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Defense Related Phytohormones Regulation in Arbuscular Mycorrhizal 
Symbioses Depends on the Partner Genotypes 
 
I. Fernández, M. Merlos, J. A. López-Ráez, A. Martínez-Medina, N. Ferrol, C. Azcón, 
P. Bonfante, V. Flors and M. J. Pozo 
 
 
Abstract 
Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil 
fungi and most vascular plants. Modulation of the hormonal and transcriptional 
profiles, including changes related to defense signalling, has been reported in many 
host plants during AM symbioses. These changes have been often related to the 
improved stress tolerance common in mycorrhizal plants. However, results on the 
alterations in phytohormones content and their role on the symbiosis are controversial. 
Here, an integrative analysis of the response of phylogenetically diverse plants (i.e., 
tomato, soybean, and maize) to two mycorrhizal fungi -Funneliformis mosseae and 
Rhizophagus irregularis- was performed. The analysis of the defense-related 
hormones salicylic acid, abscisic acid, and jasmonates, and the expression of marker 
genes of the pathways they regulate, revealed significant changes in the roots of 
mycorrhizal plants. These changes depended on both the plant and the AM fungus 
(AMF) involved. However, general trends can be identified: roots associated with the 
most effective colonizer R. irregularis showed fewer changes in these defense-related 
traits, while the colonization by F. mosseae led to significant modifications in all 
plants tested. The up-regulation of the jasmonate pathway by F. mosseae was found to 
be highly conserved among the different plant species, suggesting an important role of 
jasmonates during this AM interaction. Our study evidences a strong influence of the 
AMF genotype on the modulation of host defense signalling, and offers hints on the 
role of these changes in the symbiosis. 
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Introduction 
Plants continuously interact with a broad range of organisms present in their 
environment, giving rise to a large variety of associations. They are frequently 
challenged by microbial pathogens that threaten their fitness, but they also interact 
with neutral or beneficial microorganisms that positively affect multiple vital 
parameters, such as plant nutrition, growth, and stress tolerance (Barea et al. 2005; 
Raaijmakers et al. 2009). In fact, a microbe-free plant may be considered an “exotic 
exception” (Partida-Martínez and Heil 2012). Thus, plants constantly have to fine-
tune their defense mechanisms, combating deleterious organisms while allowing 
associations with beneficials (Zamioudis and Pieterse 2012). The effective regulation 
of defense mechanisms upon recognition of the microbe relies on the phytohormones 
salicylic acid (SA), jasmonic acid (JA) and derivatives (JAs), ethylene (ET), and 
abscisic acid (ABA), which play central roles in coordinating plant responses 
(Pieterse et al. 2012). 
Among plant associations with beneficial microorganisms, arbuscular mycorrhizas 
(AM) are one of the most widespread, with a major impact on plant health and 



ecosystem dynamics (Smith and Read 2008). About 80 % of all land plants are able to 
form this mutualistic association with soil-borne fungi from the phylum 
Glomeromycota, known as arbuscular mycorrhizal fungi (AMF) (Smith and Read 
2008). They are obligate biotrophs that obtain carbohydrates from their host, while 
they improve mineral nutrition and water acquisition by the host plant (Parniske 2008). 
Additionally, the symbiosis impacts the plant’s ability to overcome biotic and abiotic 
stresses, commonly improving host resistance to pathogens and tolerance to 
unfavourable environmental conditions (Jung et al. 2012; Pozo and Azcón-Aguilar 
2007; Ruiz-Lozano et al. 2012). 
Although AMF are considered non specific with respect to host range, there is 
evidence for certain “functional diversity”. That is, both the plant and fungal 
genotypes determine the benefits of the interaction, some combinations being more 
efficient than others in terms of nutrition and/or stress resistance improvement 
(Cavagnaro et al. 2001; Feddermann et al. 2010; Pozo et al. 2002; Smith et al. 2004). 
The interaction requires a high degree of coordination between both partners, and 
bidirectional (plant and fungal) control assure a fair trade of resources between the 
symbionts (Kiers et al. 2011). Indeed, the plant is able to prevent excessive 
colonization by the AMF, avoiding costs that out-weigh the benefits of the interaction 
(Breuillin et al. 2010). 
Several studies have evidenced alterations in the transcriptional profile of the plant 
associated with AM development and functioning (Güimil et al. 2005; Hause et al. 
2007; Liu et al. 2003; Requena et al. 2007), and many of the changes are related to 
defense mechanisms (Fiorilli et al. 2009; Gallou et al. 2012; Liu et al. 2007; López-
Ráez et al. 2010a) likely contributing to the plant maintaining control over the 
symbiotic partner. The impact of the symbiosis on plant defense mechanisms may 
also have consequences on their interactions with other organisms, commonly priming 
defenses against potential attacks (Campos-Soriano et al. 2012; Pozo and Azcón-
Aguilar 2007). Alterations in phytohormones homeostasis may also affect plant 
tolerance against abiotic stresses, such as salinity, drought, and heavy metals (Aroca 
et al. 2013; Pineda et al. 2013; Ruiz-Lozano et al. 2012). Thus, alterations in host 
phytohormone levels in well established mycorrhizas may contribute to the improved 
plant stress tolerance associated with the symbiosis. 
Plant-AMF communication starts prior to the physical contact between both 
symbionts and continues during the entire symbiotic phase (Bonfante and Genre 2010; 
Gutjahr and Parniske 2013; López-Ráez et al. 2011). Initially, upon mutual 
recognition, the fungus has to deal with the plant immune system to proceed with a 
successful colonization (Zamioudis and Pieterse 2012). Then, a symbiotic program is 
triggered and the plant actively accommodates the fungus. During root colonization, 
AMF proliferate within the cortex and form specialized structures called arbuscules 
where the exchange of nutrients between the partners takes place. The growth of the 
fungal symbiont inside the root implies the alteration of multiple host cellular 
processes (Bonfante and Genre 2010). Accordingly, gene expression and hormonal 
profiles should be precisely regulated even at the cellular level (Balestrini et al. 2007). 
The symbiotic status is maintained throughout the life of the plant. 
Among plant stress-related hormones, ABA, SA, and JAs are believed to play a key 
role not only in the establishment, but also in the functioning of the AM symbiosis 
(Hause et al. 2007; Herrera-Medina et al. 2007; López-Ráez et al. 2010a; Ludwig-
Müller 2010). Salicylic acid is known to have a major role in plant defense against 
microorganisms with a biotrophic lifestyle (Pieterse et al. 2009). Therefore, AMF as 
obligate biotrophs are expected to be negatively affected by SA (Gutjahr and 



Paszkowski 2009; Pozo and Azcón-Aguilar 2007). Indeed, previous studies have 
shown a negative, although transient, effect of SA on fungal root colonization (de 
Roman et al. 2011; Herrera-Medina et al. 2007). However, contrasting results are 
reported concerning SA content in well established associations, with higher 
(Khaosaad et al. 2007; López-Ráez et al. 2010a), unaltered (Campos-Soriano and 
Segundo 2011), or lower (Herrera-Medina et al. 2003) SA levels in mycorrhizal than 
in non mycorrhizal roots. As for SA, ET has been shown to have a negative regulatory 
role on the AM symbioses. Ethylene inhibits root colonization (Fracetto et al. 2013; 
Geil and Guinel 2002), and reduced ET levels have been reported in mycorrhizal roots 
(López-Ráez et al. 2010a). In contrast to the negative regulatory role of SA and ET, 
ABA is necessary for AM development and functionality (Herrera-Medina et al. 
2007; Martín-Rodriguez et al. 2010). Again, controversial results have been obtained 
in relation to the ABA content in AM roots, ranging from an increase (Meixner et al. 
2005), no change (López-Ráez et al. 2010a; Martínez-Medina et al. 2011), or decrease 
(Aroca et al. 2008). 
Among all defense related phytohormones analyzed in mycorrhizal plants, particular 
interest has been devoted to oxylipins, particularly JAs, as they seem to have a dual 
positive and negative role on the symbioses (Hause and Schaarschmidt 2009; León-
Morcillo et al. 2012; López-Ráez et al. 2010a). The oxilipins include biologically 
active derivatives and intermediates of JA metabolism, such as JA-Ile and OPDA 
(oxo-phytodienoic acid), respectively. These compounds are widely distributed in 
plants and affect multiple processes involved in development and defense (Pozo et al. 
2004; Santino et al. 2013; Wasternack 2014). Increased levels of JA have been 
reported in mycorrhizal roots of several monocot and dicot species (Hause et al. 2002; 
López-Ráez et al. 2010a; Meixner et al. 2005; Stumpe et al. 2005; Vierheilig and 
Piche 2002), although there also are reports illustrating unaltered JA levels (Riedel et 
al. 2008). Still, the regulatory role of JAs and other oxylipins on the symbiosis is far 
from clear. Studies involving foliar application of JA and wounding have resulted in 
promotion of mycorrhizal root colonization (Landgraf et al. 2012; Regvar et al. 1996), 
while the use of JA-impaired mutants in different plant species has resulted in both 
promotion (Herrera-Medina et al. 2008; Ludwig-Müller et al. 2002) and reduction 
(Isayenkov et al. 2005) of mycorrhizal colonization, supporting a multifunctional role 
on the symbiosis. 
In summary, current data on defense-related phytohormone homeostasis in AM roots 
are often fragmented and highly contradictory, opening the hypothesis that the 
changes in mycorrhizal roots are dependent on the plant and the AMF genotype. To 
verify such a hypothesis and to identify common features conserved across plant 
species, we combined targeted metabolomics and transcriptional approaches to 
analyze changes in SA, ABA, and JA signalling pathways associated with well 
established mycorrhizas in different host plants. We compared plants belonging to 
distant families, including maize, soybean, and tomato, and their interaction with two 
different AMF, F. mosseae and R. irregularis. The results provide insight into the 
conservation of defense signalling regulation in AM symbioses among 
phylogenetically distant plant species, and provide hints on the mechanisms 
underlying functional diversity in AM interactions. 
 
 
 
 
 



Methods and Materials 
 
 
Plant Growth and AM Inoculation 
Tomato (Solanum lycopersicum L. cv. MoneyMaker), soybean (Glycine max L. Merr. 
cv.Williams 82), and maize (Zea mays L.) seeds were surface sterilized in 4 % sodium 
hypochlorite, rinsed thoroughly with sterile water, and germinated for 3 days in a 
container with sterile vermiculite at 25 °C in darkness. Subsequently, individual 
seedlings were transferred to 0.25 L pots for tomato and soybean and 0.4 L for maize 
containing a sterile sand:soil (4:1, v:v) mixture. At transplanting, three treatments 
were set: non mycorrhizal uninoculated controls (Nm) or plants inoculated by adding 
10 % (v:v) inoculum of either F. mosseae (Fm) or R. irregularis (Ri). For each plant 
species, at least 6 plants per treatment were set up. The AMF Rhizophagous 
irregularis DAOM 197198 -formerly known as Glomus intraradices DAOM 197198- 
and Funneliformis mosseae BEG12 -formerly known as G. mosseae BEG12- were 
maintained as a soil–sand-based inoculum. The inoculum consisted of thoroughly 
mixed rhizosphere samples containing spores, hyphae, and mycorrhizal root 
fragments. The same amount of soil:sand mix but free from AMF was added to 
control plants. All plants received an aliquot of a filtrate (20 ml) of both AMF inocula 
to homogenize the microbial populations. Plants were randomly distributed and grown 
in a greenhouse at 24/16 °C with a 16/8 h photoperiod and 70 % humidity. All plants 
were watered three times a week with water for the first 3 weeks, and from the 4th 
week on with Long Ashton solution (Hewitt 1966), which contained 25 % of the 
standard phosphorus concentration. Plants were harvested 8 weeks post inoculation, 
corresponding to a well established mycorrhizal symbiosis, and the fresh weight of 
shoots and roots was determined. An aliquot of each individual root system was 
reserved for mycorrhizal quantification. Root of all plants were frozen in liquid 
nitrogen and stored at −80 °C until use for metabolite and gene expression analyses. 
 
Mycorrhizal Colonization Determination 
Roots were stained with 10 ml of trypan blue solution (Phillips and Hayman 1970) 
and examined using a Nikon Eclipse 50i microscope and brightfield conditions. The 
percentage of total root colonization was determined by the gridline intersection 
method (Giovannetti and Mosse 1980). 
 
Hormone Quantification 
OPDA, JA, JA–Ile, ABA, and SA were analyzed by ultraperformance liquid 
chromatography coupled to mass spectrometry (UPLC-MS/MS) as described by Flors 
et al. (2008). The hormone content shown for tomato roots corresponds to the 
experiment described in López-Ráez et al. 2010a. Briefly, a 100 mg aliquot of dry 
tissue was used per sample. A mixture of internal standards containing 100 ng of 
[2H6]ABA, 100 ng of dihydrojasmonic acid, 100 ng of prostaglandin B1, and 100 ng 
of [2H5]SA was added to each sample prior to extraction. Individual calibration 
curves for each tested compound and internal standard were performed before the 
analysis. Root tissues were homogenized immediately in 2.5 ml of ultra pure water 
and centrifuged at 5,000 g for 40 min. Then, the supernatant was acidified and 
partitioned against diethyl-ether, dried, and resuspended in 1 ml of water/methanol 
(90:10, v/v). A 20 μl aliquot of this solution was injected into a Waters Acquity UPLC 
system (Waters). The UPLC was interfaced into a triple quadrupole tandem mass 
spectrometer (TQD, Waters). LC separation was performed using an Acquity UPLC 



BEH C18 analytical column (Waters) at a flow rate of 300 μl min−1. Quantifications 
were carried out with MassLynx 4.1 software (Waters) using the internal standards as 
a reference for extraction recovery and the standard curves as quantifiers. 
 
RNA Isolation 
Total RNA was extracted using Tri-Reagent (Sigma-Aldrich) according to the 
manufacturer’s instructions. The RNA was treated with RQ1 DNase (Promega), 
purified through a silica column using the NucleoSpin RNA Clean-up kit (Macherey-
Nagel), and stored at –80ºC until use. 
 
Gene Expression Analysis by Real-Time Quantitative RT-PCR (qPCR) 
Real-time quantitative RT-PCR (qPCR) was performed using the iCycler iQ5 system 
(Bio-Rad) and gene-specific primers (Table S1). Routinely, the first-strand cDNA was 
synthesized from 1 μg of purified total RNA using the iScript cDNA Synthesis kit 
(Bio-Rad) according to the manufacturer’s instructions. For the analysis of genes with 
low expression level, the first-strand cDNA was synthesized with 3 μg of purified 
total RNA using the BioScript cDNA Synthesis kit (Bioline), according to the 
manufacturer’s instructions. At least three independent biological replicates were 
analyzed per treatment, each of them corresponding to root systems of individually 
grown plants, and qPCR reactions were performed in duplicates. Relative 
quantification of specific mRNA levels was performed using the comparative method 
of Livak and Schmittgen (2001). Expression values were normalized using the 
housekeeping genes SlEF, encoding for the tomato elongation factor-1α, GmEF1, 
which encodes for the soybean elongation factor-1β; and ZmEF1, which encodes for 
the maize elongation factor-1α. Amplification reactions were run for 35 cycles at 
94 °C for 30 s, 58 °C for 30 s, and 72 °C for 40 s. The specificity of each PCR 
amplification procedure was verified by the melt curve analysis of the PCR product 
with a heat dissociation protocol (from 58 to 95 °C). 
 
Laser Capture Microdissection 
Roots from 8-wk-old tomato plants inoculated or not with AMF (as described above) 
were dissected into 5–10 mm pieces and fixed in 100 % acetone at 4 °C overnight for 
paraffin embedding. Root pieces were placed in acetone under vacuum for 15 min, 
and then kept at 4 °C overnight. The next day they were gradually dehydrated in a 
graded series of acetone: Neoclear (Merck, Darmstadt, Germany) (3:1, 1:1, and 1:3) 
followed by Neoclear 100 % (twice) with each step being carried out on ice for 1 h. 
The Neoclear was gradually replaced with paraffin (Paraplast Plus; Sigma-Aldrich, St 
Louis, MO, USA). The embedding step was as described in Balestrini et al. (2007). 
Sections of 14 μm were cut using a rotary microtome (Microm Hm325) and placed on 
Leica RNase-free PEN foil slides (Leica Microsystem, Inc., Bensheim, Germany) 
with diethyl pyrocarbonate-distilled water. The sections were dried at 40 °C in a 
warming plate, stored at 4 °C, and used within 2 days. Laser microdissection was 
performed using a Leica AS laser capture microdissection system (Leica Microsystem, 
Inc.). Samples were deparaffinized in xylene for 10 min, dipped in 100 % ethanol for 
2 min, and then air-dried. After collection of around 1,000 cells per cell type, RNA 
extraction buffer from a Pico Pure kit (Arcturus Engineering, Montain View, CA, 
USA) was added. Samples were incubated at 42ºC for 30 min, centrifugated at 800 g 
for 2 min, and stored at 80 °C. RNA was extracted with the Pico Pure kit (Arcturus 
Engineering), as described by Balestrini et al. (2007), and quantified using a 
NanoDrop 1,000 (Thermo Scientific, Wilmington, DE, USA) spectrophotometer. 



Absence of DNA contamination was confirmed by PCR assays in samples without 
retrotranscription. Retrotranscription and PCR amplification were carried out using 
the One Step RT-PCR kit (Qiagen). Samples were incubated for 30 min at 50 °C, 
followed by 15 min of incubation at 95 °C. Amplification reactions were run in a 
termocycler Flexcyler (AnalytikJena) for 40 cycles at 94 °C for 30 s, 55 °C for 30 s, 
and 72 °C for 40 s. 
 
Statistical Analysis 
Data for mycorrhizal root colonization and gene expression levels were subjected to 
one-way analysis of variance (ANOVA) using the software SPSS Statistics v. 19 for 
Windows. When appropriate, DMS’s test was applied. Data for hormone content and 
gene expression were subjected to two-way analysis of variance (two-factor ANOVA, 
fungus and plant). Significance levels were set at 5 or 0.1 % as indicated. 
 
Results 
 
Root Colonization by F. mosseae and R. irregularis in Different Plant Families 
To compare changes in defense related signalling associated to the AM symbiosis in 
different plant species, tomato, soybean, and maize were inoculated with the AMF F. 
mosseae and R. irregularis. Only maize showed a positive growth response to the 
inoculation with both AMF (Fig. S1). Both fungi were able to colonize the three host 
plant species and established AM symbiosis, with abundant intraradical colonization 
and arbuscules in all samples at harvesting. Mycorrhizal colonization levels for 
tomato and maize were similar (over 20 and 40 % for F. mosseae and R. irregularis, 
respectively), while in soybean their colonization levels were 45 and 80 % (Fig. 1). 
Thus, R. irregularis was a more effective root colonizer than F. mosseae in all plants 
tested. 
 
Mycorrhiza Associated Changes Related to SA Signalling 
UPLC-MS/MS analysis revealed that SA concentration was slightly higher in roots of 
tomato plants colonized by F. mosseae compared with non-mycorrhizal control plants 
(Fig. 2a). Interestingly, SA content also was higher in maize roots colonized by R. 
irregularis compared to non-mycorrhizal control plants, while they remained 
unaltered in F. mosseae mycorrhizal plants (Fig. 2c). However, in soybeans, no 
significant differences were found (Fig. 2b). 
We analyzed by qPCR the expression of PR-1a genes, markers of SA regulated 
defenses that encode for an acidic form of the pathogenesis related protein PR1. In 
agreement with the changes in the SA content of the plants, a significant induction of 
tomato PR-1a was observed in F. mosseae-colonized roots, with no detectable 
changes upon colonization with R. irregularis (Fig. 2d). The same expression pattern 
was observed in soybean, with about 2-fold higher levels in plants colonized by F. 
mosseae (Fig. 2e). In contrast, only R. irregularis induced PR-1a expression in maize 
roots (Fig. 2f). 
Taken on the whole, the data reveal that the AM symbiosis can result in elevated 
levels of SA in the three host species, but the changes depend on the plant-AMF 
combination. 
 
Mycorrhiza Associated Changes Related to ABA Signalling 
Free ABA was quantified by UPLC-MS/MS in tomato, soybean, and maize roots 
colonized by F. mosseae or R. irregularis. Abscisic acid content was not significantly 



altered in either mycorrhizal tomato or soybean roots, compared with non-mycorrhizal 
control plants, regardless of the colonizing fungi (Fig. 3a and b). Conversely, in maize, 
lower ABA levels were observed in plants colonized by both AMF (Fig. 3c). To 
monitor changes in gene expression related to ABA signalling, we compared the 
transcript levels of ABA response marker genes: Le4, Lea, and ABP9 for tomato, 
soybean, and maize, respectively. These genes encode for dehydrins, proteins known 
to be associated with drought stress responses (Hanin et al. 2011). As in the case of 
ABA content, no changes in Le4 expression levels were observed in tomato roots (Fig. 
3d). Similarly, no significant changes were detected for the ABP9 gene in maize (Fig. 
3f). However, the expression of Lea in soybean was lower in F. mosseae-colonized 
plants, while R. irregularis colonization did not change its expression (Fig. 3e). 
 
Mycorrhiza Associated Changes Related to JA Signalling 
The levels of different jasmonates were determined in tomato, soybean, and maize 
colonized by either F. mosseae or R. irregularis. The levels of OPDA were 
significantly (P<0.05) higher in F. mosseae colonized roots in the three host plants 
(Fig. 4a, b and c). However, a different behavior was observed in plants colonized by 
R. irregularis. In tomato, R. irregularis induced an increase in OPDA content similar 
to that induced by F. mosseae (Fig. 4a). In contrast, OPDA levels were lower with R. 
irregularis colonized soybean, and not altered in maize plants (Fig. 4b and c). The 
content of free JA correlated with those of OPDA in maize (Fig. 4f), but no alteration 
was observed in tomato between mycorrhizal and non-mycorrhizal plants (Fig. 4d). In 
additions, free JA level was non-altered by F. mosseae or was decreased by R. 
irregularis in soybean (Fig. 4e). When JA-Ile was analyzed, higher levels were 
detected in tomato and soybean roots colonized by F. mosseae, but no changes in 
roots colonized by R. irregularis were observed (Fig. 4g and h). In maize, no 
significant differences in JA-Ile were observed between mycorrhizal and non-
mycorrhizal plants (Fig. 4i). 
Lipoxygenases are key enzymes in the biosynthesis of JA and other oxylipins, and 
they are positively regulated by JA. Here, LOX genes encoding for the lipoxygenases 
LOXA, LOX, and LOX10, confirmed as induced by JA in tomato, soybean, and 
maize, respectively, were used as markers (Christensen et al. 2013; López-Ráez et al. 
2010a; Moy et al. 2004). In all three species, a higher expression of these genes was 
found in roots colonized by F. mosseae compared to the non mycorrhizal controls 
(Fig. 4j, k, and l). In contrast, colonization by R. irregularis did not significantly alter 
its expression in any of the host plants (Fig. 4j, k, and l). 
The results illustrate a common pattern of regulation of the JA signalling pathway in 
mycorrhizal roots that is dependent on the AM fungi involved, and which is in general 
conserved across the three plant species tested. 
 
General Analysis of Mycorrhiza Associated Changes in Defense-Related Signalling 
On the whole, the results described above illustrate differences in the impact of the 
symbiosis on the host hormonal profiles depending on both the host plant and the 
AMF. Figure 5 summarizes the results regarding the impact of root colonization on all 
three plants by F. mosseae or R. irregularis on the defense-related pathways regulated 
by ABA, SA, and JAs. For each signalling pathway, the information obtained from 
the parameters analyzed (hormone content and changes in the expression of marker 
genes) is integrated using a color code (green = downregulation, red = upregulation of 
the pathway, intense colors if both metabolite and the corresponding marker gene 
expression are altered, and light green or orange when only one of the parameters -



metabolite or marker gene expression- is altered). The two-way ANOVA analysis of 
the data confirmed that ABA, OPDA, and JA levels were dependent on the plant and 
fungal genotypes and their interaction, while for SA the values were mostly affected 
by the plant (Table 1). Globally, the analysis reveals a general positive regulation of 
the SA- and JA-related pathways in mycorrhizal plants, while the modulation of the 
ABA-related pathway was neutral or negative (Fig. 5). This conserved enhancement 
of SA and JA levels in a well established mycorrhiza could mediate the plant control 
over AMF proliferation within the roots. 
The overall analysis revealed a higher impact on defense-related signalling of F. 
mosseae compared to R. irregularis colonization in all three plants tested, with JA 
signalling being consistently induced (Fig. 5). Thus, the data suggest a more 
exhaustive control of F. mosseae by the host plant, which may underlie the reduced 
colonization achieved by this fungus when compared with R. irregularis. 
 
Cell Specific Analysis of Gene Expression 
Mycorrhization is a highly dynamic and asynchronous process with different 
colonization stages occurring simultaneously within the same root. Laser capture 
microdissection (LCM) offers an effective way to monitor gene expression in 
individual cells (Balestrini et al. 2009; Guether et al. 2009; Hogekamp et al. 2011). 
Aiming to better understand the regulatory role of JA signalling in the symbiosis, we 
investigated the spatial distribution of the changes to determine if the increase was 
restricted to arbuscule containing cells. Therefore, LCM was used to analyze changes 
in gene expression of different JA-responsive genes at the cellular level in the root 
cortex of tomato plants upon colonization by F. mosseae, the AMF leading to stronger 
and more consistent changes (Fig. 5). Arbuscule containing cells (Fm+) and cortical 
cells from F. mosseae colonized roots without arbuscules (Fm-) were obtained, and 
compared with cortical cells from non mycorrhizal plants (Nm) (Fig. 6a). Absence of 
DNA contamination was confirmed by PCR in RNA samples (data not shown). Equal 
loading was assessed by analysis of transcript levels of the tomato housekeeping gene 
SlUbiquitin (Fig. 6b). Expression of the AM fungal specific gene Fm 18S rRNA was 
detected only in cells from mycorrhizal roots, and especially in arbusculated cells 
(Fm+) (Fig. 6b). The light band detected in non-arbusculated cells from mycorrhizal 
roots (Fm-) indicated a limited contamination with fungal DNA, probably due to the 
presence of intercellular hyphae in the thickness of the section. SlPT4 encodes a 
phosphate transporter specifically associated to cells with arbuscules (Gómez-Ariza et 
al. 2009), and it is used as a marker of a functional symbiosis. Indeed, SlPT4 
expression was detected only in Fm + cells (Fig. 6b), confirming a well established 
mycorrhization and confirming the discrimination between cells with and without 
arbuscules. The analysis of different JA regulated genes showed an upregulation in 
mycorrhizal roots. The JA responsive LoxA and AOS3 genes, involved in the 
biosynthesis of oxilipins of the 9 LOX branch, were induced in mycorrhizal roots, 
both in Fm + and Fm- cells, compared to non-mycorrhizal cells (Fig. 6b). The same 
pattern was observed for the JA biosynthesis gene AOS1 (Fig. 6b). In contrast, the 
JA-regulated defense gene MC, encoding for a multicystatin, was over the detection 
limit only in arbuscule containing cells (Fm+) (Fig. 6b). Lin6, encoding for an 
invertase with a regulatory role in mycorrhiza, and reported to be JA inducible was 
induced in mycorrhizal roots in both Fm + and Fm- cells (Fig. 6b), although to a 
higher extent in arbusculated cells. These data confirm the activation of JA 
metabolism and responses in the roots colonized by F. mosseae, not only in the 
arbusculated cells but also in the neighboring cells. 



Discussion 
 
Phytohormones are essential regulators of plant development and immunity (Pieterse 
et al. 2012; Vanstraelen and Benkov 2012), and many of the deep physiological 
changes described in mycorrhizal roots may be related to altered hormone levels in 
the host plant (Hause et al. 2007; Pozo and Azcón-Aguilar 2007; Ruiz-Lozano et al. 
2012). However, their role in mycorrhiza establishment and functioning is poorly 
understood (Ludwig-Müller 2010). Notwithstanding, targeted metabolomic and 
transcriptomic analyses combined with pharmacological and genetic approaches have 
yielded abundant information in recent years (Hause et al. 2007; Ludwig-Müller 
2010), although data are often fragmented and contradictory. The different 
experimental set ups, symbiotic stages analysed, and methodologies used for 
quantification make direct comparisons and conclusions difficult. In this work, we 
focused on well-established mycorrhizas, and tested the hypothesis that hormone 
content and hormone-related gene expression levels are dependent on the plant and 
fungal genotypes. Focussing on stress-related hormones associated with functional 
mycorrhizas in different AMF- host combinations and using high resolution 
techniques (UPLC-MS and qRT-PCR), we demonstrated that altered phytohormone-
related patterns in mycorrhizal roots are a common feature across plant species. In 
addition, the two-way ANOVA analysis revealed that some hormonal related changes, 
mainly those related to ABA and JA, depend on both partner genotypes and their 
interactions. 
Despite the high promiscuity of AMF species capable of forming a successful 
symbiosis with most host plants, a high functional diversity among different 
combinations has been reported in terms of morphology, efficiency, and gene 
expression patterns of the symbiosis (Feddermann et al. 2010). The two AMF species 
used in this study, Funneliformis mosseae and Rhizophagus irregularis, −formerly 
Glomus mosseae and Glomus intraradices, both within the Glomeraceae family 
(Krüger et al. 2012)- are the most common AMF used in functional and biodiversity 
studies, and they are present across drastically different environments (Smith and 
Read 2008). A different level of mycorrhizal colonization was observed when 
comparing both fungi, R. irregularis being the most effective colonizer in the three 
host plants tomato, soybean, and maize. Differences in the colonization by both AMF 
have been reported previously in several other plant species (Feddermann et al. 2008), 
evidencing differences in their colonization strategies. The quantification of the 
defense-related hormones ABA, SA, and JA, and the analysis of marker genes of the 
pathways they regulate, revealed significant changes in their basal levels in roots of 
mycorrhizal plants compared to non mycorrhizal controls, depending on the AMF 
and/or the plant involved. 
The two AMF had different influence on the levels of SA and its related marker genes 
(Fig. 5). Only F. mosseae induced the SA-related pathway in tomato, while R. 
irregularis had no effect. A similar trend was observed in soybean. In contrast in 
maize, the SA pathway was induced exclusively by R. irregularis root colonization. 
Salicylic acid is a key phytohormone in the regulation of defense responses against 
biotrophs (Gutjahr and Paszkowski 2009), and its negative effect on AM colonization 
has been shown previously (García-Garrido and Ocampo 2002; Herrera-Medina et al. 
2003). Thus, elevated SA levels in the roots could mediate plant control over AMF 
proliferation, and therefore, spatial and temporal regulation of SA within the roots is 
probably required following the dynamics of the association. Although SA increases 
have been related to initial stages of the AM interaction, we report here higher SA 



levels associated to well established symbioses in tomato and maize. Elevated levels 
also have been reported in F. mosseae colonized clover (Zhang et al. 2013) and barley 
(Khaosaad et al. 2007). It has been proposed that SA signalling has a biphasic 
induction during AM symbiosis, with a first increase in presymbiotic stages that level 
off as the colonization initiates, and a second induction at later stages of root 
colonization likely to control colonization extension (Blilou et al. 1999; Gallou et al. 
2012). 
Regardless of the AMF involved, the ABA-pathway appeared unaltered (in tomato) or 
slightly repressed (soybean and maize) upon mycorrhization. Similarly, previous 
studies have reported no changes or repression of the ABA-related pathway in roots 
(Aroca et al. 2008, 2013; López-Ráez et al. 2010a) and leaves (Asensio et al. 2012; 
Fiorilli et al. 2009) from mycorrhizal plants. Abscisic acid is known to be a key signal 
in plant responses to stresses (Hirayama and Shinozaki 2007). Therefore, a reduction 
of ABA in plants may reflect the consequence of mycorrhiza on improved plant 
fitness (Barker and Tagu 2000; Ruiz-Lozano 2003). However, ABA also has been 
shown to play a role in the development of the arbuscules and their functionality 
(Herrera-Medina et al. 2007), and may be important in pre-symbiosis signalling 
through the regulation of strigolactone biosynthesis (López-Ráez et al. 2010b). 
Moreover, ABA is able to modulate other defense-related pathways through positive 
and negative interactions (Pieterse et al. 2012). Accordingly, the role of ABA in 
regulating mycorrhizas may depend on both its positive effect on arbuscules and its 
crosstalk with the SA/JA/ET pathways (Herrera-Medina et al. 2007; Martín-
Rodríguez et al. 2011). Interestingly, Meixner et al. (2005) using a split-root system 
showed a local increase in ABA content in AMF colonized Medicago roots, but a 
decrease in the systemic, non colonized parts of the root system. Overall, it seems that 
mycorrhizal plants have to finely regulate ABA levels to promote arbuscule 
development, and at the same time, to efficiently regulate stress responses. 
Finally, the effect of AM symbiosis on the JA-signalling pathway showed a conserved 
pattern among the plant species analyzed, but it was clearly dependent on the 
colonizing AMF (Fig. 5). Root colonization by F. mosseae led to an increase of JA-
related compounds and the up-regulation of JA responsive genes in all plants tested. 
Oxo-phytodienoic acid levels rose in the three plants, together with increases in JA-Ile 
in tomato and soybean, and free JA in maize. Since the diverse JA-related compounds 
may have different functions, this differential accumulation pattern may indicate 
diverse roles in orchestrating the plant responses to mycorrhizal fungi, according to 
the host plant species. Interestingly, no major alterations in JA-signalling were 
observed in R. irregularis mycorrhizal plants (with higher colonization levels) 
compared to non-mycorrhizal plants, regardless of the plant species involved. 
Similarly, no changes in JA content have been described in R. irregularis colonized 
Nicotiana roots (Riedel et al. 2008). These observations demonstrate a strong 
dependence of the modulation of JA-signalling on the AMF genotype, with a negative 
correlation between JA increases and mycorrhizal extension, as shown for F. mosseae. 
The negative role of JA in the extension of AM colonization has been confirmed in 
the tomato JA insensitive mutant, jai1, that shows higher colonization levels than the 
wild-type (Fernandez et al., unpublished data; Herrera-Medina et al. 2008). Recently, 
JA signalling has been shown to be induced in late stages of ectomycorrhiza 
formation to limit, together with ET, intraradical fungal growth. Moreover, exogenous 
JA or ET application did not affect the early interaction events (mantle formation), but 
they affected the later stages, inhibiting the development of the Hartig net (Plett et al. 
2014a). 



The activation of some plant defenses during AMF colonization seems to occur at the 
cellular level, and probably different regulation patterns may coexist in time in 
different parts of the root system. Indeed, transcript dilution in whole root system 
analyses may mask some transcriptional changes occurring locally. Here, the 
induction of JA related gene expression in roots colonized by F. mosseae was 
consistent at the whole root scale and the colonized cortical cells. Jasmonic acid 
biosynthetic genes have been reported previously to be induced in arbuscule 
containing cells (Hause et al. 2002). Here, the analysis of the allene oxydase synthase 
encoding genes AOS1 and AOS3 at the cellular level in F. mosseae colonized tomato 
roots revealed an induction in arbuscule containing and non-containing cortical cells 
of mycorrhizal roots compared to those from non mycorrhizal roots. However, the 
induction of the JA-responsive marker genes MC and Lin6 was stronger in arbuscule-
containing cells, thus supporting a spatial expression pattern of JA responsive genes. 
MC codes for a multicystatin involved in plant defense responses, and Lin6 encodes 
for an extracellular invertase induced in mycorrhizal roots with an important role in 
the symbiosis (Schaarschmidt et al. 2006, 2007). Both functions, defense and carbon 
metabolism, have been pointed out as the major roles of JAs in the symbiosis (Hause 
et al. 2007). In this regard, JA seems to contribute to the regulation of colonization in 
different ways, positively, by increasing the sink strength of mycorrhizal roots for 
carbohydrates that support fungal growth (Schaarschmidt et al. 2006) and negatively 
by restricting excessive colonization (Herrera-Medina et al. 2008). Besides that, JAs 
have been proposed to contribute to the reorganization of the cytoskeleton needed for 
fungal accommodation (Genre and Bonfante 2002; Genre et al. 2005). More recently, 
it has been proposed that JA may act by fine tuning gibberellins signalling, 
contributing to the regulation of the AM symbiosis according to phosphate availability 
(Gutjahr and Parniske 2013). The multifunctionality of these hormones, the existence 
of different active forms, and the spatial and temporal regulation of genes related to 
JA and other oxylipins (Gallou et al. 2012; Hause et al. 2002; León-Morcillo et al. 
2012) suggest a precise control of the JAs homeostasis for fine-tuning the symbiosis. 
In summary, we found that R. irregularis showed higher root colonization rates in all 
plants tested, while the changes in the host roots related to defense signalling, and 
mainly in the JA pathway, were lower than in F. mosseae colonized roots. This 
finding suggests a lessor control by the plant over R. irregularis colonization that may 
be related to the fungal ability to suppress or evade the plant defense response, thus 
achieving a higher root invasion (Campos-Soriano et al. 2010). Indeed, it has been 
reported that R. irregularis can deliver the effector protein SP7, which attenuates the 
plant immune response that enables the accommodation of the fungus within plant 
roots (Kloppholz et al. 2011), as it occurs in ectomycorrhizas (Plett et al. 2014b). How 
conserved and efficient this mechanism is in other AMF remains to be determined. It 
is possible that the different impact of each AMF on host defense signalling partially 
explains the functional diversity observed in terms of plant induced stress resistance. 
For example, it is tempting to speculate that the stronger activation by F. mosseae of 
JA signalling may underlie the higher ability of this AMF to induce mycorrhiza 
induced resistance (Jung et al. 2012; Pozo et al. 2002). Our results provide an 
overview of the changes related to stress related hormones in a well established 
mycorrhizal symbiosis, confirming our hypothesis that the changes depend on the 
partners genotypes and more specifically on the colonizing fungus. 
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Figure 1 
Quantification of mycorrhizal colonization of tomato, soybean and maize roots 
inoculated with Funneliformis mosseae (Fm) or Rhizophagus irregularis (Ri). Data 
represent the means of 4 independent replicates ± SE. Data not sharing a letter in 
common differ significantly (P ≤0.05) according to DMS’s test 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 
Effect of mycorrhizal colonization on the salicylic acid (SA) signalling pathway in 
tomato, soybean, and maize roots colonized by either Funneliformis mosseae (Fm) or 
Rhizophagus irregularis (Ri). a, b, c, SA levels in roots of non mycorrhizal plants 
(Nm) or plants colonized by F. mosseae (Fm) or R. irregularis (Ri). d, e, f, relative 
expression of the SA-responsive PR-1a genes. Gene expression was normalized to the 
expression of constitutively expressed genes selected as reference for each plant 
(encoding for elongation factors SlEF1, GmEF1, and ZmEF1). Data points represent 
the means of five (UPLC-MS/MS) or three (qPCR) independent biological replicates 
± SE. Data not sharing a letter in common differ significantly (P≤0.05) according to 
DMS’s test 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 
Effect of mycorrhizal colonization on the abscisic acid (ABA) signalling pathway in 
tomato, soybean, and maize roots colonized by either Funneliformis mosseae (Fm) or 
Rhizophagus irregularis (Ri). a, b, c, ABA levels in roots of non mycorrhizal plants 
(Nm) or plants colonized by F. mosseae (Fm) or R. irregularis (Ri). d, e, f, relative 
expression of the ABA-responsive genes Le4, Lea and ABP8 in tomato, soybean and 
maize roots, respectively. Replication, normalization and statistical analysis as 
described in Fig. 2. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 
Effect of mycorrhizal colonization on the oxylipin/jasmonate signalling pathway in 
tomato, soybean and maize roots colonized by either Funneliformis mosseae (Fm) or 
Rhizophagus irregularis (Ri). Levels of oxo-phytodienoic acid (OPDA) (a, b, c), free 
JA (d, e, f) and JA-Ile (g, h, i) in roots of non mycorrhizal plants (Nm) or plants 
colonized by F. mosseae (Fm) or R. irregularis (Ri). j, k, l, relative gene expression 
for the JA-responsive genes LOXA, LOX, and LOX10 in tomato, soybean and maize 
roots respectively. Replication, normalization and statistical analysis as described in 
Fig. 2. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 
Summary of the changes in the different hormone-related pathways induced in the 
host plants by the arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae and 
Rhizophagus irregularis [abscisic acid (ABA), salicylic acid (SA), and jasmonic acids 
(JAs)]. Red indicates up-regulation and green indicates down-regulation of the 
different hormonal pathways. Changes only in one of the parameters analyzed 
(hormone content or expression level of marker genes) are indicated in orange when 
up-regulated and light green when down-regulated. Yellow indicates no changes 
compared to non-mycorrhizal control plants. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 
Detection of marker gene transcripts in laser microdissected cell types in non 
mycorrhizal or F. mosseae colonized tomato roots. The analysis was performed by 
One step RT-PCR in three different cell types: cortical cells from non mycorrhizal 
controls (Nm), non colonized cortical cells of mycorrhizal roots (Fm-), and arbuscule 
containing cortical cells (Fm+) (arrows point to the arbuscules) (a). The figure shows 
gel electrophoresis of the amplification products, and their corresponding size is 
indicated on the right (b). SlUbi, Ubiquitin, Fm18SrRNA,AMF 18S ribosomic RNA, 
SlPT4, Phosphate transporter4, SlLOXA, lipoxygenase A, SlAOS1, allene oxide 
synthase 1, SlAOS3, allene oxydase synthase 3, SlMC, multicistatin, SlLin6 
extracellular invertase 6 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


