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       different locations. In particular, we model collocation 
error of atmospheric pressure in terms of meteorological 
covariates and space and time mismatch. Results show 
that model fitting is improved once heteroskedasticity 
is taken into account. 
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Abstract Atmospheric thermodynamic data are gath- 
ered by high technology remote instruments such as ra- 
diosondes, giving rise to profiles that are usually mod- 
elled as functions depending only on height. The ra- 
diosonde balloons, however, drift away in the atmo- 
sphere resulting in not necessarily vertical but three- 
dimensional (3D) trajectories. To model this kind of 
functional data, we introduce a “point based” formula- 
tion of an heteroskedastic functional regression model 
that includes a trivariate smooth function and results 
to be an extension of a previously introduced unidimen- 
sional model. Functional coefficients of both the condi- 
tional mean and variance are estimated by reformulat- 
ing the model as a standard generalized additive model 
and subsequently as a mixed model. This reformula- 
tion leads to a double mixed model whose parameters 
are fitted by using an iterative algorithm that allows to 
adjust for heteroskedasticity. The proposed modelling 
approach is applied to describe collocation mismatch 
when we deal with couples of balloons launched at two 

 

Work partially supported by FIRB 2012 grant (project no.  
RBFR12URQJ) provided by the Italian Ministry of Educa- 
tion, Universities and Research. 

 
 

R. Ignaccolo 
Dipartimento di Economia e Statistica “Cognetti de Martiis” 
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1 Introduction 
 

Over the last few years the analysis and modelling of 
functional data has received an increasing interest, mo- 
tivated by the availability of dense sets of measurements 
recorded over some domain, such as time, depth or 
height, in particular in environmental studies. Cuevas 
[3]  and  Horvàth  and  Kokoska  [12]  and  Zhang’s  [37] 
books provide an up-to-date state of the art in func- 
tional data analysis and complement the reference books 
[20] and [7]. Applications of functional  data  analysis 
can be found in various scientific areas, including cli- 
matological and environmental ones (see e.g. [24], [6], 
[2], [13]). However, to our knowledge, little reference is 
made to heteroskedasticity in the functional data liter- 
ature. In [5] an unidimensional heteroskedastic regres- 
sion model is introduced to deal with the assumption 
of constant variability not always verified. This is an 
important topic for two reasons: first, mean estimates 
need to be adjusted for non-constant variability, and 
second, modelling the variance function itself is of inter- 
est to understand which covariates significantly affect 
the variance. Wang and Akritas [31] propose a testing 
proceduce for functional data that assesses the signif- 
icance of nested effects and their interactions taking 
into account heteroskedasticity in the error terms. In 
the classical context, to handle heteroskedasticity, in [8] 
and [19] a further dispersion parameter is incorporated 
using the  double exponential  family of distributions in 
a generalized linear model framework. Instead, in [16] it 
is suggested to model the variance depending on covari- 
ates but they limit the relationship to be linear. In this 
work, we model the variance in a more flexible way al- 
lowing for non-linear effects of the covariates, as already 
proposed in [5], motivated by the same case study. 

The availability of atmospheric measurements is be- 
coming larger and larger since high technology radioson- 
des provide atmospheric profiles of Essential Climate 
Variables (ECVs), like pressure, temperature, water vapour, 
wind and aerosol [14]. The uncertainty of such variables 
is a key factor for assessing the uncertainty of global 
change estimates given by numerical prediction models 
[28]. An important source of uncertainty is related to 
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the collocation mismatch in space and time among dif- 
ferent observations. Suppose we are comparing two ra- 
diosondes, which aim to measure the same environmen- 
tal variables. Collocation makes reference to the placing 
of the two instruments in exactly the same geographical 
location at the same time. Since this is hardly the case, 
we say that two instruments are imperfectly collocated 
and the difference between the instruments measure- 
ments can be defined as the collocation mismatch. 

Understanding collocation mismatch is particularly 
relevant for atmospheric profiles obtained by radioson- 
des, as the ballons containing the measuring instru- 
ments tend to drift uncontrollably from their initial 
launch position (see [26] and [5]). In particular, col- 
location mismatch may depend on potential covariates. 
While in [5] the focus is on relative humidity, here we 
consider the difference in pressure of coupled launches 
as the response variable. 

It is known that for an isothermal and ideal gas the 
barometric formula ensures that atmospheric pressure 
depends only on height [1]. If the two available locations 
are close enough, it seems reasonable to believe that 
they are subject to a similar climate regime, and hence 
any difference in pressure between the profiles should 
be only noise, independently of meteorological covari- 
ates. The available locations in the motivating dataset 
are about 50 km apart. This distance  may be enough 
for the local meteorological and wind conditions to be 
different at the two locations. If this is the case, the 
ideal conditions that the barometric formula assumes 
are no longer valid, and we may expect a significant 
impact of covariates. 

In the motivating case study, measurements are taken 
using a balloon that drifts away from its original posi- 
tion as it goes higher up into the atmosphere, so that 
longitude and latitude coordinates at launch do not re- 
main constant. While in [5] the profiles were considered 
to be vertical (i.e. only dependent on height), now the 
profiles’ trajectories are seen as dependent on longitude, 
latitude and height, and hence as 3D profiles. Thus we 
propose to model atmospheric profiles by considering 

them as functions of a spatial point p = (x, y, h) ∈ P ⊆ 
R3. This “point based” formulation extends the work 
done in [5], but the proposed modelling strategy in- 
corporates potential heteroskedasticity by means of an 
iterative algorithm (following [25]) that was not con- 
sidered in [5]. As a result, covariates estimates can be 
adjusted for non-constant variability and estimation of 
the functional mean is improved. Simultaneuosly the 
conditional variance is explicitly modelled, allowing to 
identify significant covariates on the collocation second 
order uncertainty. 

The paper is organized as follows. Section 2 intro- 
duces the motivating dataset, while Section 3 describes 
the proposed point based model for 3D functional data. 
In particular, the model reformulation as a GAM/mixed- 
model is detailed in Section 3.1, whereas Section 3.2 
presents the estimation procedure by an iterative algo- 
rithm that permits to handle heteroskedasticity. In Sec- 
tion 4 the model is then illustrated on the motivating 
case study, where the interest is in collocation error of 
atmospheric pressure, and conclusions follow in Section 
5. 

 

 
2 Motivating dataset 

 
The dataset used in this work is the same as in [5] 
where the interested reader can find further details. It 
consists of radiosounding profiles of essential climate 
variables measured at the Howard University research 

site in Beltsville, Meryland, USA (39.054◦, -76.877◦, 88 
m a.s.l.), which is also a GRUAN site (GCOS Reference 
Upper-Air Network, see www.gruan.org and [28]), and 
the U.S. National Weather Service operational site at 

Sterling, Virginia, USA (38.98◦, -77.47◦, 53 m a.s.l.). 
These two sites are sufficiently close, 52 km line dis- 
tance, and represent a similar climate regime. Figure 
1 shows trajectories of the two balloons for height val- 
ues in 100 − 10000 m as they drift away from their 
initial launch position; note that one of the profiles in 
the Sterling site departs considerably from its initial 
position already at 100 m. 

Moreover we can be confident that for height rang- 
ing in 100-10000 m there is no instrumental bias. In 
fact, Beltsville soundings are based on RS92-SGP son- 

 
 

Fig. 1 Trajectories of the two radiosonde balloons launched 
at Sterling (blue) and Beltsville (red); x and y denote lon- 
gitude and latitude in degrees, height ranges from 0.1 to 10 
km 

http://www.gruan.org/
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des, manufactured by Vaisala, while Sterling uses Sip- 
pican LMS6 sondes. Differences - at the same height - 
in the sounding of the atmosphere among sensor types 
were analysed during the last World Meteorological Or- 
ganization (WMO) intercomparison of high quality ra- 
diosonde systems, as reported in [17]. Both RS92-SGP 
and LMS6 sondes have been ranked with score 5, that 
is “Performance ideal for GRUAN”, in both cases of 
pressure higher and lower than 100 hPa. 

The Sterling site is considered as the “base” site; 
in what follows, variables with the superscript “0” (e.g. 
T 0) refer to the Sterling site, while variables preceeded 
by “∆” make reference to the difference between the 
two matched profile measurements. A flight from Beltsville 
was matched to Sterling if launch time was  within  3 
hours. The differences, for each value of height, in lon- 
gitude and latitude (∆x and  ∆y  respectively)  between 
the coupled trajectories are shown in Figure 2, that 
highlights the separation between the two ballons as- 
cending in the atmosphere. We used 32 pairs launched 
between July 2006 and September 2009; given that the 
different launches are well spaced in time, it is reason- 
able to consider the corresponding profiles to be inde- 
pendent. For each flight, we use data profiles on relative 
humidity, water vapor mixing ratio, pressure, tempera- 
ture, measurement calendar time, flight duration, wind 
vector, distance and coordinates. 

 
 

3 Modelling 3D atmospheric profiles 
 

Let z denote the measurement of a physical quantity, 
e.g. an ECV, along a trajectory through the atmo- 
sphere. A measurement is gathered at a spatial point 

p = (x, y, h) ∈ P  ⊆ R3   and time τ , where x, y  and 

h ≥ h0 are the measurement longitude, latitude and 
height, τ ≥ τ0 is measurement time, while τ0 and h0 
are launch time and height; moreover the launch place 

will  be  denoted  as  s  =  (x0, y0, h0).  The  spatial  tra- 
jectories can be described as profiles or functions with 
three-dimensional domain, that is zj : R3 → R, labelled 
by launch place and time (sj, τ0j), j = 1, ..., n. Accord- 
ing to the Functional Data Analysis (FDA) approach 

described e.g. by Ramsay and Silverman [20], we con- 
sider a profile as a single object described by a smooth 
function µ (p). Motivated by the case study we assume 
that, for each profile, there is a one-to-one correspon- 
dence between p and h, thus we can refer to each point 
of the trajectory by specifying its height h. 

According to standard measurement error decom- 
position, an observation profile is given by a random 
function 

zj (·) = µj (·) + εj (·) ,  j = 1, ..., n, (1) 

where µ (·) is the “true” profile, assumed to be smooth 
taking values in a separable Hilbert space, and ε (·) is 
the zero mean measurement error with variance σ2 (·). 
Figure 3 shows examples of such 3D smoothed func- 
tional data for climate variables at the “base” site (Ster- 
ling) in our case study, where smoothing in (1) is carried 
out by penalized cubic B-splines. 

In this paper we suppose that measurements, con- 
ditionally on a set of forcing factors, are independent 
random functions and we focus on modelling their con- 
ditional mean and variance. In particular, we are in- 
terested in comparing two instruments, e.g. radioson- 
des, launched at two close spatial sites at the same 
height. The base site trajectories will be described by 
p0 = (x0, y0, h) whereas the other site by p = (x, y, h), 
and the associated measurements will be denoted by 
z0 = z(p0) and z = z(p) respectively. Since we are in- 
terested in taking differences at the same height, we 
will denote ∆p = (∆x, ∆y, h) where ∆x = x x0 and 
∆y = y      y0. Then we move from the couple (p0, p) to 
the couple (p0, ∆p) and, by taking differences, from (1) 
we have 

∆z := z − z0 = ∆µ + ∆ε (2) 

where ∆µ = µ−µ0 is the collocation drift and ∆ε = ε− 
ε  is the collocation measurement error and we assume 
the measurement error at the two sites to be equal so 
that V ar (∆ε) = σ2 + σ2  = 2σ2. 

ε ε0 ε 

 
 
 

 
Fig. 2 Differences, for each value of height, in longitude and 
latitude (∆x and ∆y respectively) between the coupled tra- 
jectories; height ranges from 0.1 to 10 km 

Note that since the paired ballons work indepen- 
dently of each other, the collocated profiles z  and  z0 
are not observed exactly at the same height h, while µ 
and µ0 are continuous functions whose values are ob- 
tained after a smoothing step following (1) – e.g. by 
means of penalized cubic B-splines – and thus ∆µ may 
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be easily computed for every height h in a common grid 
for all profiles. 

The potential effect of (functional) environmental 
factors c (·) on the collocation drift ∆µ can be investi- 
gated by means of a functional trend model given by 

∆µ (·) = m(·) + β (·)′ c (·) + ω (·) (3) 

where the  argument  (·)  is  the  couple  (p0, ∆p)  for  all 
terms  except  β  and  c,  so  that  m(·)  is  a  function  of 

(p0, ∆p) and β(·)′c(·) = β0 + 
ΣQ     βq(·)cq(·) with Q 

being the number of covariates. Actually, in this work, 
we consider functional coefficients β only dependent on 
the height h for the sake of model parsimony, so that 
we will not have β(p0, ∆p) but β(h). In addition, given 
the one-to-one correspondence between h and p in the 
profiles, c(p0, ∆p) can be considered as c(h). Given that 
both p0 and ∆p have the same height h, Model (3) can 
be seen as a “concurrent” functional linear model with 
respect to h, since the relationship is established at the 
same h and we assume that the trend is locally linearly 
related to c but the global relation is not assumed lin- 
ear. 

Moreover the error ω (·) is assumed to be an het- 
eroskedastic component with conditional variance given 
by σ2 (·|c) = V ar (ω (·) |c), which is assumed to depend 
log-linearly on c and a function of (p , ∆p) denoted by 
o. Hence we have 

σ2 (·|c) = exp 
 
o (·) + γ (·)′ c (·)

 
(4) 

where γ(·)′c(·) = γ0 + 
ΣQ    γq(·)cq(·), Q is the num- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Atmospheric profiles in 3D for pressure (pr), temper- 
ature (T ), relative humidity (rh) and water vapour mixing 
ratio (mr). Each curve represents a different launch at the 
base site (Sterling) 

ber of covariates and - similarly to the case of the trend 
model above - γ and c are considered depending only on 
h so that in the following we will have γ(h) and c(h). 
This skedastic model describes the uncertainty unac- 
counted for by the collocation drift. 

So equations (3) and (4) define an Heteroskedastic 
Functional Regression Model (HFRM). In both com- 
ponents of HFRM, we need to specify the first term, 
m(·) and o(·) respectively. We consider three alterna- 
tives (written here only for m(·) to avoid repetition): 

A)  m(p0, ∆p) = m0(p0) + m∆(∆p), 
B)  m(p0, ∆p) = α1(h) x0 + α2(h) y0 + m∆(∆p), 
C) m(p0, ∆p) = α1(h) x0+α2(h) y0+α3(h) ∆x+α4(h) ∆y+ 

α5(h), 

where h, as above, denotes the common height of p0 
and ∆p. The three alternatives offer different ways of 
incorporating longitude, latitude and their differences 
(that are related to the distance between two points of 
paired profiles), as well as height in the model, from a 
more complex and less parsimonious model to a sim- 
pler one. Indeed, case C) treats longitude and latitude, 
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and their differences as covariates and includes a func- 
tional intercept (α5(h)) resulting in a vertical profiles 
modelling strategy as in [5]. In case A), to be consistent 
with our point based formulation, we consider trivari- 
ate functions - namely m0 and m∆ - that take into ac- 
count a possible interaction among longitude, latitude 
and height, as well as among the distance in terms of 
∆x and ∆y, and h. Finally, case B) represents a mid- 
dle alternative that allows to have a simpler model but 
keeps the interaction among ∆x, ∆y and height h. 

when the profiles are discretized (taking their values 
on a common grid) to move to a longitudinal approach. 
Moreover we denote νm = (νm,1, . . . , νm,k) as the vector 
of spline coefficients (to be estimated). 

So for the site s0 we have m0(p0) written as 

k0 

m0(p0) =      Ap0 ,l(p0) ν0,l 
l=1 

where k0 = kx0 × ky0 × kh. Similarly, m∆(∆p) can be 
written as 

 

3.1 GAM and mixed model representation 
 

In order to estimate the function m(·), and then o(·), as 
well as the functional coefficients β(·), and then γ(·), we 
rewrite the above functional linear models as standard 

 

k∆ 

m∆(∆p) = A∆p,l(∆p) ν∆,l 
l=1 

where k∆ = k∆x × k∆y × kh. 

As for the term β(·)′c(·) = β0 + 

 
 
 
 
 
 

Q 
q=1 

 
 

βq(·)cq(·)  in 
(generalized) additive models with penalized splines (fol- 
lowing [9], [18],[10], [15]) moving to a longitudinal data 
perspective. In fact, as observed in [20] p. 258, the con- 
current functional linear model in (3) can be seen as 

(3), the functional coefficients βq(h) are assumed to be 
expandable as 

kq 

a varying-coefficient model [11] and this is basically a 
generalized additive model (GAM) where the smooth 

βq(h) =  

l=1 

aq,l(h)ξq,l 

components are multiplied by known covariates (see [33] 
p. 168). 

Let us consider HFRM with m(·) as specified in A) 

where aq,l(h) are known spline basis functions, while 
ξq,l are the related coefficients (to be estimated). Then 
we can write 

and let us rewrite Model (3) by means of spline basis kq kq 

representation. Both m0 and m∆ can be re-expressed βq(h)cq(h) = 
Σ 

aq,l(h)cq(h)ξq,l = 
Σ 

Aq,l(h)ξq,l 
in terms of the tensor product of marginal spline ba- 
sis  functions  ([33],  [4]).  To  this  goal,  we  consider  a 

l=1 l=1 

smooth function m∗(x, y, h) that in turn  will  repre- 
sent m0, m∆, o0  and o∆. For any argument of m∗, 
i.e. by taking x, y, h individually, and assuming that we 
have marginal spline basis available Ax,k(x), Ay,r(y) 
and Ah,v(h), with kx, ky, kh being the number of basis 
functions for each variable, we can construct the smooth 

where Aq,l(h) = aq,l(h)cq(h) are known because cq(h) 
are “observed” without noise. 

Thus the functional linear model (3) can be rewrit- 
ten as a standard additive model 

∆µ(p0, ∆p) = 
Σk0   Ap0 ,l(p ) ν0,l 

functions m1(x), m2(y) and m3(h) as follows 

 
 

+ 
Σk∆   A∆p,l(∆p) ν∆,l + β0 (5) 

m1(x) = 
Σkx

 

m2(y) = 
Σky

 

Ax,k(x) νx,u, 

 
Ay,r(y) νy,r, 

+ q=1 
kq 

l=1 
Aq,l (h)ξ q,l + ω(p0, ∆p) 

0 

 
m3(h) = kh     Ah,v(h) νh,v. 

By recalling that p = (x, y, h), the trivariate func- 

tion m∗(x, y, h) can be expressed as 

Hence Model (5) corresponds to a GAM with smooth 
components represented via a regression spline model 
[29] that is fitted by penalized maximum likelihood es- 
timation  to  avoid  overfitting:  a  large  number  of  ba- 
sis functions is chosen and penalties are designed to 

m∗(p) = kx
 

k 
l=1 

ky kh 
r=1 v=1 

 
Ap,l(p) νm,l 

Ax,u(x)Ay,r(y)Ah,v(h) νurv suppress excessive roughness of the functional param- 
eters. This rewriting and fitting procedure results to 
be similar to the approach adopted in [10]. In prac- 
tice, the GAM penalized likelihood maximization prob- 

where k = kx × ky × kh, Ap,l are elements of the N × k 

matrix Ap = Ax Ⓢ Ay Ⓢ Ah where Ⓢ denotes the tensor 
product (for further details see [33] p. 162) and N = 

n × H  where H  is the number of values of height h 

lem is solved by Penalized Iteratively Reweighted Least 
Squares (P-IRLS) to estimate the vector of coefficients 

ξ = {ν0, ν∆, β0, ξ1, . . . , ξQ} 

u=1 

and ∆p as above. 

Σ 
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where ν0 = {ν0,1, . . . , ν0,k0 }, ν∆ = {ν∆,1, . . . , ν∆,k∆ } 

and ξq = {ξq,1, . . . , ξq,kq }, q  = 1, . . . , Q. The P-IRLS 
method assumes the vector of the so-called smoothing 
parameters, multiplying the smooth components’ penal- 
ties and controlling the trade-off between fidelity to the 
data and smoothness, to be known (see e.g. [33] and 
[34]). The estimation of such smoothing parameters can 
be achieved by minimization of a prediction error esti- 
mate, such as the generalized cross validation (GCV) 
score, or by Restricted Maximum Likelihood Estima- 
tion (REML) via a mixed effects model representation 
of a GAM. 

The equivalence of smoothing splines and mixed 
models was highlighted by Speed [27] while discussing 
the work of Robinson [23]. Such an equivalence allows 
for the choice of the smoothing parameters through 
the estimation of the variance components associated 
with the random effects in the mixed model represen- 
tation that are the penalized spline parameters (for de- 
tails see e.g. [30], [25], [32]). Reiss and Odgen [22] show 
that sometimes REML may be preferable to GCV and 
Wood [34] provides a general computationally efficient 
way of estimating the smoothing parameters that makes 
REML fast and stable and is implemented in the mgcv 

package [35]. 

Since we deal with collocation uncertainty, we are 
interested in understanding how variability changes with 
the predictors. Then we model the conditional variance 
by a functional regression model applied to the squares 

of first order model functional errors ω̂2 =    µ − m̂  − β̂′c   
2

, 
again by means of a GAM/mixed-model representation, 
obtained by rewriting o(·) and the term γ(·)′c(·), to ar- 
rive to an expression similar to (5). This procedure fol- 
lows the iterative algorithm suggested by Ruppert et 
al. ([25] p. 264) that we implement as explained in the 
following subsection. 

Model selection can be performed by comparing REML 
or GCV; indeed since we adopt the mixed model rep- 
resentation, we will use REML by means of the related 
AIC criterion. 

 
 

3.2 Iterative algorithm for HFRM estimation 

 
To handle heteroskedasticity, we follow the iterative al- 
gorithm suggested by [25], which is started by a prelim- 
inary standard GAM/mixed-model estimation for the 
functional mean. Then it is given by iterating, up to 
convergence, the following two steps: a functional re- 
gression model estimation step applied to the squared 
residuals, and an heteroskedastic mixed model estima- 
tion step for the functional mean, the latter obtained 

by pretending that the variance function estimated at 

the first step is the actual one. 
Note that Model (5) can be written in matrix form 

as ∆µ = Aξ + ω, where ∆µ is the vector of responses 
and the design matrix A is obtained by stacking all 
the splines matrices of the individual terms, so that 

A = [Ap0 A∆p 1 A1 . . . AQ]. The model for the vari- 
ance specified in (4) can be written in a similar ma- 
trix form. Following the equivalence between GAM and 
mixed models, the mean function in (5) can be re- 
expressed as a mixed model, that is f = Aξ = Xβ + 
Zu where X contains the columns of matrix A cor- 
responding to unpenalized coefficients and Z contains 
those columns corresponding to penalized coefficients. 
Similarly the variance function can be written as g = 

exp{Xγ + Zv}. This formulation results in a double- 
mixed model 

∆µ|u, v ∼ N (Xβ + Zu, diag{exp(Xγ + Zv)}) 

for which parameter estimation proves to be challeng- 
ing. Instead, the iterative algorithm provides a way of 
estimating the parameters (of both the mean and vari- 
ance functions) that can be easily implemented. The 
algorithm builds on the fact that if f is known, then 

(∆µ − f )2 ∼ Gamma(1/2, 2 exp(Xγ + Zv)). 

The algorithm steps are defined as follows: 

1. Fit a standard linear mixed model to ∆µ and get 

the fitted mean function f̂ . 

2. Form the squared residuals r̂2 = (∆µ − ̂f )2. 
3. Fit to the squared residuals the generalized linear 

mixed model Gamma(1/2, 2 exp(Xγ +Zv)) and get 
the fitted function exp ĝ. 

4. Fit a heteroskedastic mixed model: pretending that 
the vector of estimated variance function values,  ĝ, 
is the actual variance function, fit the model 

∆µ|u ∼ N (Xβ + Zu, diag{exp(ĝ)}). 

5. Return to step (2) and iterate. 

The algorithm’s convergence is determined based on 

the AIC, since the effective degrees of freedom change 
from iteration to iteration, as well as for the different 

specification of m(·) and o(·). The algorithm stops when 
the maximum of the AIC rate for f and g is smaller 
than 0.1%, that is 
 

max(AICratef , AICrateg) < 0.001 

where the criterion rate is calculated as 

AICi AICi−1 
AICrate = 

AIC − 
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and i denotes the ith iteration. 
Note  that  the  squared  residuals  ̂r2  change  at  each 

iteration and so the corresponding AIC values for g are 
not directly comparable. Nevertheless an improvement 
in modelling f induces a decay in the AIC for g. 

 

4 Collocation uncertainty of atmospheric 
pressure at Sterling 

 

Data, gathered at discrete and irregularly spaced sam- 
pling points, are converted to functional observations 
through smoothing by using penalized cubic B-splines 
according to  (1) with knots regularly  spaced every 50 
m and penalty parameter λ = 1; these choices allow 
the observed measurement errors to be small, ensuring 
that no features of the original data are lost due to over- 
smoothing and resulting in very small RMSE for all the 
profiles. Values of smoothed profiles at every 100 m are 
then considered, so that we recover a common grid with 
H values for all profiles. In what follows, we consider the 
difference between coupled profiles at the same height 

that ranges in 100 − 10000 m. All the analysis is done 
in R [21]. 

Following the HFRM illustrated in Section 3, we 
model pressure collocation mismatch in Beltsville-Sterling 
defined as ∆pr (in hPa). Figure 4 shows ∆pr variability 
at all altitude levels, especially for low value of height. 
In the HFRM (eqs. (3) and (4)) we have the following 
meteorological covariates: temperature (T 0  and  ∆T  in 
K), relative humidity (rh0 and ∆rh in %), water vapor 
mixing ratio (mr0 and ∆mr in g/kg)  and  orthogonal 
wind components (uW 0, vW 0, ∆uW and ∆vW in m/s) 
from both collocated radiosondes. To avoid scale effects 
and facilitate interpretation, the functional covariates 

c (·) have been standardized so that the total profile 
average is zero and the total profile variance is unity. 
Note that differences are taken at the same height value 
but with a mismatch in time (less than 3 hours). Hence, 
we need to include further covariates in the model to 
adjust for the change in local meteorological conditions 
within the time period in between matched launches. 
A further source of variability comes from the fact that 
the 32 pairs of launches are distributed in a three year 
period and hence they may have been launched in dif- 
ferent seasons and time of the day. Thus we consider 
measurement calendar time (τ 0 and ∆τ0) and flight 
duration difference (∆t in seconds). In particular, ∆τ0 
represents the difference in measurement calendar time 
at launch, and thus it is smaller than 3 hours. We con- 
sider this (scalar) covariate instead of ∆τ because of 
the relationship ∆τ = ∆τ0 + ∆t. 

All three alternatives for m(p0, ∆p) in (3) and o(p0, ∆p) 
in (4), namely A), B) and C), are considered. Conver- 

gence results from the iterative algorithm detailed in 
Section 3.2 are summarized in Figure 5. According to 
the AIC  criterion for f , Model A)  is considered to be 
the best since AIC = 770.62, 921.01 and 852.39 for A), 
B) and C) respectively. Indeed, AIC values for Model 
A) are systematically smaller than those for B) and 
C) with increasing number of iterations. As already ex- 
plained in Section 3.2, AIC values for g are not directly 
comparable, but Figure 5 shows the expected decay. 
Moreover, we can see that AIC decays faster for Model 
A) than for B) and C) when heteroskedasticity is taken 
into account. 

The computational time is also smaller for Model 

A), 5.85 hours, than for the other two models; although 
there is not much difference with respect to Model B), 
converging in 6.03 hours, running time is considerably 
smaller than for Model C) that takes 13.3 hours. 

From now onwards, reported results are based on 
Model A) where the coordinates do not act indepen- 
dently, but their interaction is allowed by including two 
smooth functions of p0 and ∆p. 

The final fitted model for the functional mean is 
summarized in Table 1. The intercept β0 is assumed to 
be  independent  of  height  so  that  β̂0   =  0.89486  can  be 
seen as the overall collocation bias between Beltsville 
and Sterling radiosoundings. All smooth functions of 
the covariates were found to be significant according to 
the zero-effect Wald-type test [36] of smooth compo- 
nents in GAMs as implemented in mgcv [35], as shown 
by the p-values in Table 1. Moreover, the effective de- 
grees of freedom (edf) indicate nonlinear effects of all 
the considered covariates, with the exception of ∆rh 
whose β(h) appears almost linear (edf = 2). 
 
 
 
 
 

Fig. 4  Collocation mismatch profiles of pressure 
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Fig. 5 AIC for f and AIC for g by iteration 

 
Table 1 Model summary for the functional mean 

   Parametric coefficients  
Estimate Std. Error p-value 

   β0 0.89486 0.04922 < 2e-16  

Smooth terms 
 edf F p-value 

m0(x0, y0, h) 19.476 156.27 < 2e-16 
m∆(∆x, ∆y, h) 12.763 76.93 < 2e-16 
τ 0 12.459 234.98 < 2e-16 
T 0 13.097 33.57 < 2e-16 
rh0 12.272 95.92 < 2e-16 

mr0 12.242 113.00 < 2e-16 
uW 0 11.225 127.56 < 2e-16 
vW 0 12.760 71.21 < 2e-16 
∆t 9.523 132.27 < 2e-16 
∆τ0 10.118 179.35 < 2e-16 
∆T 13.422 39.45 < 2e-16 
∆rh 2.000 19.52 3.55e-09 
∆mr 10.923 10.61 < 2e-16 
∆uW 12.921 40.12 < 2e-16 
∆vW 13.412 63.19 < 2e-16 

Figures 6 and  7 show the estimated m̂ 0 and m̂ ∆ for 
three different values of h. Since they are 3D smooth 
components, we can only visualize them by fixing one of 
the three variables (height in this case). From Figure 6, 
it seems clear that a model where the effect of longi- 
tude, latitude and height is merely additive, as Model 
C) states, may not be very appropriate, given that the 
shape of the surface changes considerably depending on 
the value of height. The same is true for m̂ ∆ (Figure 7), 
although in this case the difference is less evident than 
for m̂ 0. 

The estimated functional coefficients are plotted in 
Figure 8 along with 95% confidence bands and show 
the influence of each of the covariates on the collocation 
drift. Estimated coefficients adjusted for heteroskedas- 
ticity (i.e. at the end of the iteration process) are shown 
in red, while initial estimates are shown in black. By in- 
corporating the heteroskedasticity, the 95% confidence 
bands become generally narrower and the functional co- 
efficients associated to meteorogical covariates change 
in shape and magnitude, especially for T 0 and mr0, 
while those of time related covariates appear to change 
less than the former. 

With an adjusted determination coefficient R2 = 
0.952, the model summarized in Table 1 misses only 
4.8% of the collocation uncertainty which is covered by 

σ2 (·).  The  latter  is  estimated  by  the  functional  log- 
linear model applied to the squares of first order model 

functional  errors  ω̂2   =     µ − β̂′c   
2

,  according  to  (4). 

The corresponding fitted model is summarized in Table 
2, where p-values indicate that the collocation 2nd or- 
der uncertainty of pressure depends on the same covari- 
ates as the collocation drift. In addition, the effective 
degrees of freedom (edf) support the nonlinearity of the 
functional coefficients γ(h); only ∆uW has an almost 
linear effect with edf = 2.001. 

Figures 9 and   10 show the estimated ô0  and ô∆  for 
three different values of h. The term ô0  becomes flatter 
as height increases, while the term ô∆ remains very sim- 
ilar for different values of height. The estimated func- 
tional coefficients are plotted in Figure 11 along with 
95% confidence bands and show the influence of each of 
the covariates on the skedastic term. Both initial and 
final estimates of the iterative algorithm are shown in 
black and red, respectively. However, as already said, 
the  squared  residuals  ̂r2  change  at  each  iteration  and 
so the corresponding estimated functional coefficients 
are not directly comparable. The effects’ magnitude is 
much larger for mr0 whose functional coefficient in- 
creases abruptly after  h = 6 km. Also T 0’s coefficient 
has a larger range than the remaining covariates (see 
Figure 11). 



Modelling collocation uncertainty of 3D atmospheric profiles 9 
 

 

 
 

Fig. 6 m̂ 0(x0, y0, h)  for  three  different  values  of  height 

 

Fig.  7   m̂ ∆(∆x, ∆y, h)  for  three  different  values  of  height 

 
Table 2 Model summary for the functional variance 

Parametric coefficients 
 

Estimate Std. Error p-value 

γ0 69.967 4.385 < 2e-16 
 

Smooth terms 
edf F p-value 

tion. In fact, this reformulation as a double mixed model, 
together with the implemention of an iterative algo- 
rithm optimizing an AIC criterion, allows us to handle 
the impact of covariates on conditional uncertainty by 
means of functional heteroskedasticity. 

o0(x0, y0, h) 7.019 35.487 < 2e-16 The model describes both conditional mean and vari- 
o∆(∆x, ∆y, h) 9.002 37.803 < 2e-16 ance as a sum of a 3D functional term and some uni- 
τ 0 

T 0 

rh0 12.270 9.498 < 2e-16 
mr0 15.304 8.348 < 2e-16 
uW 0 16.473 12.502 < 2e-16 
vW 0 15.056 9.781 < 2e-16 
∆t 13.095 7.782 < 2e-16 
∆τ0 9.068 67.725 < 2e-16 
∆T 9.645 4.048 4.71e-06 
∆rh 15.824 3.388 1.55e-06 
∆mr 4.562 4.985 0.000106 
∆uW 2.001 5.779 0.003098 
∆vW 13.701 7.481 < 2e-16 

 

 

5 Conclusions 

 
In this paper we presented a new model for 3D func- 
tional data based on the extension of a previously intro- 
duced unidimensional heteroskedastic regression model. 
Fitting follows from a GAM/mixed-model representa- 

dimensional functional regression components. This re- 
sults in great flexibility as shown by the application to 
collocation uncertainty of atmospheric termodynamic 
profiles. 

In particular, considering collocation uncertainty of 
atmospheric pressure, the new 3D component is shown 
to improve model fitting with respect to the purely 
undimensional model which was introduced by [5] in 
the frame of collocation uncertainty of relative humid- 
ity. Moreover, the iterative algorithm allows to adjust 
model estimates of collocation drift in the presence of 
heteroskedasticity. 

The difference in pressure actually measured by cou- 
ples of weather balloons is known not to match exactly 
the barometric formula but to require corrections for 
variations in density and meteorological variables such 
as temperature, humidity and wind conditions, see e.g. 
[1]. It is interesting to note that the model obtained 

14.804 5.390 4.47e-12 
11.563 31.212 < 2e-16 
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Fig.   8   Initial  (black)  and  heteroskedasticity-adjusted  (red)  estimated  functional  coefficients  β̂q    for  the  functional  mean 
model (3) of pressure collocation mismatch 

 

in this paper, with a fitting of R2 = 0.95 and satisfy- 
ing AIC parsimony criterion, also includes a number of 
terms that take into account time and space for the two 
collocated measurements. Moreover, it shows that these 
effects are not linear since they are smoothly chang- 
ing in shape along vertical direction and horizontal dis- 
tance. In addition, the small unexplained collocation 

uncertainty changes in magnitude as explained by the 
heteroskedastic 3D component. 
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Fig. 9 ô0(x0, y0, h)  for  three  different  values  of  height 

 
 

Fig.  10   ô∆(∆x, ∆y, h)  for  three  different  values  of  height 
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