142 FF P

Fibron vibration combined with tRMS can reinforce a pattern of unbalanced M1 excitability between agonist and antagonist muscles

L. Persale1, L. Avanzino1, G. Lagnavitis1, A. Giornini1, E. Facetti1, A. Bias1, A. Quarrante2, V. Rizzo2, P. Ruggeri1, M. Bov1

Department of Experimental Medicine, University of Genoa, Italy
Department of Neuroscience, University of Messina, Italy

Aim: The aim of the study was to verify whether it is possible to induce a pattern of unbalanced primary motor cortex (M1) excitibility between agonist and antagonist muscles by combining pre-existing vibration with a concomitant facilitatory tRMS (Transcranial Magnetic Stimulation) protocol.

Method: Eighteen subjects were recruited for this study. M1 excitibility was evaluated by motor evoked potentials (MEPs) measured on Extensor Carpi Radialis muscle (ECR group, N = 10) and on Flexor Carpi Radialis muscle (FCR group, N = 8) after transcranial magnetic stimulation (TMS) on M1 of both muscles. The tendon of the FCR muscle was vibrated for 2 min (80 Hz frequency). 15 MEPs were recorded before the vibration (PRE), and 15 MEPs 15 and 30 min after the vibration (POST 15, POST 30). The tRMS protocol consisted of a train of 600 stimuli at 90% of active motor threshold (AMT) of the ECR and FCR muscles with a frequency of 5 Hz.

We designed four protocols:
1. Vibration: 2 min of vibration without tRMS.
2. tRMS on ECR and FCR hot spots without vibration.
3. Vibration + tRMS on ECR hot spots.
4. Vibration + tRMS on FCR hot spots.

Results: We found that the protocol of vibration did not induce statistically significant changes in M1 excitibility. Considering the ECR group, in the protocol 3, M1 excitibility was reduced, a significant decrease compared with the baseline both in POST 15 and in POST 30 (p < 0.01), while the protocol 4 caused a statistically significant increase in M1 excitibility compared with the baseline in POST 15 (p < 0.05) and a trend of diminution in POST 30. Considering FCR group in the protocol 3 data showed a statistically significant increase in M1 excitibility respect to the baseline both in POST 15 and in POST 30 (p < 0.05). Protocol 4 did not induce any significant difference in M1 excitibility.

Conclusion: Our finding highlights the close relationship between proprioception, the sensory feedback mechanism for motor control, and the excitability of cortical motor areas. We demonstrated that combining tendon vibration with a conditioning facilitatory tRMS protocol induces a pattern of unbalanced M1 excitibility between the vibrated muscle and its antagonist that persisted up to 30 min and is greater than that observed when vibration is administered alone.

References
Kioi T (2006) Brain Res 1114:75-84

142 FF P

RSA, CJM, Leger, 10 m sprint responses to pre-season training in semi-professional soccer players

F. Perroni1, L. Cignitti1, G. Asensio1, A. Godei2, C. Baldari1

1School of Exercise and Sport Sciences (SUSEM), Department of Medical Sciences, University of Turin, Turin, Italy
2Sports Activity Office, Firefighters Corp., Rome, Italy

Aim: The aim of this study was to analyze RSA, CJM, Leger, 10 m sprint responses to Pre-season Training in Semi-Professional Soccer Players (SPSP). Considering that numerous studies highlighted the combination of high levels of physical, technical and tactical skills during a soccer match, the aim of physical training pose a particular attention on training load that generally increases up to 2.4 times during the pre-season period compared with the in-season.

Methods: Six SPSP (age 23 ± 7 years, BMI 23.1 ± 1.8) were requested to perform aerobic training over an 8-week period on alternate days with the functional strength training sessions and sprint training drills as prescribed by the coaches and strength and conditioning staff. Repeated Sprint Ability (RSA, total time (TT) and percentage of fatigue index (%FI)), Leger, 10 m sprint and Counter Movement Jump (CMJ) tests, were performed before and after pre-season soccer training. ANOVA for repeated measures was conducted to assess differences (p < 0.05) with respect to pre-seasonal training. Correlation was calculated between the percentage of variation (Δ) of each test.

Results: Compared to the values recorded before the pre-season, improvement of Leger (3 %) and %FI (17.6 %) and a deterioration of TT (10 %), CMJ (2.4 %) were found. In addition, we have found a main effect between before and after pre-seasonal training in TT (F = 0.2; p = 0.001) and Leger (F = 25; p < 0.005). %ΔFI showed very large correlation with ΔLeger (r = -0.68) and nearly perfect with %ΔFI (r = 0.93); while ΔLeger was largely correlated with %ΔFI (r = -0.69).

Conclusion: Given that the care of the physical preparation is considered as an important element in order to influence the final soccer game result, this study want to be a useful information for the coach in order to maximize the best physical condition of the whole team relative to the beginning of the regular season.

References