Reply: Can Silent Brain Lesions Be a Target to Guide Anticoagulation Treatment in Patients With Low-Risk Atrial Fibrillation to Reduce Cognitive Impairment?

This is the author’s manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/145011 since

Published version:
DOI:10.1016/j.jacc.2014.01.052

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Response to “Can be Silent Brain Lesions a Target to Guide Anticoagulation Treatment in Patients with Low-Risk Atrial Fibrillation to Reduce Cognitive Impairment?” by Ammirati et al.

Authors: Fiorenzo Gaita MD Prof, Laura Corsinovi MD PhD, Matteo Anselmino MD, PhD

Words Count: 517

As raised by Ammirati et al. (1) the recent evidence (2) that prevalence of silent cerebral ischemia (SCI) in patients with paroxysmal and persistent atrial fibrillation (AF) and controls in sinus rhythm implies several clinically relevant issues.

The finding that approximately half of controls presented at least an area of SCI is strongly hypothesis generating. On the other side the prevalence of other cardio-embolic sources, as patent foramen ovale or nonstenotic carotid plaques material, should not be differently stratified within cases and controls, therefore not biasing main study results.

Indeed the question whether SCI represent a target for oral anticoagulation (OAC) to prevent cognitive impairment is crucial. In fact, risk stratification, to date, relies on clinical scores (CHA2DS2-VASc score) based on symptomatic cerebral events only and, anyway, fallacious.

The occurrence of cerebrovascular events in AF patients, despite low risk score remains unfortunately not unusual (3) warranting introduction of “new” markers, as left atrial appendage morphology (4,5) and specific echocardiographic parameters (6). Limited literature has assessed whether antiaggregants/OAC may prevent/reduce SCI. One small study (7) suggested that aspirin attenuates SCI incidence in AF patients, preventing events also in early stages of AF-related cerebral damage and, consequently, cognitive decline. However, this option is not recommended
due to the detrimental effects of antiaggregants with bleeding (8). We fully agree with Ammirati et al that further prospective randomized trials are needed to evaluate the possible reduction of SCI by OAC. In the meantime aggressive rhythm control strategy is mandatory to prevent clinical and silent cerebral ischemia by sinus rhythm restoration and maintenance.

References


