Mixed Adenoneuroendocrine Carcinomas (MANECs) of the Gastrointestinal Tract: Targeted Next Generation Sequencing Suggests a Monoclonal Origin of the Two Components

This is the author's manuscript

Original Citation:
Mixed Adenoneuroendocrine Carcinomas (MANECs) of the Gastrointestinal Tract: Targeted Next Generation Sequencing Suggests a Monoclonal Origin of the Two Components / Maria Scardoni; Emanuele Vittoria; Marco Volante; Borislav Rusev; Samantha Bersani; Andrea Mafficini; Marisa Gottardi; Valeria Giandomenico; Giuseppe Malleo; Giovanni Butturini; Sara Cingarlini; Matteo Fassan; Aldo Scarpa. - In: NEUROENDOCRINOLOGY. - ISSN 0028-3835. - STAMPA. - 100:4(2014), pp. 310-316.

Availability:
This version is available http://hdl.handle.net/2318/1507452 since 2016-01-04T16:28:09Z

Published version:
DOI:10.1159/000369071

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Mixed Adenoneuroendocrine Carcinomas (MANECs) of the gastrointestinal tract: targeted next generation sequencing suggests a monoclonal origin of the two components

Maria Scardoni 1,2, Emanuele Vittoria 1, Marco Volante 3, Borislav Rusev 1,2, Samantha Bersani 1,2, Andrea Mafficini 1, Marisa Gottardi 1, Valeria Giandomenico 5, Giuseppe Malleo 5, Giovanni Butturini 8, Sara Cingarlini 8, Matteo Fassan 1,2, Aldo Scarpa 1,2

1 ARC-Net Research Centre, University and Hospital Trust of Verona, 37134 Verona, Italy
2 Department of Pathology and Diagnostics, University and Hospital Trust of Verona, 37134 Verona, Italy
3 Department of Oncology, University of Turin at San Luigi Hospital, 10034 Turin, Italy
4 Department of Medical Sciences, Endocrine Oncology, Uppsala University, 75105 Uppsala, Sweden
5 Department of Surgery, General Surgery B, University of Verona, 37134 Verona, Italy
6 Department of Medical Oncology, University and Hospital Trust of Verona, 37134 Verona, Italy

Short title: MANEC & NGS

Tables: 1
Figures: 3
Supplementary files: 1
Word count: 2243

Authors’ contributions: VC, MF, AS: ideation of the study, planning, primary writers. BR, MF, VG, AS: histopathological and immunohistochemical study and evaluation. BR, MF: sample microdissection. MS, EV, SB, AM, MG: preparation of DNA, quality control and sequencing including data analysis and interpretation. AM: bioinformatic analysis of next-gen sequencing. MS, EV, MV, AM, MF: sample choice and preparation, collection and assembly of clinical-pathological data. MV, GM, GB, SC, AS: clinical-pathological data analysis and interpretation of results related to the peculiar tumor type and clinical implications. All authors participated in writing and approved the final, submitted manuscript.

Competing interests: The authors have no competing interests to declare.

Funding: Italian Cancer Genome Project grant from the Italian Ministry of Research (FIRB - RBAP10AHJB) and Fondazione Italiana Malattie Pancreas – Ministry of Health (J33G13000210001), AIRC grant n. 12182, and FP7 EU project CAM-PaC no: 602783.

Correspondence to:
Dr. Matteo Fassan, MD, PhD
ARC-NET Research Centre, Department of Pathology & Diagnostics
University of Verona, Policlinico GB Rossi, Piazzale L.A. Scuro, 10
37134 Verona (VR), Italy
Tel.: +39-045-8124043; Fax: +39-045-8127432; Email: matteo.fassan@gmail.com
ABSTRACT

Background. Mixed AdenoNeuroEndocrine Carcinomas (MANECs) of the gastrointestinal tract are rare neoplasms characterized by coexisting exocrine and neuroendocrine neoplastic components. MANECs' histogenetic classification and molecular characterization remain unclear, significantly affecting the identification of innovative therapeutic options for these tumors. Methods. In this study, the exocrine and neuroendocrine components of 6 gastrointestinal MANECs were microdissected and subjected to the simultaneous mutation assessment in selected regions of 54 cancer-associated genes, using Ion Torrent semiconductor-based next-generation sequencing (NGS). Sanger sequencing and immunohistochemistry were used as validation of the mutational status. Results. A total of 20 driver gene somatic mutations were observed among the 12 neoplastic components investigated. In 11 of 12 (91.7%) samples at least one mutation was detected; 7 samples (58.3%) were found to have multiple mutations. TP53 gene mutations were the most frequent genetic alterations observed in the series, occurring in 11/12 samples (91.7%). Somatic mutations in other genes were detected at lower frequencies: ATM, CTNNB1, ERBB4, JAK3, KDR, KRAS, RB1. Conclusions. Five of the six MANECs presented an overlapping mutational profile in both components, suggesting a monoclonal origin of the two MANEC components.

Keywords: mixed adenoneuroendocrine carcinomas; next generation sequencing; WHO 2010 classification; gastrointestinal tract.
INTRODUCTION

Mixed AdenoNeuroEndocrine Carcinomas (MANECs) of the gastrointestinal tract are rare and heterogeneous neoplasms characterized by coexisting exocrine and neuroendocrine neoplastic components [1,2]. According to WHO 2010 classification [3], either tumor component should represent at least 30% of the entire lesion. By the clinical point of view, MANECs are considered as carcinomas since both components are histologically malignant; tumor behavior is dictated by the most aggressive component, which is usually the neuroendocrine one [1,2].

MANEC histogenetic definition represents a current controversial issue among pathologists [1,2,4-8]. Two main theories have been formulated: (i) these tumors might arise independently in a synchronous or metachronous fashion, or (ii) they might derive from a common, multipotent stem/progenitor cell. The presence in most MANECs of amphicrine cells characterized by the simultaneous presence of mucin droplets and neuroendocrine secretory granules strongly sustain the hypothesis of a common precursor cell capable of divergent differentiation [9,10]. This has also been supported by the majority of molecular studies, which suggested a possible multistep progression from a common precursor lesion, especially in those cases in which the neuroendocrine component is represented by a poorly differentiated carcinoma [1,7,11-13]. However, a comprehensive molecular characterization of these tumors is still lacking, and this significantly affects the introduction of innovative and targeted therapeutic options, which are currently left to subjective choices [1,14].

Understanding the molecular basis of MANEC carcinogenesis and lineage commitment would be of fundamental importance in the prognostic and therapeutic stratification of these patients. To address this point, the exocrine and neuroendocrine components of 6 gastrointestinal MANECs were microdissected and subjected to the simultaneous mutational assessment in selected regions of 50 cancer-associated genes, using Ion Torrent semiconductor-based next-generation sequencing (NGS). The neuroendocrine components were also characterized by an AmpliSeq custom panel exploring the genes most frequently altered in pancreatic neuroendocrine neoplasms.
MATERIALS AND METHODS

Cases

Six surgically-treated gastroenteropancreatic MANECs, (2 gastric, 2 pancreatic, 1 jejunal, 1 rectal) were retrieved from the FFPE archives of the ARC-Net biobank at Verona University Hospital under the local ethics committee approval (n. prog. 1959).

DNA extraction and qualification

DNA was obtained from formalin-fixed paraffin-embedded (FFPE) tissues after enrichment for neoplastic cellularity. Suitable areas for microdissection were marked on archival haematoxylin and eosin (H&E) slides, which serve as templates. The corresponding tissue blocks were serially cut to 5-µm-thin sections. Unstained sections were therefore deparaffinized, and slightly counterstained with haematoxylin. Tumor cells were dissected manually using a sterile syringe needle, and at least 70% of neoplastic cells were collected from both exocrine and neuroendocrine components. Normal peritumoral tissues (i.e., non-tumor gastrointestinal mucosa or pancreatic parenchyma) were microdissected and used to determine the somatic or germline nature of mutations. DNA was extracted using the QIAamp DNA FFPE Tissue Kit (Qiagen). DNA was quantified and its quality assessed using NanoDrop (Invitrogen) and Qubit (Invitrogen) platforms [15]. The quality of DNA was further evaluated by PCR using the BIOMED 2 PCR multiplex protocol [16].

Deep Sequencing of Multiplex PCR Amplicons

Two multigene NGS panels were used: (1) the 50-gene Ion AmpliSeq Cancer Hotspot Panel v2 (Life Technologies) was tested on the two tumor components and the normal counterpart, (2) an Ampliseq neuroendocrine-custom panel investigating hotspots regions in MEN1, ATRX, DAXX, and TSC2 genes, which are frequently mutated in pancreatic neuroendocrine neoplasms [17-19], that was applied only on the neuroendocrine component of the MANEC and the normal sample. Details of the target regions for both panels are in Supplementary Tables 1 and 2.

The first panel explores selected regions of the following 50 genes: ABL1, AKT1, ALK, APC, ATM, BRAF, CDH1, CDKN2A, CSF1R, CTNNB1, EGFR, ERBB2, ERBB4, EZH2, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, GNA11, GNAS, GNAQ, HNF1A, HRAS, IDH1, JAK2, JAK3, IDH2, KDR/VEGFR2, KIT, KRAS, MET, MLH1, MPL, NOTCH1, NPM1, NRAS, PDGFRA, PIK3CA, PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC, STK11, TP53, VHL.

Forty nanograms of DNA were used for multiplex PCR amplification. Emulsion PCR
was performed with the OneTouch2 systems (Life Technologies). The quality of the obtained library was evaluated by the Agilent 2100 Bioanalyser on-chip electrophoresis (Agilent Technologies). Sequencing was run on the Ion Torrent Personal Genome Machine (PGM, Life Technologies) loaded with 316 (50-gene panel) or 318 chips (custom panel). Data analysis, including alignment to the hg19 human reference genome and variant calling, was done using the Torrent Suite Software v.3.2 and v.3.6 (Life Technologies). Filtered variants were annotated using the SnpEff software v.3.1 and the IonReporter software v.1.6 (Life Technologies). Alignments were visually verified with the Integrative Genomics Viewer; IGV v.2.2, Broad Institute.

DNA Sanger Sequencing

KRAS (exon 2) and TP53 (exons 5, 6, 7, 8) specific PCR fragments were analysed by Sanger sequencing. PCR products were purified using Agencourt AMPure XP magnetic beads (Beckman Coulter), labeled with Big Dye Terminator v3.1 (Applied Biosystems). Agencourt CleanSEQ magnetic beads (Beckman Coulter) were used for post-labeling purification. Sequence analysis was performed on an Applied Biosystems 3130xl Genetic Analyser.

Immunohistochemistry

The immunohistochemical expression of p53 (clone DO-1; prediluted; Immunotech) and ß-catenin (clone 15B8; 1:150; Sigma) was tested as a surrogate validation of deep sequencing results, and performed as described elsewhere [20,21].

RESULTS

Prevalence of driver genes mutations in gastrointestinal MANECs

The clinico-pathological information of the six cases are summarized in Table 1. All patients were male, with a mean age of 72±10 years. Four tumors arose within the gastrointestinal tract (2 stomach, 1 jejunum, 1 rectum) and two were from the pancreas. All the exocrine components were represented by an adenocarcinoma; 5 cases were moderately differentiated, one was poorly differentiated. All the neuroendocrine components were poorly differentiated neuroendocrine carcinomas, characterized by a Ki67 index >20%. According to WHO 2010 classification, all morphologically and immunophenotypically-proven components represented at least 30% of the tumor. In all cases, collision (Figure 1A) and/or variably combined (Figure 1B) areas of the two components were observed.
DNA from the microdissected components and from the adjacent normal tissue were subjected to deep sequencing of mutational hotspots of 54 genes. The mean read length was 101 base pairs and a mean coverage of 866x was achieved, with 96.8% target bases covered more than 100x by using the 50-genes hotspot Panel; the mean read length was 108 base pairs and a mean coverage of 1,068x was achieved, with 75.4% target bases covered more than 100x by using the 4-genes neuroendocrine-custom panel. A minimum coverage of 20x was obtained in all samples for both panels.

A total of 20 somatic mutations were observed among the 50 cancer genes investigated by the Ion AmpliSeq Cancer Hotspot Panel v2. No mutation was observed among the custom panel-specific genes ATRX, DAXX, MEN1, and TSC2.

In 11 of 12 (91.7%) neoplastic samples - two components for each tumor - at least one somatic mutation was detected (Table 1); 7 samples (58.3%) showed multiple gene somatic mutations.

TP53 somatic mutations were the most frequent alterations observed in the series, occurring in all exocrine and 5/6 neuroendocrine components. Somatic mutations in other genes were detected at lower frequency: ATM, CTNNB1, ERBB4, JAK3, KDR, KRAS, RB1.

Most of the observed mutations were missense mutations. A stop mutation was observed in RB1 (R358*) and TP53 (R209Kfs*6); one deletion in ATM (S1923del) was found in the neuroendocrine component of a gastric MANEC (case #1). KRAS and TP53 gene mutations detected by deep sequencing were confirmed by PCR amplification of appropriate fragments and conventional Sanger sequencing.

Mutation profile in matched MANEC components

Five cases presented an overlapping mutational profile in both components (cases #1, #2, #3, #4, #5; Table 1, Figure 2). One of the pancreatic MANECs (case #6) presented no mutation in the 54 analyzed genes in the neuroendocrine component, while the exocrine component presented missense mutations in the CTNNB1 and TP53 genes (Figure 3).

Six mutations observed in the KRAS, RB1, and TP53 (n=4) genes were shared by both components of the same MANEC. Somatic point mutations in the CTNNB1 gene were found exclusively in exocrine components; somatic mutations in the ATM, ERBB4, JAK3, and KDR genes were found in neuroendocrine components.

B-catenin and p53 immunohistochemistry was used as a valid surrogate confirmation of the mutational status. As expected a nuclear/cytoplasmic β-catenin immunoreaction was observed in the exocrine component of case #6, which was characterized by a S45F
missense mutation in the CTNBB1 gene (Figure 2). This mutation has already been linked to the nuclear localization of the protein in desmoid tumors [22].

Five of the six exocrine components and four of the five neuroendocrine components presenting TP53 somatic mutations showed a strong p53 nuclear immunostaining in more than 50% of neoplastic cells. In the negative case (case #4), the immunohistochemical negativity may be explained by the fact that the R209 stop mutation likely prevents p53 stabilization, as reported for other similar mutations in TP53 [20]. An example of TP53 mutational results from paired samples is shown in Figure 2.

DISCUSSION
The results of our mutational survey on a series of 6 routinely formalin-fixed paraffin-embedded gastro-entero-pancreatic MANECs can be summarized as follows: (i) in most tumors, the two diverse components share similar molecular profiles, which supports an origin from a common progenitor cell of the tumor; (ii) the vast majority (91.7%) of neoplastic components harbor a driver-gene mutation; (iii) TP53 is a key gene in the carcinogenetic process of gastrointestinal MANECs; (iv) NGS of multiple genes is applicable to routinely-processed tissues.

The concept of human cancers displaying a combination of exocrine (glandular or squamous; also urothelial in the genitourinary tract) and neuroendocrine features has been a matter of debate and still represents a controversial issue [1,3,5]. MANEC can present as composite neoplasms with exocrine and neuroendocrine components occurring in separate areas of the same lesion (i.e., collision tumor), or as combined neoplasms, when the two components are intimately and diffusely admixed [1]. Moreover, in amphicrine tumors exocrine and neuroendocrine features are present in the same neoplastic cell, which shows a double immunophenotype [1,3,5]. Thus, two main histogenetic theories have been proposed: the simultaneous proliferation of multiple cell lineages or the proliferation of stem/progenitor cells capable of differentiating along multiple cell lineages.

Most studies using different molecular techniques (i.e., loss of heterozygosity, mutational analysis, clonality analysis) claim that a common genetic origin of the two tumor components is more probable [1,7,11-13,23]. Shared LOH at various chromosomes suggest a multistep progression from a common precursor lesion, with a higher frequency of chromosomal abnormalities in the NEC than in the adenocarcinoma component [1].

In our series, 5 of 6 cases presented similar mutational profiles in the two tumor components. Of interest, in cases #1 and #5 a common TP53 gene mutation coexisted with multiple driver gene mutations in the neuroendocrine component (KDR/VEGFR2, JAK3,
ERBB4, ATM). This further supports the theory of a common precursor lesion that underwent divergent clonal evolution. Only case #6 showed a mutational profile compatible with the collision tumor theory, but it is also possible that the common ancestor mutation of this case is in a gene that is not included in the 54 genes explored herein.

Overall these histogenetic data are compatible with what is observed in clinical practice. A recent study on colorectal MANECs pinpointed that the type of cancer cell population in the metastatic site is largely unpredictable, being either mixed or pure [24]. Moreover, it did not necessarily correspond to the most prevalent or most aggressive neoplastic component [24]. By the prognostic point of view, it is generally considered that the clinical behavior of the tumor is dictated by the most aggressive component [1]. In the stomach, mixed tumors follow a behavior intermediate between pure large cell NEC, which is the most aggressive subgroup, and conventional gastric adenocarcinoma [25]. In the colon and rectum, the extent of the neuroendocrine component is not a predictor of behavior, and even a minor high-grade neuroendocrine cell population was found able to metastasize [24,26]. Very few cases of hepatobiliary MANEC have been reported so far and clinical comparisons are still missing [6].

By deep sequencing 54 cancer-related genes, we observed that most neoplastic samples (11 of 12) presented at least one somatic mutation. TP53 gene mutations were the most frequent alterations observed in the series, and this was further confirmed by the strong p53 immunostaining observed in most samples. The presence of TP53, CTNBB1, KRAS, and RB1 alterations has already been observed in pancreatic NECs [27], supporting the aggressiveness of this tumor component. On the other hand, the lack of mutations in ATRX, DAXX, MEN1, and TSC2 supports a distinct molecular evolution of the NEC component from those reported for well-differentiated neuroendocrine tumors [28,29].

As previously described for other tumor types [20,30,31], our results further support the clinical impact of targeted NGS on routinely processed samples. The integration of the mutational profiles with morphological and immunophenotypic data depicts a next-generation type of histopathological diagnosis. This approach allows both the description of cancer heterogeneity in a diagnostic report and the identification of potential therapeutic targets for which agents are currently in clinical trials. In this respect, our series showed mutations in genes that could have a clinical impact such as KRAS, ATM, JAK3, KDR/VEGFR2, and ERBB4. This information might represent the biological ground for planning future personalized target therapies in these patients.

In conclusion, the present NGS data are strongly suggestive to consider gastrointestinal MANECs as biphenotypic stem/progenitor cell tumors. Similar molecular
approaches should investigate MANECs’ genomic landscape, which will improve the clinical strategies for these rare and underestimated tumors.
REFERENCES

Figure 1. Representative histomorphological features of gastrointestinal MANECs. A tumor presenting areas in which the adenocarcinoma and neuroendocrine components are arranged as collision (A; H&E) or combined tumors (B; CD56 immunohistochemical staining in two areas of the same tumor). Original magnifications, 10x and 20x.
Figure 2. MANEC exocrine and neuroendocrine components share similar mutational profiles. A jejunal MANEC showing a TP53 R248W mutation in both the exocrine and neuroendocrine components. Representative p53 immunohistochemical images of the lesions are shown (original magnifications, 20x), and confirm that TP53 mutational status corresponds to p53 protein nuclear accumulation. On the right there is the representation of the reads aligned to the reference genome as provided by the Integrative Genomics Viewer (IGV v.2.1, Broad Institute) software.
Figure 3. Immunohistochemistry is a valid surrogate of β-catenin and p53 mutational status. A pancreatic MANEC harboring a CTNNB1 and a TP53 mutation in the exocrine component that were absent in the neuroendocrine component. Representative β-catenin and p53 immunohistochemical images of the exocrine lesion are shown (original magnifications, 20x). A nuclear and cytoplasmic β-catenin immunoreaction and a p53 nuclear accumulation were observed. The neuroendocrine component had a membranous β-catenin and a negative p53 immunostaining (not shown). On the right there is the corresponding representation of the gene sequence reads aligned to the reference genome as provided by the Integrative Genomics Viewer (IGV v.2.1, Broad Institute) software.
Table 1. Clinico-pathological features and mutational status of 6 gastroenteropancreatic MANECs

<table>
<thead>
<tr>
<th>Case</th>
<th>Gender</th>
<th>Age</th>
<th>Location</th>
<th>Grading adenocarcinoma*</th>
<th>Grading NEN*</th>
<th>Gene mutations (% of mutated alleles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exocrine component</td>
</tr>
<tr>
<td>1</td>
<td>Male</td>
<td>89</td>
<td>Stomach</td>
<td>G2</td>
<td>NEC G3 (Ki67: 68%)</td>
<td>TP53 R273H (52%)</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>80</td>
<td>Stomach</td>
<td>G2/G3</td>
<td>NEC G3(Ki67: 72%)</td>
<td>R81 R358* (63%)</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>66</td>
<td>Jejunum</td>
<td>G2</td>
<td>NEC G3 (Ki67: 45%)</td>
<td>TP53 R248W (32%)</td>
</tr>
<tr>
<td>4</td>
<td>Male</td>
<td>64</td>
<td>Rectum</td>
<td>G3</td>
<td>NEC G3 (Ki67: 55%)</td>
<td>KRAS G13D (21%)</td>
</tr>
<tr>
<td>5</td>
<td>Male</td>
<td>70</td>
<td>Pancreas</td>
<td>G2</td>
<td>NEC G3 (Ki67: 73%)</td>
<td>TP53 D281Y (53%)</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>63</td>
<td>Pancreas</td>
<td>G2</td>
<td>NEC G3 (Ki67: 42%)</td>
<td>CTNNB1 S45F (41%)</td>
</tr>
</tbody>
</table>

* According to WHO 2010 classification [3].