Fibrosis markers and CRIM1 increase in chronic heart failure of increasing severity.

This is a pre print version of the following article:

Original Citation:
Fibrosis markers and CRIM1 increase in chronic heart failure of increasing severity. / Eleuteri E; Di Stefano A; Vallese D; Gnemmi I; Pitruzzella A; Tarro Genta F; Delle Donne L; Cappello F; Ricciardolo FLM; Giannuzzi P. - In: BIOMARKERS. - ISSN 1354-750X. - 19:3(2014), pp. 214-221.

Availability:
This version is available http://hdl.handle.net/2318/145982 since 2016-11-29T09:55:29Z

Published version:
DOI:10.3109/1354750X.2014.896946

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Fibrosis markers and CRIM1 increase in chronic heart failure of increasing severity.

The definitive version is available at:
La versione definitiva è disponibile alla URL:

http://informahealthcare.com/journal/bmk
FIBROSIS MARKERS AND CRIM1 INCREASE IN CHRONIC HEART FAILURE OF INCREASING SEVERITY

Authors
Ermanno Eleuteri, MD¹, Antonino Di Stefano, PhD¹, Davide Vallese, BS, Isabella Gnemmi, Alessandro Pitruzzella, Franco Tarro Genta, MD²; Lorena DelleDonne, MD; Francesco Cappello, MD³; Fabio LM Ricciardolo, MD⁴; Pantaleo Giannuzzi, MD.

Affiliations
Divisione di Cardiologia Riabilitativa e Laboratorio di Citoimmunopatologia Apparato Cardio-Respiratorio, Fondazione Salvatore Maugeri, IRCCS, Veruno (NO), *Divisione di Cardiologia Riabilitativa, Clinica Major, Torino; *Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Sezione di Anatomia Umana, Università di Palermo; Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, Italy; Istituto Paolo Sotgiu, Libera Università degli Studi di Scienze Umane e Tecnologiche, Lugano, Switzerland; ^Division of Respiratory Disease, A.O.U. San Luigi Hospital, Department of Clinical and Biological Sciences, University of Torino, Orbassano (Torino), Italy;

¹ The first two authors (E.E., A.D.S.) contributed equally to the current work

Correspondence to: Dr. Ermanno Eleuteri, MD. Divisione di Cardiologia Riabilitativa, Fondazione Salvatore Maugeri, IRCCS, Via per Revislate 13, 28010 Veruno (NO), Italy.
Phone: +39 0322 884914; Fax: +39 0322 884966
email: ermanno.eleuteri@fsm.it
Abstract

Background: The relation between fibrosis biomarkers, suppressors or activators of fibrosis is incompletely studied in CHF of increasing severity.

Aim of the present study is to investigate serum concentrations of fibrosis inductors, suppressors and regulators in patients with CHF of increasing severity and possible correlations between biomarkers and heart functional indexes.

Methods: ELISA tests were used to quantify TGFβ1, TGFβR1,2, FGFα and b, procollagen type(PIP) I, PIP III, Collagen I, III, BMP1,2,3,7, SDF1α, CXCR4, Fibulin 1,2,3, BMPER, CRIM1 and BAMBI in serum of 66 patients with CHF of increasing severity according to New York Heart Association (NYHA class I, n=9; II, n=34; and III n=23), and in 14 healthy subjects matched for age and sex.

Results: TGFβR2, PIP III, SDF1α and CRIM1 were significantly increased in CHF of increasing severity (Kruskal Wallis (KW): p=0.0176, p=0.0021, p=0.0017 and p=0.0332, respectively). In patients with CHF, PIP III correlated significantly with TGFβR2 (r=+0.29, p=0.026) and CRIM1 (r=+0.38, p=0.0052). PIP III and CRIM1 correlated significantly with the six minute walking test (6’WT) (r=-0.37, p=0.008 and r=-0.36, p=0.015, respectively) and with deceleration time (DT-ms) (r=-0.32, p=0.035 and r=-0.43, p=0.010, respectively). Serum levels of all the other molecules studied were similar in CHF and controls.

Conclusions: Fibrosis suppressors such as BMPs are poorly expressed in the serum of CHF patients concomitantly to an increased serum level of the BMPs inhibitor CRIM1, which in turn, is tightly correlated with the serum PIP III increase, suggesting a progressive imbalance in favor of profibrotic mechanisms in CHF of increasing severity.

Key words
Inflammation, heart fibrosis, endothelial dysfunction.
Introduction

Increased collagen synthesis and degradation has been found in heart failure (1,2) and myocardial fibrosis is associated to development of Heart Failure (3,4). A number of studies performed in postmortem human hearts (5-7) and endomyocardial human biopsies have shown that fibrillar collagen deposition is increased in the myocardium of patients with left ventricular hypertrophy (8-12). Furthermore, fibrosis is higher in more advanced stages of HF and is associated with a poor prognosis (13-17). Serum concentrations of procollagen types (PIP) I and III can be considered as a useful markers of collagens type I and III synthesis (18). Serum collagens I and III concentrations can represent their turnover levels (18). A number of molecules may influence collagen turnover in HF of increasing severity.

TGFβ1 and its receptors R1 and R2 are involved in downregulation of inflammation (19,20), can regulate vascular morphogenesis and extracellular matrix synthesis (21). A pro-angiogenic growth activity and increased cell survival stimulation has been reported for Stromal cell-derived factor-1α (SDF-1α) and its receptor CXCR4 (22,23).

Fibroblasts growth factors (FGF)1 and 2 (acidic and basic, respectively) are involved in the regulation of cardiac angiogenesis and repair (24) and FGF2 is required for development of cardiac hypertrophy (25). Fibulins are involved in structural support, matrix-cell interactions and elastogenic activity (26). Circulating Bone Morphogenic Proteins (BMP) 1-3 may have a pro-fibrotic effect in the kidneys (27). BMP2 can suppresses renal interstitial fibrosis and TGFβ1 induced cardiac fibrosis (28,29). BMP4 reduced TGFβ1 induced extracellular matrix tenascin C and fibronectin production in cultured lung fibroblasts (30). BMP4 inhibitor gremlin is over-expressed in idiopathic pulmonary fibrosis (31). BMP7 suppresses hepatic fibrosis (32), limits Smad3 DNA binding and decreases renal fibrosis (33), reduces collagen content in asbestos treated mice (31), preserves the endothelial cardiac phenotype avoiding the fibroblasts formation and fibrosis (34). BMP endothelial cell precursor derived regulator (BMPER) interacts with BMPs and when overexpressed antagonizes their function (35) or regulates BMPs function (36). Cysteine-rich motor neuron 1 (CRIM1) interacts with BMPs acting as an antagonist reducing production and processing of mature BMPs and decreasing secretion of BMPs (37,38). The BMP and activin membrane-bound inhibitor (BAMBI) is a membrane-spanning glycoprotein that acts as a negative regulator of TGFβ signaling (39). A prevalent anti-fibrotic activity was postulated for the pseudo-
receptor BAMBI that results up-regulated by TGFβ1 stimulation in the endothelium (40).

Aim of the present study is to investigate serum/plasma biomarkers concentrations of fibrosis activators, fibrosis suppressors and regulators in patients with CHF of increasing severity and in a healthy control group of subjects and to evaluate possible correlations between fibrosis regulators and heart functional indexes.

Methods

Subjects

The total study population comprised 80 subjects. The CHF group was composed of 66 subjects with left ventricular dysfunction classified as follows: 9 in NYHA I, 34 in NYHA II and 23 in NYHA III. Characteristics of patients such as mean age, left ventricular ejection fraction (LVEF), sex, 6’WT, VO2max and etiology (ischemic (IHD) or idiopathic (ICM)) are summarized in tables 1 and 2. Table 2 shows a comparative analysis for age, LVEF%, 6’WT and VO2max between the IHD and ICM subgroups. Patients receiving intravenous infusions, with severe valvular disease or with significant renal insufficiency were excluded from the study. The control group included 14 healthy volunteers matched for age and sex, without any documented history, signs or symptoms of heart failure, nor history of left ventricular dysfunction (table 1). Clinical information, including demographics, co-morbidities, medications, and symptom level based on NYHA classification, were collected in the week before blood sample collection. At enrolment, all subjects underwent complete echocardiographic study. Left ventricular volumes were calculated from orthogonal apical views using the biplane area-length method, and ejection fraction was derived from the standard equation. Deceleration time (DT) of early filling (ms) was measured, as a strong predictor of pulmonary capillary wedge pressure in patients with left ventricular dysfunction (41), irrespective of the degree of mitral regurgitation (42) or atrial fibrillation (43). The study was carried out in conformity with the Declaration of Helsinki, and informed consent was obtained from each subject. This cross-sectional study was performed according to the local Ethics Committee Guidelines.

Serum collection and analysis

Blood samples were collected using Bekton Dikinson (BD) Vacutainer Cat Plus REF 367896 for serum. Serum or plasma was then aliquoted and immediately frozen at –80
"C until analysis. The serum/plasma levels of all molecules (see table 3) were determined by commercially available enzyme linked immunosorbent assay (ELISA) kits as described in table 3. Table 3 also shows the lower detection limits and the method of quantification (ELISA) for each of the molecules studied. Manufacturers’ instructions were carefully followed for each of the ELISA kits used. Further details for each kit are available from the respective online datasheet.

Data analysis
Group data were expressed as mean ± standard error for functional data or median (range or IQR) for serum/plasma levels data. Differences between groups were analysed using analysis of variance (ANOVA) for functional data. The Kruskal Wallis test was applied for serum/plasma levels data, followed - when differences were significant – by the Mann-Whitney U test for comparison between groups. Single regression analysis was performed using the Spearman correlation test. Probability values of p<0.05 were considered as significant. Data analysis was performed using the Stat View SE Graphics program (Abacus Concepts Inc., Berkeley, CA-USA).

Results
Subjects
Characteristics of the study population are summarized in Table 1. Patients in NYHA class II and III were slightly older than NYHA I patients. Ischemic patients were slightly older (p=0.03) compared to idiopathic subjects and showed a significantly lower VO2max (p=0.01) (see table 2 for characteristics of patients when divided into ischemic and idiopathic subgroups).

Quantification of serum/plasma markers
Quantification of fibroblasts growth factor (FGF) basic and acidic and of Transforming Growth Factor (TGF)β1 were not statistically different in the four groups of subjects studied, showing a low presence of these molecules both in patients and control subjects (table 4). TGFβR1 was slightly decreased in NYHA class II (p=0.036) and III (p=0.020) compared to controls, even-though this difference was not revealed by Kruskal Wallis test for multiple comparisons. Interestingly, TGFβR2 increased significantly in NYHA class III compared to NYHA class II (p=0.011) and controls (p=0.018) (figure 1a). The
TGFβ pseudo-receptor BAMBI was similarly expressed in all groups, showing a low expression in the four groups examined. The pro-angiogenic factor SDF1α was significantly increased in NYHA class III compared to NYHA class II (p=0.013), NYHA class I (p=0.014) and controls (p=0.0006) (figure 1b), at variance with its receptor CXCR4, which was similarly expressed in the four groups. Fibulins 1 and 2 were highly expressed in all subjects without any significant differences between groups. Fibulin 4 was significantly higher in NYHA class III patients compared to NYHA I (p=0.011), even though this difference was not confirmed by the more restrictive statistical analysis for multiple comparisons, the Kruskal Wallis test. Among the BMPs (BMP1, BMP2, BMP3, BMP7, BMP10) proteins analysed, BMP1 and BMP2 were the most abundantly expressed in all subjects without significant differences between groups. The BMP endothelial cell precursor derived regulator, BMPER is also modestly expressed, at concentrations similar to BMP2, in all subjects without significant differences between groups. Interestingly, the BMPs antagonist CRIM1, was significantly higher in NYHA class III patients compared to NYHA class II (p=0.024), NYHA class I (p=0.011) and controls (p=0.054) (figure 1c). Collagen I and PIP I were similarly expressed in the four groups of patients studied. Collagen III was significantly higher in NYHA class III patients compared to controls (p=0.043). Most importantly, Procollagen (PIP) type III was significantly higher in NYHA class III patients compared to NYHA class II (p=0.0078), NYHA class I (p=0.047) and controls (p=0.0011) (figure 1d). NYHA class II patients also differed significantly from controls (p=0.038). These results are summarized in table 4.

When ischemic (IHD) were compared to idiopathic (ICM) patients, we did not observe any significant difference for all the molecules studied except for CRIM1 and Fibulin 4 serum concentrations which were reported as significantly higher in IHD compared to ICM patients. These results are summarized in table 5.

Correlations

In our patient cohort, none of the biomarkers studied correlated significantly with LVEF% at echocardiography. PIP III was inversely correlated with 6’WT (r=-0.37, p=0.0086) (figure 2a) and DT (ms) (r=-0.32, p=0.035) (figure 2c). CRIM1 was inversely correlated with 6’WT (r=-0.36, p=0.0158) (figure 2b), peak VO2 (r=-0.53, p=0.0015) and DT (ms) (r=-0.43, p=0.010) (figure 2d). TGFβR2 was inversely
correlated with DT (ms) (r=-0.35, p=0.027); SDF1α correlated inversely with peak VO₂
(r=-0.42, p=0.032). No other correlations were found between serum/plasma biomarkers
and physiological/functional parameters. Interestingly, Pro-collagen type III (PIP III)
was positively correlated with TGFβR2 (r=0.29, p=0.026) (figure 3a), CRIM1 (r=0.38,
p=0.005) (figure 3b), Fibulin 4 (r=0.35, p=0.010) (figure 3c) and SDF1α (r=0.44,
p=0.013) (figure 3d).

Discussion
In our CHF patients, we demonstrated increasing levels of Procollagen type III (PIP III),
Transforming growth factor (TGF)βR2, Stromal cell-derived factor(SDF)-1α and
Cysteine-rich motor neuron (CRIM)-1, particularly in patients with more severe disease.
PIP III serum levels correlated inversely with patient’s tolerance to dynamic exercise
(6’WT) and to the ventilatory response (DTms). PIP III serum levels were also
positively correlated with CRIM-1, SDF-1α, Fibulin-4 and TGFβR2 in the serum of
CHF patients of increasing severity. These data, taken together, show a progressive
imbalance in favour of pro fibrotic mechanisms, which can be revealed in the
serum/plasma, in patients with CHF of increasing severity.
The role of BMPs proteins as anti-fibrotic agents is sufficiently well documented in
kidney (44) and liver (32). Relatively few data are disposable in heart fibrosis. Recently,
it was showed that in mice, pressure overload induced collagen deposition was
decreased and cardiac function improved, after 2 weeks treatment with recombinant
BMP-2 (29), suggesting a fibrosis antagonizing action for this molecule. In the serum of
our CHF patients BMP-1,-2,-3,-7 and -10 were poorly represented being BMP-1 and
BMP-2 the most expressed BMPs proteins. None of the BMPs proteins showed
significant changes in CHF patients compared to controls, suggesting that their potential
role as anti-fibrotic molecules could not be exerted in CHF patients of increasing
severity. Since a number of molecules, such as BMP endothelial cell precursor derived
regulator (BMPER) and cysteine-rich motor neuron 1 (CRIM-1) may have a regulatory
or inhibitory role on BMPs proteins, we quantified these molecules in the serum of our
CHF patients and controls. The BMPER serum levels were relatively low and similar in
the four groups of patients studied, suggesting a minor role for this regulatory molecule.
Interestingly, we found significantly increased serum levels of CRIM-1 in NYHA class
III CHF patients when compared to all the other groups studied and CRIM-1 serum
levels were positively correlated with PIP III serum levels in CHF patients (figure 3). A negative significant correlation was also observed between CRIM-1 serum levels and 6'WT or DT(ms), showing, as an original contribution of the present study, a possible relationship between CRIM-1 levels and increased heart fibrosis, associated to a decreased ventilatory response and dynamic exercise performance of the patients (figure 2). In “in vitro” experiments, CRIM-1 binding of BMP4 and -7 leads to a reduction in the production and secretion of mature BMPs (37) on metanephric explant cultures. These data, together with our “in vivo” findings of an increased serum level of CRIM-1, associated to low serum levels of BMPs, invite to speculate on the possible BMPs inhibitory role of CRIM-1 and subsequent increased heart fibrosis, in our patients with CHF of increasing severity. Interestingly, in the sub-group of CHF patients with ischaemic hearth disease (IHD), CRIM-1 and also Fibulin-4, a molecule involved in the elastic fiber assembly, are significantly increased as compared to idiopathic cardiomyopathy (ICM) group. Also PIP III levels tended to be higher (p=0.11) in IHD compared to ICM patients (see table 5), suggesting again a pro-fibrotic role for these proteins in the more compromised patients with CHF.

The TGFβ pseudo-receptor BAMBI, for which a prevalent anti-fibrotic activity was reported (39,45), was similarly expressed in the four groups of subjects studied, suggesting a minor role for this protein in controlling the fibrotic changes developing in CHF of increasing severity.

A pro-angiogenic growth activity has been reported for SDF1α and its receptor CXCR4 (22,23). SDF1α was reported as increased in acute myocardial infarction (AMI) (22), suggesting a contribution of bone marrow cells in myocardial regeneration (22). In CHF patients, a three months physical training significantly increased serum levels of the pro-angiogenic markers angiopoietin-2 and CD34+ cells, but not of SDF1α, as compared with non-trained patients (46). In contrast, a down-regulation of pro-angiogenic mechanisms, included SDF1α reduction, was reported in idiopathic pulmonary fibrosis (47), suggesting that potentially differing mechanisms could be involved in cardiac and lung fibrosis. We here reported a significantly increased serum level of SDF1α in NYHA class III patients compared to all the other groups of subjects and a significant positive correlation between SDF1α and PIP III serum levels in patients with CHF of increasing severity (figures 1 and 3), suggesting a role for this pro-angiogenic molecule in heart remodelling. Since a parallel increase of its receptor CXCR4 was not observed in the plasma of our patients, the effective SDF1α biological
activity developing in these patients needs to be more extensively elucidated by specifically designed “in vitro” studies.

Fibulins have a role in the assembly and stabilization of supramolecular extracellular matrix (ECM) complexes. They also can function as a modulators of cell growth, differentiation and angiogenesis (48). Fibulin-1 and -2 interact with a wide number of ECM complexes, fibulin-4 interacts mainly with tropoelastin (48). Fibulins-1 and -2 were the most expressed fibulins in the serum of our patients without significant differences between groups (table 4). Fibulin-4 was slightly increased in NYHA class III compared to NYHA class I patients, and it was correlated positively with PIP III serum levels (figure 3), probably as a consequence of the more direct relationship of this fibulin type with the cardiac function (48).

Molecules classically considered as fibrosis inductors, such as basic and acidic fibroblast growth factors and transforming growth factor(TGF)β1 were poorly recovered in the serum of our patients and controls (table 4), showing no significant differences between groups. TGFβRI was slightly decreased in NYHA class II and III CHF patients, compared to controls. Interestingly, TGFβRII serum levels, increased significantly in NYHA class III compared to NYHA class II patients and controls (table 4) and correlated significantly with PIP III serum levels (figure 3), showing a potential role in inducing heart remodelling and fibrosis. Pro-collagen (PIP) type I and collagen type I were similarly recovered in the serum of the four groups studied. As expected, PIP III serum level was significantly increased in NYHA class III compared to all the other groups and in NYHA class II compared to controls (table 4). Serum level of Collagen III was also slightly increased in NYHA class III compared to controls (table 4), confirming the increased fibrotic state and collagen turnover in patients with CHF of increasing severity.

The prognostic value of the CRIM-1 serum test, as well as inhibition of the CRIM-1 biological functions and up-regulation of anti-fibrotic BMPs molecules need further specifically planned “in vitro” and “in vivo” studies.
Acknowledgements

We thank Ada Patriarca for technical assistance. Supported by Fondazione S. Maugeri, IRCCS, Ricerca Corrente.
References

Figure Legends

Figure 1
Transforming growth factor-β receptor 2 (TGF-βR2) (a), Stromal cell-derived factor-1α (SDF1α) (b), Cysteine-rich motor neuron-1 (CRIM1) (c) Pro-collagen type III (PIP III) (d), in serum/plasma of subjects with chronic heart failure from NYHA class I, II, III and healthy controls. The results are expressed as median (interquartile (IQR) range). Statistical analysis: Kruskal Wallis followed by Mann Whitney U test for comparison between groups. Control subjects: n=14; CHF NYHA class I: n=9; CHF NYHA class II: n=34; CHF NYHA class III: n=23.

Figure 2
Regression analysis between PIP III and CRIM1 serum levels and six minutes walking test (6’WT) (a and b, respectively) and deceleration time (DT-ms) (c and d, respectively) in all patients with CHF (n=66). Spearman’s rank correlations.

Figure 3
Regression analysis between PIP III serum levels and pro-fibrotic stimuli TGFβR2 (a), CRIM1 (b), Fibulin 4 (c) and PIP III versus a pro-angiogenic stimulator SDF1α (d) in all patients with CHF (n=66). Spearman’s rank correlations.
Table 1

Characteristics of CHF patients and healthy controls

<table>
<thead>
<tr>
<th>Subjects (n)</th>
<th>Age ± SE</th>
<th>LVEF% ± SE</th>
<th>VO₂ max</th>
<th>Sex (M/F)</th>
<th>IHD/ICM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls (14)</td>
<td>53 ± 2</td>
<td>-</td>
<td>60±2</td>
<td>-</td>
<td>14/0</td>
</tr>
<tr>
<td>NYHA I (9)</td>
<td>55 ± 4</td>
<td>486 ± 23</td>
<td>25 ± 2</td>
<td>20.8 ± 2.3</td>
<td>8/0</td>
</tr>
<tr>
<td>NYHA II (34)</td>
<td>63 ± 2*</td>
<td>405 ± 14</td>
<td>27 ± 1</td>
<td>16 ± 1</td>
<td>31/3</td>
</tr>
<tr>
<td>NYHA III (23)</td>
<td>63 ± 2*</td>
<td>276 ± 31</td>
<td>23 ± 1^</td>
<td>13 ± 1</td>
<td>16/7</td>
</tr>
</tbody>
</table>

Data expressed as Mean ± SE; IHD = Ischemic Heart Disease; ICM = Idiopathic Cardiomyopathy; LVEF=Left ventricular ejection fraction; 6WT=six minutes walking test; VO₂max = maximal oxygen consumption.

ANOVA: *p<0.05 from NYHA I; ^p<0.05 from NYHA II.

Table 2

Characteristics of ischemic and idiopathic CHF patients used for analysis of serum/plasma biomarkers

<table>
<thead>
<tr>
<th>Subjects (n)</th>
<th>Age ± SE</th>
<th>LVEF% ± SE</th>
<th>6'WT ± SE</th>
<th>VO₂max ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHD (39)</td>
<td>65±2</td>
<td>26±1</td>
<td>401±18</td>
<td>15±1</td>
</tr>
<tr>
<td>ICM (27)</td>
<td>55±3*</td>
<td>24±1</td>
<td>439±28</td>
<td>20±2**</td>
</tr>
</tbody>
</table>

Data expressed as mean±SE; IHD=Ischemic Heart Disease; ICM=Idiopathic Cardiomyopathy; LVEF=Left ventricular ejection fraction; 6WT=Six minutes walking test; VO₂max = maximal oxygen consumption.

ANOVA: *p=0.03; **p=0.010
<table>
<thead>
<tr>
<th>Molecules</th>
<th>Manufacturer (code)</th>
<th>Lower detection limit</th>
<th>Type of plasma/serum</th>
<th>Analytical Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGF basic</td>
<td>R&D Systems DFB50</td>
<td>3 pg/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>FGF acidic</td>
<td>R&D Systems DFA00B</td>
<td>5.68 pg/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>TGF-β1</td>
<td>R&D Systems DB100B</td>
<td>4.61 pg/ml</td>
<td>Plasma</td>
<td>ELISA</td>
</tr>
<tr>
<td>TGF-β R1</td>
<td>USC Life Science Inc. E90397Hu</td>
<td>0.118 ng/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>TGF- β R2</td>
<td>USC Life Science Inc. E92972Hu</td>
<td>0.126 ng/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>BAMBI</td>
<td>USC Life Science Inc. E98566Hu</td>
<td>0.064 ng/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>SDF-1α</td>
<td>R&D Systems DSA00</td>
<td>18 pg/ml</td>
<td>Plasma</td>
<td>ELISA</td>
</tr>
<tr>
<td>CXCR4</td>
<td>CUSABIO CSB-E12825h</td>
<td>3.9 pg/ml</td>
<td>Plasma</td>
<td>ELISA</td>
</tr>
<tr>
<td>Fibulin 1</td>
<td>USC Life Science Inc. E92472Hu</td>
<td>0.23 ng/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>Fibulin 2</td>
<td>USC Life Science Inc. E93152Hu</td>
<td>5.6 pg/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>Fibulin 4</td>
<td>USC Life Science Inc. E95421Hu</td>
<td>1.12 ng/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>BMP-1</td>
<td>USC Life Science Inc. E90653Hu</td>
<td>0.064 ng/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>BMP-2</td>
<td>USC Life Science Inc. E90013Hu</td>
<td>15.98 pg/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>BMP-3</td>
<td>USC Life Science Inc. E92102Hu</td>
<td>27 pg/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>BMP-7</td>
<td>USC Life Science Inc. E90799Hu</td>
<td>5.9 pg/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>BMP-10</td>
<td>USC Life Science Inc. E92106Hu</td>
<td>0.066 ng/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>BMPER</td>
<td>USC Life Science Inc. E98548Hu</td>
<td>0.059 ng/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>CRIM-1</td>
<td>USC Life Science Inc. E98548Hu</td>
<td>0.13 ng/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>PIP-I</td>
<td>TaKaRa MK101</td>
<td>10 ng/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>PIP-III</td>
<td>USC Life Science Inc. E90573Hu</td>
<td>12.8 pg/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>Collagen I</td>
<td>USC Life Science Inc. E90571Hu</td>
<td>0.237 ng/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
<tr>
<td>Collagen III</td>
<td>USC Life Science Inc. E90176Hu</td>
<td>13.1 pg/ml</td>
<td>Serum</td>
<td>ELISA</td>
</tr>
</tbody>
</table>
Table 4
Quantification of pro-fibrotic molecules and growth factors in the serum/plasma of patients with chronic heart failure and control subjects

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>NHYA I</th>
<th>NHYA II</th>
<th>NHYA III</th>
<th>Kruskal-Wallis P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGF basic (pg/ml)</td>
<td>0.00 (0.33)</td>
<td>0.00 (0.1-0.67)</td>
<td>0.00 (0.907)</td>
<td>0.00 (0.4-0.02)</td>
<td>0.4240</td>
</tr>
<tr>
<td>FGF acidic (pg/ml)</td>
<td>0.00 (0.38-0.07)</td>
<td>0.00 (0.14-0.78)</td>
<td>0.00 (0.468-0.41)</td>
<td>0.00 (0.22-0.52)</td>
<td>0.2608</td>
</tr>
<tr>
<td>TGF-β1 (ng/ml)</td>
<td>0.00 (0.25-0.41)</td>
<td>0.00 (0.8-6)</td>
<td>0.00 (16.98)</td>
<td>0.00 (18.18)</td>
<td>0.9657</td>
</tr>
<tr>
<td>TGF-β R1 (ng/ml)</td>
<td>1.04 (0.36-5.76)</td>
<td>0.84 (0.01-20.84)</td>
<td>0.66 (0.5-96)</td>
<td>0.44 (0.4-2.4)</td>
<td>0.0724</td>
</tr>
<tr>
<td>TGF-β R2 (ng/ml)</td>
<td>1.00 (0.26-0.99)</td>
<td>2.37 (1.13-23.61)</td>
<td>1.49 (0.26-16.2)</td>
<td>4.29 (0.476-32.784)</td>
<td>0.0176</td>
</tr>
<tr>
<td>BAMB1 (ng/ml)</td>
<td>0.24 (0.18-1.11)</td>
<td>0.26 (0.11-10.09)</td>
<td>0.22 (0.07-1.24)</td>
<td>0.29 (0.03-0.81)</td>
<td>0.3363</td>
</tr>
<tr>
<td>SDF-1α (pg/ml)</td>
<td>1853 (1440-2179)</td>
<td>2035 (1743-3125)</td>
<td>2035 (1447-3604)</td>
<td>3088 (1736-4043)</td>
<td>0.0017</td>
</tr>
<tr>
<td>CXCR4 (pg/ml)</td>
<td>59 (13-109)</td>
<td>19 (14-103)</td>
<td>46 (7-213)</td>
<td>47 (1-163)</td>
<td>0.6997</td>
</tr>
</tbody>
</table>

Fibulin 1 (ng/ml) 36700 (16400-110500) 37650 (17400-99400) 35000 (16400-139200) 257000 (14400-108500) 0.3272
Fibulin 2 (ng/ml) 615 (141-2442) 180 (123-2189) 881 (105-2864) 1165 (126-2455) 0.9345
Fibulin 4 (ng/mL) 14 (0.27-30.66) 7.5 (2.5-14.27) 11.2 (6.8-203.40) 16.27 (5.91-60.60) e 0.0651
BMP-1 (ng/mL) 0.94 (0.56-10.95) 1.50 (0.80-10.40) 1.52 (0.57-16.87) 2.03 (0.84-9.45) 0.2645
BMP-2 (pg/mL) 424 (206-820) 457 (146-4760) 500 (25-2328) 288 (109-1376) 0.8584
BMP-3 (pg/mL) 0 (0-67.82) 0 (0-4981) 0 (0-5331) 0 (0-5043) 0.7661
BMP-7 (pg/mL) 0 (0-503) 0 (0-429) 0 (0-530) 0 (0-105) 0.8054
BMP-10 (ng/mL) 0.02 (0.1-1.8) 0 (0-8.8) 0 (0-1.47) 0 (0-1.8) 0.4457
BMPER (ng/ml) 0.50 (0.39-2.93) 0.47 (0.26-13.7) 0.46 (0.22-2.02) 0.50 (0.22-3.95) 0.5758
CRIM-1 (ng/mL) 1.18 (0.5-2.53) 0.75 (0.1-1.79) 1.16 (0.26-10.0) 2.67 (0.26-50) 0.0332

PIP-I (ng/mL) 574 (335-1417) 566 (209-936) 450 (198-1310) 556 (267-1421) 0.2589
PIP-III (ng/mL) 48 (20-87) 50 (29-159) 67 (28-147) 106 (25-262) 0.0021
Collagen I (mg/ml) 330 (169-1000) 278 (75-1000) 292 (76-1000) 337 (89-1000) 0.6347
Collagen III (mg/ml) 5198 (0-15062) 8083 (172-22428) 5458 (0-30840) 9400 (0-64386) a 0.2169

Rationale expressed as median (range)

Mann-Whitney U test: ≠ significantly different from controls p<0.05; ε significantly different from NHYA I p<0.05; ∇ significantly different from NHYA II p<0.05.
Table 5. Median values of biomarkers in the serum/plasma of chronic heart failure patients according to ischaemic or idiopathic aetiology of the disease

<table>
<thead>
<tr>
<th>Subjects (n)</th>
<th>CRIM 1 (ng/mL)</th>
<th>Fibulin 4 (ng/mL)</th>
<th>PIP III (ng/mL)</th>
<th>Collagen III (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHD (39)</td>
<td>2.2 (0.26.49)</td>
<td>15 (1.3-60)</td>
<td>83356 (26566-246472)</td>
<td>8168 (172-64386)</td>
</tr>
<tr>
<td>ICM (27)</td>
<td>0.74 (0-2.17)</td>
<td>8.1 (0.68-16.62)</td>
<td>53302 (27600-172952)</td>
<td>8261 (0-31950)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0102</td>
<td>0.0106</td>
<td>0.115</td>
<td>0.463</td>
</tr>
</tbody>
</table>

Values are expressed as median (range). ICM, idiopathic cardiomyopathy; IHD, ischaemic hearth disease; CRIM1, Cysteine-rich motor neuron-1; PIP III, Pro-collagen type III. Mann-Whitney U-test for comparison between groups.