Novel mutation of SLC20A2 in an Italian patient presenting with migraine.

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/151048 since 2017-12-02T23:31:07Z

Published version:
DOI:10.1007/s00415-014-7475-8

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Novel mutation of SLC20A2 in an Italian patient presenting with migraine

Elisa Rubino¹², Elisa Giorgio³, Salvatore Gallone⁴, Lorenzo Pinessi¹⁴, Laura Orsi⁴, Salvatore Gentile⁴, Sergio Duca², Alfredo Brusco³⁵

¹ Department of Neuroscience “Rita Levi Montalcini”, University of Torino, 10126, Torino, Italy
² Koelliker Hospital, 10126, Torino, Italy
³ Department of Medical Sciences, University of Torino, 10126, Torino, Italy
⁴ Department of Neuroscience and Mental Health, A.O.U. Città della Salute e della Scienza, 10126, Torino, Italy
⁵ Medical Genetics, A.O.U. Città della Salute e della Scienza, 10126, Torino, Italy

Keywords: idiopathic basal ganglia calcification, IBCG, SLC20A2, migraine

Corresponding author:
Elisa Rubino
Neurology I,
Department of Neuroscience “Rita Levi Montalcini”, University of Torino,
Via Cherasco 15 – 10126 Torino, Italy
Phone: +390116334763
Fax: +390116638510
Email: elisa.rubino@unito.it
Dear Sirs,

Idiopathic basal ganglia calcifications (IBGC), also known as Fahr’s disease, are rare neurological diseases characterized by symmetric calcium deposits in the basal ganglia and other brain regions. Clinically, IBGC patients show high phenotypic heterogeneity, both in the neuroradiological findings and in clinical manifestations. Recently, PDGFRB, PDGFB and SLC20A2 have been identified as causative genes for IBGC [2].

We report the case of an Italian patient with IBGC associated with a novel mutation in the SLC20A2 gene, who presented with episodic migraine. In September 2013, a 48-year-old woman presented to our outpatient clinic with a 29-years history of headache. The recurrent attacks were characterized by pulsating pain of moderate intensity in frontotemporal location, associated with severe nausea and photo/phonophobia, lasting up to 72 hours, with six-eight episodes a month. The reported symptoms fulfilled ICHD-III beta version criteria for episodic migraine without aura (code 1.1) [2]. The medical history of the patient was unremarkable. A positive family history for migraine (mother and maternal aunt) and psychosis (another maternal aunt) was reported. Neurological examination showed hyperreflexia and slightly neck rigidity, while no cerebellar signs were identified. A computed tomography scan showed severe calcifications at the bilateral globus pallidus, caudate nuclei, putamen, and dentate nuclei (Figure 1A). Laboratory tests were normal (including serum 25-hydroxyvitamin D and calcium concentrations) and excluded any parathyroid dysfunction. Neuropsychological screening showed a mild impairment in verbal fluency and mild attention deficit. The remaining neuropsychological tests had normal scores, also in those for visuospatial functions. STAIx-1 and STAIx-2 tests showed high level of anxiety.

The patient received genetic counselling and on the basis of the neuroradiological findings with calcifications both in basal ganglia and cerebellum, SLC20A2 was sequenced. We analyzed the
candidate gene by direct genomic sequencing of the coding exons, performed on an ABI Prism 3130 XL platform. We identified a novel frameshift mutation p.Val507Glufs*2 in the isoform 1 (c.1520_1521delTG, exon 8, NM_006749) (Figure 1B,C). This genetic change was predicted to change an aminoacid and insert a stop codon, likely leading to a degradation of the mutated messanger RNA due to nonsense mediated decay [3]. No other relative was available for segregation analysis.

SCL20A2 encodes the type III sodium dependent phosphate transporter 2, broadly expressed and with high levels in brain. **SLC20A2** gene mutations have been reported in China, Brazil, Japan, and Spain [3-12], and all are predicted to give a loss-of-function, causing gene haploinsufficiency [3]. The mechanisms leading to calcifications remain to be elucidated, although a role for increased inorganic phosphate can be supposed [4].

The clinical manifestations in patients with IBGC range widely from neurological and/or psychiatric symptoms to asymptomatic status. Because migraine is a common disorder in general population (mainly in women), the coexistence of IBGC and migraine may be coincidental in our patient. On the other way, migraine has frequently been reported as symptom in a large series of IBGC patients with **SLC20A2** mutations [13].

The basal ganglia are involved in the integration of information between cortical and thalamic regions and in particular in domains involved in pain processing. Brain imaging studies of migraineurs have shown altered activation in the basal ganglia in comparison with controls [14]. In addition, migraine is reportedly more frequent in patients with other known basal ganglia disorders [15]. Our report might further support that basal ganglia may be involved in central pain processing and migraine pathophysiology.

We suggest that migraine should be considered when evaluating patients with IBGC and their first-degree relatives, in particular in young age, when other neurological symptoms are absent. The
identification of new genetic variants further enlarge the spectrum of mutations in SLC20A2, helping to better elucidate the worldwide distribution and the different clinical features.

Acknowledgements

The study was supported by a grant from the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) of Italy.

Conflicts of interest

The authors declare no financial or other conflicts of interest.

Ethical standards

This study has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki. Written informed consent was obtained from the patient.
References

Figure 1. A) Brain CT scans showing the locations of calcification in basal ganglia and cerebellum. B) Sequencing chromatogram showing the wild-type sequence and the heterozygous c.1520_1521delTG mutation in the *SLC20A2* gene. The TG deleted nucleotides are boxed. C) Model of the PiT2 protein. Mutations described in the literature are reported (1-30): see legend for mutation types. The new mutation causes a Val 507 to Glu aminoacid change, and a frameshift with a stop codon at the next aminoacid. The C-terminal protein region lost in the p.Val507Glufs*2* mutant is highlighted. Mutations nomenclature was revised accordingly to Human Genome Variation society (HGV) (http://www.hgvs.org/mutnomen/; version September 13, 2013), and in [7, 8, 13, 14, 18, 26] is different from those reported in the original paper.