaluated by comparing the 

results achieved with the protocols described in Table 1 with tests performed in an oil bath (OB) 

at the same time under mechanical stirring (350 rpm) without US. 

Table 1 Oxidation of DBT (model solution in toluene) by sonochemical activation.a 

Entry Oxidant 
Time 

(min) 

Yieldb (%) 

OB 
US 

hornc 

US 

cup hornd 

1 H2O2
e 9 42 89 93 

2 KO2
e 15 68 97 95 

3 Oxone® 90 

0 [0]f 

[0]g 

100 [100]f 

[40]g 

100 [100]f 

[42]g 

4h Oxone® 90 

0 [0]f 

[0]g 

99 [100]f 

[38]g 

98 [100]f 

[40]g 

5 Na2S2O8 45 0 4 2 
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6 Na2S2O8
e 45 97 99 100 

a Molar ratio S : oxidant = 1 : 10 

b DBTO + DBTO2 

c US at 21.1 kHz, 80 W, 80°C 

d US at 19.9 kHz, 80 W, 80°C 

e In the presence of CH3COOH 

f Yield referred to DMDBT oxide 

g Yield referred to quinoline oxide 

h Molar ratio S:oxidant = 1:3 

 

According to the literature,31 a peracetic acid system generated in situ by both H2O2 and KO2 

with acetic acid has given excellent results. Clearly the instability of peracetic species and their 

corrosive nature are critical points for large scale applications. Indeed, it is possible to reach high 

conversions to sulfones in a short time with this system (9-15 min), while a longer time is 

required with OB. 

Oxone®, a triple potassium salt (2 KHSO5, KHSO4, K2SO4) was the most versatile oxidizing 

agent. Its active component is potassium monopersulfate (KHSO5), which is a salt of Caro’s acid 

(H2SO5). The oxidation potential of peroxymonosulfate-bisulfate couple (E°= 1.44 V) is able to 

oxidize aliphatic and aromatic sulfides. 

 

 

Scheme 1 Formation of reactive radical species. 

Oxone® has found many applications thanks to its high stability and oxidation power,36 

and can also be applied to sulfoxidation reactions, generally in aqueous solutions of 
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acetone or methanol. Oxone® is completely insoluble in toluene and magnetic stirring 

under conventional heating only weakly activated the “peroxidation” reaction. In fact, 

both DBT and DMDBT were not oxidized after 90 min at 80°C. While, complete 

conversion occurred after 90 min under US at the same temperature. Furthermore, 

Oxone® worked in a quasi-stoichiometric ratio. Persulfate also gave good results, but it 

requires the addition of acetic acid to fully maximize its oxidation power. These data have 

shown that only Oxone® works without acetic acid in a short time under US and that it 

also represents a valid alternative for the oxidation of N-compounds in neutral conditions 

(about 40% of quinoline oxide under US in 90 min at 80°C). 

The investigation was then extended to the UAOD of diesel feedstock (S and N 226 ±2.17 

ppm and 158 ±2.81 ppm respectively). The cup horn device was selected as the US 

reference tool for these experiments. The residual S and N content in oxidized diesel was 

detected by an elemental analyzer after the workup which consisted in the S and N 

oxidation products being generally removed from treated diesel by liquid-liquid 

extraction using a polar solvent such as MeOH or by SiO2 adsorption. The results 

reported in Table 2 show that these systems provide high levels of desulfurization. While 

90% desulfurization can be reached in only 10 minutes with liquid oxidants, solid 

oxidants required longer times (90 min) to give the same results. Furthermore, the 

influence of the diesel (S+N): oxidant molar ratio was much more evident with the solid 

oxidant than with the liquid. 

Adsorption onto SiO2 was more efficient in separating the oxidized S-compounds, but the 

diesel mass loss was higher than in liquid/liquid extraction (96% diesel recovery with 

MeOH extraction vs about 85% with SiO2 adsorption). Oxone® showed comparable 
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activity to liquid oxidant systems and avoids the addition of CH3COOH. With a molar 

ratio of (S+N) diesel : oxidant = 1 : 30, 94% desulfurization was achieved in only 30 

minutes (after SiO2 adsorption). 

The oxidative treatment did not affect the diesel physical properties. Density, viscosity 

and acidity values were comparable with those of untreated diesel (table 3). 

Diesel UAOD in a cup horn with excess Oxone® was efficiently oxidized for 4 treatment 

cycles without the need to add additional amounts of Oxone® (Table 4). In each 

subsequent reaction the reacted liquid phase (diesel) is leaked out of the reactor and the 

solid Oxone® was left in the bottom of the US device. 
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Table 2. UAOD of diesel (S=226 ± 2.17 ppm N=158 ± 2.81).a 

 

Oxidant 
Ratio 

(S+N:Oxidant) 

  Yieldb (%) 

10 min 
 

30 min 
90 min  

SiO2 MeOH  SiO2 MeOH  SiO2 MeOH 

H2O2
c 1:10 90 49  95 61  98 71 

1:20 92 64  98 76  99 79 

1:30 93 73  99 77  99 79 

Oxone® 1:10 62 33  72 42  96 57 

1:20 89 38  92 43  99 60 

1:30 88 60  94 61  99 65 

Na2S2O8
c 1:10 87 23  96 23  98 38 

1:20 65 23  73 28  99 38 

1:30 90 23  93 28  99 43 

KO2
c 1:10 82 33  85 43  88 49 

1:20 92 36  96 43  97 57 

1:30 96 49  98 61  99 67 

a Using cup horn (19.9 kHz, 80 W, 80°C) 

b Desulfurization 

c In the presence of CH3COOH 
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Table 3. Physical parameters of the diesel before and after the oxidative treatment. 

Condition 

(S+N:Oxone) 

Density 

(g cm-3, 20°C) 

Viscosity 

(mm2 s-1, 40°C) 

Acidity 

(mg KOH g-1) 

Untreated 0.8683 ± 0.0003 4.3165 ± 0.0054 < 0.02 

1:10 0.8670 ± 0.0008 4.3177 ± 0.0049 < 0.02 

1:20 0.8639 ± 0.0011 4.3167 ± 0.0114 < 0.02 

1:30 0.8628 ± 0.0009 4.3171 ± 0.0127 < 0.02 

 

About 5-8% Oxone® remained in suspension in the diesel phase after each cycle as the treated 

diesel was recovered from the US reactor by simple decantation. This drawback can be avoided 

by centrifugation or filtration. 

 

Table 4 Oxone® recycling 

Cycle Workup 
Desulfurization 

yield (%) 

1 

MeOH 59 

SiO2 84 

2 

MeOH 61 

SiO2 86 

3 MeOH 66 
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SiO2 87 

4 

MeOH 79 

SiO2 95 

 

In our protocol the suspended Oxone® was removed from treated diesel together with the 

oxidized S and N compounds via simple work up with MeOH or SiO2. This investigation proves 

that an Oxone® excess can be reused in several cycles without any degradation or loss in activity 

which is an important finding in view of potential diesel UAOD up scaling. 

The protocols used in this work also showed efficient denitrification, whether with or without 

acetic acid, achieving levels of about 1 ppm (see supporting information). 

 

4. CONCLUSIONS 

An efficient sonochemical protocol that uses Oxone® in the oxidative 

desulfurization/denitrification of liquid fuels has been developed. Although this ODS and ODN 

protocol is superior to any other batch process, the general drawback of there being two-phases is 

the loss in diesel mass that currently makes this approach under-competitive with respect to the 

classic catalytic hydrorefining process. However, thanks to the strong mechanical/chemical 

effects of acoustic cavitation, it can certainly be applied as a complimentary strategy for 

conventional HDS treatment. This protocol enables a consistent reduction of S and N content in 

treated diesel to less than 10 ppm and 2 ppm respectively, in 30 min using a (S+N) diesel : 
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oxidant molar ratio of 1:30, while also simplifying final diesel purification by filtration onto 

SiO2. The final goal of S concentrations of below 1 ppm appears to be in sight. 
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