Architecture of the Ti(IV) Sites in TiAlPO-5 Determined Using Ti K-Edge X-ray Absorption and X-ray Emission Spectroscopies

This is the author's manuscript

Original Citation:
Architecture of the Ti(IV) Sites in TiAlPO-5 Determined Using Ti K-Edge X-ray Absorption and X-ray Emission Spectroscopies / Erik Gallo; Andrea Piovano; Carlo Marini; Olivier Mathon; Sakura Pascarelli; Pieter Glatzel; Carlo Lamberti; Gloria Berlier. - In: JOURNAL OF PHYSICAL CHEMISTRY. C. - ISSN 1932-7447. - 118(2014), pp. 11745-11751.

Availability:
This version is available http://hdl.handle.net/2318/146471 since 2016-10-03T11:19:41Z

Published version:
DOI:10.1021/jp502351f

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
The architecture of the Ti(IV) sites in TiALPO-5
determined using Ti K-edge X-ray absorption and
X-ray emission spectroscopies

Erik Gallo, Andrea Piovano, Carlo Marini, Olivier Mathon, Sakura Pascarelli, Pieter Glatzel, Carlo Lamberti, and Gloria Berlier

c Department of Chemistry, INSTM Reference Center and NIS Centre of Excellence, Università di Torino, Via P. Giuria 7, I-10125 Torino, Italy.

d CrisDI Center for Crystallography, University of Turin, Italy

e Southern Federal University, Zorge street 5, 344090 Rostov-on-Don, Russia

KEYWORDS. AlPO, XAFS, EXAFS, XES, Titanium substituted aluminophosphate, DFT

ABSTRACT. X-ray absorption and emission spectroscopies, supported by quantum mechanical calculations were used to determine the architecture of Ti(IV) sites in Ti aluminophosphate AlPO₄-5. The chemical sensitivity of the Kβ₂,₅ X-ray emission lines of Ti(IV) was exploited to monitor its local environment, proving that it mainly substitutes P(V) in the framework, with a
not negligible fraction substituting Al. Local structure of the substituted sites was found to be considerably deformed with respect to the AlPO₄-5 original framework.

1 Introduction

Molecular sieves (MS) are of paramount importance in many fields of science and technology.¹⁻⁴ In particular, aluminosilicates MS are of great significance in heterogeneous catalysis.⁵ Titanium silicalite-1 (TS-1)⁶⁻⁸ developed by Eni is one of the most investigated metal substituted MS and it is of primary importance in the petrochemical industry.¹ The discovery of the extraordinary properties of TS-1 pushed the research in this field towards the development of other Ti-substituted MS having different framework composition and structure and thus diverse selectivity and activity.⁹⁻¹³

Since form the pioneering report by Wilson et al.¹⁴ it was evident that many topological structures typical of zeolitic materials can be achieved with strictly alternating Al and P tetrahedral framework sites. This allowed the development of a variety of MeAlPO and SAPO structures doped with transition metal or Si ions, respectively.¹⁵⁻²¹ One important material of this series is based on Ti(IV) substituted AlPO catalyst, showing 1) higher microporous diameter and 2) superior hydrophilicity with respect to TS-1.⁵,²²,²³ TiAlPO-5 - a Ti substituted AlPO with the AFI framework - fulfils these requirements.

The local environment and the electronic properties of the Ti sites within the structure of TiAlPO-5 were explored using various spectroscopic techniques.²⁴⁻²⁷ Nevertheless, contradictory results on the preferential substitution site of Ti ions are present in literature. On the basis of ²⁷Al and ³¹P MAS NMR experiments, Akolekar et al.²⁴ proposed that Ti(IV) mainly substituted for P sites in an AFI framework with negligible presence of extraframework Al, P, Ti elements. On the same advice were Prakash et al.²⁷,²⁸ who claimed that Ti ions are located at P framework sites in
various TAPOs, on the basis of ESR (electron spin resonance) and ESEM (Electron spin-echo modulation) measurements of Ti(III) species produced by γ -ray reduction. More accurate EPR and HYSCORE (hyperfine sublevel correlation) measurements by Maurelli et al.25,26 recently provided direct evidence for framework substitution of reducible Ti ions at Al sites, in a TiAlPO-5 catalysts mildly reduced with H\textsubscript{2}. It is worth noticing here that experiments performed probing electrons spin rely on the signal from Ti(III) species only, which are obtained after specific reduction processes.

Density functional theory (DFT) simulation techniques were also employed to describe the electronic properties and bonding ionic nature in Ti substituted AIPO-5 systems, but also in this case contrasting views are found in the literature. For instance, Elanany et al.29 discussed a model with Ti(IV) replacing one of the framework pentavalent phosphorous ions, with a compensating proton stabilized to the neighboring oxygen atom. On the contrary Corà et al.30 found that the ionic character of the Al-O interaction is likely to control the defect chemistry of the Al site. This implies that ionic substitutional dopants causes only a mild perturbation to the host electronic structure when replacing Al ions, suggesting a preferential substitution of these sites with respect to P.

In the frame of this unclear picture, we decided to use two bulk element sensitive selective techniques in order to precisely investigate the local environment of Ti(IV) ions in thermally activated TiAlPO-5 samples (hereafter TiAlPO-5/act). Namely, extended X-ray absorption fine structure and valence to core X-ray emission spectroscopy, EXAFS31-33 and vtc-XES, respectively were employed.34,35 EXAFS allowed us to obtain information on the Ti coordination number and Ti-ligand bond-lengths while vtc-XES was able to identify first and second shell
ligands.36 Our interpretation of the experimental data relies on ground state DFT calculations performed on appropriate cluster models.

2 Experimental

2.1 Sample Preparation

TiALPO-5 and TS-1 samples were synthesized according to Ref. 25 and Refs. 36,37, respectively. Before measurements samples were calcined and subsequently activated at 673 K to remove water and other adsorbed molecules. We refer to these samples as TiALPO-5/act and TS-1/act, respectively.

2.2 Techniques

The X-ray spectroscopy experiments were performed at ID26 and BM23 beamlines of the European Synchrotron Radiation Facility (ESRF, France).

The Ti K-edge HERFD XANES38 and the valence to core X-ray emission measurements39 were performed at ID26. The incident energy was selected by means of a pair of cryogenically cooled Si(111) single crystals. Higher harmonics were suppressed by three Si mirrors operating in total reflection. The beam size on the sample was approximately 1.0 mm horizontally and 0.2 mm vertically. The spectrometer of ID26 exploits the (331) Bragg reflection of five spherically bent Ge crystals (radius 1000 mm) arranged in a vertical Rowland circle geometry. The emitted photons, selected by the spectrometer, were detected using an avalanche photo-diode. The total energy bandwidth was 0.9 eV. The vtc-XES spectra were measured by tuning the incident energy above the Ti K-edge at 5015 eV and scanning the emitted energy. All data are normalized to the
spectral area that includes the Kβ main and the vtc lines (4910 eV – 4975 eV). The background from the Kβ1,3 emission line tail was subtracted by fitting four Voigt line profiles. Details about this procedure can be found elsewhere. The HERFD-XANES spectra were collected at the maximum of the Kβ1,3 main line and normalized to the edge jump.36

The Ti K-edge EXAFS spectra were collected in fluorescence mode at BM23 equipped with a Si(111) double crystal monochromator. A Silicon stripe double mirror was employed to reject higher harmonics. The incoming photon flux was measured using a ionization chamber (filled with nitrogen gas). The fluorescence was recorded using a thirteen element solid state Ge detector. The beam size on the sample was 2.5mm in horizontal and 0.5 mm in vertical. The extraction of the χ(k) function was performed using the Athena code.40 For each sample, five consecutive EXAFS spectra were collected and corresponding χ(k) functions were averaged before data analysis to obtain a sufficient signal to noise ratio.41 EXAFS data analysis was performed using Artemis software.40 Phase and amplitudes were calculated by the FEFF6 code42 using cluster models presented hereafter. For The averaged k²χ(k) function was Fourier transformed in the Δk = 1.00-9.00 Å⁻¹ interval.

On both beam-lines the sample was measured in vacuum inside a cell oriented at 45° with respect to the incident beam.

2.3 Theoretical Methods

Starting from the crystallographic structure presented in Ref. 14, two tetrahedral clusters of twenty-one atoms, with Ti substituting the central (Al or P) atom were built. Dangling bonds were saturated with H. The dimension of these clusters (i.e. number of atoms) is thus thirty-three
which is a good compromise of CPU time and accuracy. The two clusters can be written as

\[[\text{Ti(OAl(OH)}_3]_4^{+} (\text{MAI}) \text{ and } [\text{Ti(OP(OH)}_3]_4^{4+} (\text{MP}) \] and are shown in Figure 1.

![Figure 1. MAI and MP optimized clusters models. The formal charge on Ti is +4 while it is indicated for the other ions.](image)

These clusters are analogous to the \([\text{Ti(OSi(OH)}_3]_4]^{4-}\) used by Ricchiardi et al. and by Damin et al. (cluster named T5 in that work) to simulate the local environment of Ti(IV) in TS-1 framework. The geometry of these models was optimized by DFT calculations, while the vtec-XES spectra were simulated with the ORCA program system. The CP(PPP) and TZVP basis sets were adopted for Ti and its ligands, respectively, according to previous works. Several density functionals (BP86, PWP, OLYP, B1LYP, B3LYP, PBE0 and TPSSh), moving from gradient corrected to hybrid gradient corrected functionals, were used to check the effect of various level of theory.

The cluster model Ti[OSi(OH)]₄ is representative for the local environment of TS-1 and it was optimized using the TPSSh/TZVP/CP(PPP) level of theory according to Ref. Six clusters
where the Ti-O (first shell) bond length is set to 1.75 Å up to 2.00 Å were thus built. The structures and corresponding molecular orbitals were plotted using the software UCSD Chimera.47

3 Results and Discussion

One of the explanations for the different results reported in literature (see Introduction) could be ascribed to the different treatments undergone by the samples. Indeed reduction processes on a TiALPO-5/act (carried out to check redox phenomena or to obtain EPR active Ti(III) sites) can result in a modification of the cation bonding geometry. To shed some light on this aspect the Ti K-edge high energy resolution fluorescence detected (HERFD) X-ray absorption near edge structure (XANES) spectra of TiAlPO-5/act and TiALPO-5/act reduced with H\textsubscript{2} are reported in Figure 2. It is well known that XANES is sensitive to the electronic and geometric structure of the metal sites.32,33,48 From Figure 2 it is possible to see that the reduction process affects the spectrum of TiALPO-5/act.

![Figure 2. High energy resolution fluorescence detected (HERFD) XANES acquired at the maximum of the Kβ main line: TiALPO-5/act (black curve) and TiALPO-5/act reduced with H\textsubscript{2} (gray curve).]
DFT was employed to optimize the model clusters reported in Figure 1, with Ti(IV) substituting an Al site (MP) or a P site (MAI). These were employed to calculate the theoretical paths to be employed in the Ti K-edge extended X-ray absorption fine structure (EXAFS) analysis and to calculate the vtc-XES spectrum and involved orbitals.

The EXAFS oscillations of TiAlPO-5/act are reported in Figure 3a, with the corresponding modulus and the imaginary part of the Fourier Transform signal in Figure 3b and Figure 3c, respectively. Only a first shell single scattering path from oxygen atoms was considered in the fit of the EXAFS oscillations (blue curve; fit in the ΔR = 0.80-2.00 Å range, in Figure 3a). On the contrary, second shell paths and multiple scattering MS contributions were considered to fit the FT signals in Figure 3b,c (green curve fit for MP model, red curve for MAI one; fits in the ΔR = 0.80-3.80 Å range).

Table 1. Report of the Most Important Parameter Obtained by Fitting the First Shell (Ti-O) and second shell (Ti-M, M=Al,P) contribution of Ti-AlPO-5, using models MP and MAI to compute theoretical paths.

<table>
<thead>
<tr>
<th>Model</th>
<th>S_0^2</th>
<th>ΔE_0</th>
<th>R (Ti-O)</th>
<th>σ^2 1st shell</th>
<th>R (Ti-M)*</th>
<th>σ^2 2nd shell</th>
<th>R factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP</td>
<td>0.95±0.13</td>
<td>2.75±0.01</td>
<td>1.98 ± 0.01</td>
<td>0.012 ± 0.003</td>
<td>3.61±0.06</td>
<td>3.82±0.06</td>
<td>0.016±0.013</td>
</tr>
<tr>
<td>MAI</td>
<td>0.98±0.12</td>
<td>0.5±1.0</td>
<td>1.98 ± 0.01</td>
<td>0.012 ± 0.003</td>
<td>3.72±0.06</td>
<td>3.95±0.06</td>
<td>0.016±0.011</td>
</tr>
</tbody>
</table>

*Two distinct Ti-M (M=Al,P) paths are necessary for the second shell fit.

From the first shell fit in Table 1 we have found that the average Ti-O bond distance is (1.98±0.01)Å. The average P/Al-O bond length reported by previous studies21,49 on non substituted sieves is about 1.65Å confirming that the incorporation of Ti strongly deforms the
AlPO₄-5 framework. The fitted coordination number of Ti in TiALPO-5/act is 3.7±0.3 suggesting that we are in presence of a slightly defective material. Furthermore, it is worth noticing that the Ti-O bond distance in TiALPO-5/act is (0.19±0.02)Å longer than the one reported for an activated sample of TS-1.⁵⁰,⁵¹

The study of the second shell using EXAFS cannot be conclusive because the best fit curves obtained do not allow distinguishing between the two models (see Figure 3c). On the contrary, vtc-XES can address this point.³⁶,⁵²,⁵³

![Figure 3. (a) Ti K-edge EXAFS of TiALPO-5/act with the calculated single shell Ti-O scattering path (1.98 Å). Module (b) and imaginary part (c) of the Fourier transformed best fit curves using MAI and MP clusters.](image)

The comparison of the energy position of the Kβ” line (A) of the vtc-XES spectrum of TiAlPO-5/act and TS-1 presented in Figure 4a confirms the presence of O in the first shell of Ti. Furthermore the comparison of the Kβ” intensity in the two compounds suggests that the Ti-O bond length is longer for TiAlPO5 than for TS-1. Calculations on cluster modelling the Ti
environment in TS-1 as a function of the Ti-O (first shell) bond distance prove that spectral features decrease exponentially increasing the bond-length (see Figure 4b).

The Kβ2,5 region of TS-1/act presents two main features B and C, arising from transitions involving σ and π molecular orbitals respectively, separated in energy according to the tetrahedral symmetry of the Ti sites.37 As TS-1/act, also the Kβ2,5 region of TiAlPO-5/act presents two main features. Their maximum is nearly at the same energy position observed for TS-1/act. It is worth noticing however that contrary to TS-1/act B is less intense than C (see Figure 4a). Furthermore we do think that the features of TiALPO-5 are less intense than in TS-1/act due to the increased Ti-O average bond distance. It is worth noticing that the comparison of the intensities of the vtc-XES spectra reported in Figure 5 can be done in a quantitative ground because of the normalization to the spectral area that includes the Kβ main and the vtc lines, see Section 2.2.
Figure 4. (a) Experimental vtc-XES spectra of TiALPO-5/act (red dots) and TS-1/act. (black dots). (b) Computed vtc-XES of a Ti centred cluster with Ti-O bond distance symmetrically increasing from 1.65Å to 1.95Å

To be more quantitative, we performed ground state DFT vtc-XES calculations shown in Figure 5 and based on MAl and MP models of Figure 1. We observe, for all functional, that the agreement of the calculations with the experimental spectrum is considerably better when Al in the second shell is considered (i.e. cluster MAl). We conclude that in TiALPO-5/act a major fraction of Ti ions substitute the P sites.

Emission lines are connected to specific molecular orbitals (MO) present in the systems. As an example in Figure 5c the most relevant MO for the MAl model are reported. The A feature of
Kβ” is linked to a σ MO within the first neighbourhoods, while the B and C features of Kβ_{2,5} are linked to σ and π orbitals involving second neighbourhoods, respectively.

Figure 5. (a): vtc-XES spectra obtained from DFT calculations performed using clusters MP (red curve) and MA (black curve) using various functional (II-VIII) compared with the experimental vtc-XES spectrum of TiALPO-5/act (I). (b) Linear combination of calculated vtc-XES spectra with B3LYP functional (blue curve) from Mal (90%) and MP (10%) models of panel (a). (c): Representation of the calculated most important orbitals responsible for the vtc-XES signal using B3LYP functional with MAI cluster model.

It is well known that vtc-XES spectra can be used to identify the chemical nature of the first shell neighbours, also for elements lying in adjacent positions of the periodic table, because the
technique is sensible to the ligand 2s binding energy (rather than to the number of electrons Z as XAS is).34,39 We remark that the B-C intensity ratio is affected by the charge lying on the second shell ligands as observed in the case of TS-1.36,37 We then propose that vtc-XES can be also used to identify second shell ligands having similar atomic number values, \textit{i.e.} in cases where EXAFS may fail because of the low Z contrast (13 and 15 for Al and P, respectively). Using linear combination of vtc-XES spectra, it is possible to more precisely quantify the amount of Ti which has replaced Al or P framework sites. The result of the best linear combination of spectra is shown in Figure 5b where a combination of $(0.90\pm0.05)\text{MAI} + (0.10\pm0.05)\text{MP}$ has been used. Considering this linear combination we can also account for a part of the intensity of the shoulder at 7eV relative emission, which could not be explained with contribution only from more diffused MOs (see D feature in Figure 5c).36 We conclude that with our approach sensitive to all Ti species present in the structure, the majority of Ti substitute P, but a not negligible amount, we estimated about $10\pm5\%$, substitutes Al. In the TiALPO-5/act formal Ti valence is (IV) for all species.

4 \textbf{Conclusion}

In our work we have outlined the architecture of the Ti(IV) sites within TiALPO-5/act combining X-ray absorption and X-ray emission spectroscopy with quantum mechanical calculations.

From EXAFS analysis we obtained a Ti-O average bond distance of $(1.98\pm0.01)\text{Å}$ and an average Ti coordination number of (3.7 ± 0.3), compatible with the expected 4-fold coordination resulting by an isomorphous substitution of Ti(IV) inside the ALPO-5 framework. As expected, the analysis of the second shell EXAFS signal did not allow distinguishing between Al or P occupancies. We then employed vtc-XES to address the problem. The finding is that the second
shell around Ti is for the majority composed of Al ligands, \textit{i.e.} Ti substitute mainly P within TiALPO-5. From the linear combination method we more precisely assessed that 90±5\% of Ti substitute P, but a not negligible amount, we estimated about 10±5\%, substitutes Al. The bulk techniques employed, which is sensitive to all Ti in the framework, extends previous HYSCORE EPR evidences that were valid for the fraction of Ti ions reduced with H\textsubscript{2} which has been estimated, for their sample, to be 20±5\%.25 Note that in Ref.26 a more severe reduction condition has been adopted (975 K) resulting in an higher fraction of reduced Ti species. Notwithstanding the slight discrepancy between the estimated percentages, both techniques point to a presence of (reducible) Ti ions at Al sites which should have an important role in the catalytic activity of the material, as they are the sites that clearly show modifications upon reduction.

Finally we notice that the increasing number of synchrotron light sources makes the approach here presented, \textit{i.e.} combining EXAFS with vtc-XES, accessible for the large community of researchers interested in the characterization of materials.

\textbf{Corresponding Authors}

*erik.gallo@esrf.fr

*piovano@ill.fr

\textbf{Acknowledgments}

The European Synchrotron Radiation Facility (ESRF, Grenoble) is gratefully acknowledged for beamtime allocation.

\textbf{References}

