Hemozoin and the human monocyte--a brief review of their interactions

This is the author's manuscript

Original Citation:
Hemozoin and the human monocyte--a brief review of their interactions / Schwarzer E; Skorokhod Oleksii A; Barrera V; Arese P. - In: PARASSITOLOGIA. - ISSN 0048-2951. - 50(1-2)(2008), pp. 143-145.

Availability:
This version is available http://hdl.handle.net/2318/1511648 since 2015-10-07T22:26:23Z

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Hemozoin and the human monocyte-A brief review of their interactions

E. Schwarzer, O.A. Skorokhod, V. Barrera, P. Arese
Department of Genetics, Biology and Biochemistry, University of Torino, Via Santena 5 bis, 10126 Torino, Italy

Abstract. In vitro, human monocytes avidly ingest hemozoin (HZ) that modifies a number of monocyte functions. Inhibitory effects: inhibition of: PMA-elicted respiratory burst, ability to kill and repeat phagocytosis, activity of NADPH-oxidasee and PKC, expression of ICAM-1, integrin-CD11c, MHC-class-II (IFN-gamma-mediated), differentiation to functional antigen-presenting dendritic cells. Stimulatory effects: increase in phagocytosis-related respiratory burst and accumulation of lipoperoxidation products, induction of metalloproteinase-9 and pro-inflammatory cytokines and chemokines. Mechanism of action: HZ generates by non-enzymatic catalysis large amounts of lipoperoxidation products, such as monohydroxy derivatives of arachidonic (HETE) and linoleic (HODE) acid, and 4-hydroxynonenal (HNE). Several HZ effects were reproduced by supplementation with plausible concentrations of HETE or HNE, the first most likely via interaction with PPAR-receptors, the second via adduct or crosslinks formation with critical targets.

Key words: Malaria, malaria pigment, hemozoin, monocytes, HETE, 4-hydroxynonenal

Human phagocytic cells avidly ingest hemozoin (HZ) and HZ-containing trophozoites and schizonts. In vitro, approx. 9-10 trophozoites/schizonts, or corresponding amounts of HZ were taken up per monocyte. Three hours after start of phagocytosis 79±30% of monocytes were extensively HZ-laden, and approximately 30% of cell volume was occupied by HZ HZ (Schwarzer et al., 2001; Arese and Schwarzer, 1997).

Inhibitory effects of HZ

1. Role of HZ phagocytosis in malaria immunodepression
Altered cellular responses to blood-stage Plasmodium antigens, reduced induction of immunity to vaccines, reduced T cell proliferation, and short-lived antibody responses are common observations in malaria. It has been shown by us that induction of MHC class II in response to IFN-gamma stimulation was defective in HZ-laden monocytes (Schwarzer et al., 1998). Abrogation of MHC class II expression was present at protein and mRNA expression level, providing a possible link between HZ loading, suppression of IFN-gamma responsiveness, failure of MHC class II upregulation and disturbances in antigen presentation and immunodepression in malaria (Schwarzer et al., 1998; Scorzà et al., 1999). 4-hydroxynonenal (HNE), a potent aldehyde originating from lipoperoxidation of unsaturated fatty acids (Schwarzer et al., 2003), accumulates in membranes and may be causally involved in the effect. Indeed, unpublished experiments (Schwarzer, unpublished) show that low-micromolar HNE inhibited IFN-gamma mediated MHC class II expression and mimicked HZ action. The same studies indicated that HZ-laden monocytes had reduced spontaneous upregulation of CD54 (ICAM-1), an adhesion molecule that contributes considerably to the capacity of monocytes to adhere to stimulate T-cell proliferation (Schwarzer et al., 1998). Thus, our data may contribute to explain defective T-cell response in malaria.

2. Inhibition of differentiation/maturatation to DC
Monocytes are a prime source of dendritic cells (DC) in vivo and in vitro, that play pivotal roles in adaptive immune responses and innate immunity. We have challenged human monocytes before the initial induction/final maturation to mature DC with HZ. Blunted expression of MHC class II and costimulatory molecules indicated that both differentiation and maturation of HZ-loaded monocytes to DC were severely impaired (Skorokhod et al., 2004). These effects were reproduced dose-dependently by HNE supplementation, possibly via stimulation of PPAR-gamma receptor or interaction with CD14/LPS-receptor. Those studies may be significant in malaria immunodepression to explain inhibited response of T and B lymphocytes; reduction in expression of MHC class II; and insufficient antibody production. Recently in confirmatory studies HZ was found to induce failure of DC function in vivo and in vitro in a P. chabaudi murine model (Millington et al., 2006). Contrasting results were obtained with highly purified HZ, though, shown to induce DC maturation and activation of murine DC via Toll-like receptor 9 (Coban et al., 2005; Coban et al., 2002).

3. Inhibition of erythropoiesis and thrombopoiesis
Severe malarial anemia, an important cause of mortality, is the result of destruction of parasitized and non-parasitized RBC, and impaired erythropoiesis. Bone marrow (BM) macrophages produce a variety of
hematopoietic regulatory or suppressive factors, such as IL-1, TNF, TGF-beta and macrophage inhibitory proteins. Free HZ and HZ-containing trophozoites/schizonts, and HZ-laden macrophages are abundantly present in BM of malaria patients (Arese and Schwarzer, 1997). We have shown that HZ supernatants equivalent to 12.5 trophozoites/progenitor inhibited erythroid growth. Supernatant of defelipidized HZ was significantly less effective. Supernatants of HZ-fed monocytes also inhibited BFUE growth whereas supernatants of latex-fed or RBC-fed monocytes had no effect (Giribaldi et al., 2004). Inhibition of erythroid growth and thrombopoiesis was reproduced dose-dependently by HNE supplementation, found to generate adducts with crucial GM-CSF-receptor (Skorokhod et al., 2004).

Stimulatory effects of HZ

1. Stimulation of production of pro-inflammatory molecules

Elevated serum concentrations of pro-inflammatory cytokines, MIP-1alpha and macrophage migration inhibitory factor (MIF) have been found in malaria patients, correlated with disease severity. Several in vitro studies have shown that phagocytosis of HZ by human monocytes induced release of several of the above factors. Those data confirm the importance of HZ as a stimulatory factor of monocytes in malaria. Preliminary data by our group (Giribaldi G, unpublished) have shown cytokine and MIP-1alpha upregulation by 15-HETE.

2. Activation of metallo-proteinase 9

It has been recently shown in our group (Prato et al., 2005) that HZ-fed human monocytes displayed increased metalloproteinase-9 (MMP-9) activity and protein/mRNA expression. MMP-9 functions by proteolytically shedding pro-forms of cytokines such as TNF-alpha and IL-1beta in the blood, by disrupting the subendothelial matrix and enhancing extravasation of blood cells. Activation and induction of MMP-9 were reproduced dose-dependently by 15-HETE (Prato M, unpublished).

Mechanism of HZ action

In HZ and parasitized RBC a complex mixture of monohydroxy derivatives of arachidonic (HETE) and linoleic (HODE) acid, and large amounts of the terminal aldehyde HNE have been determined by our group (Schwarzer et al., 2003). No evidence of lipoxygenase activity was found in parasites, while the large number of isomers, their racemic structure and generation by incubation of arachidonic acid with HZ indicated their non-enzymatic origin via heme catalysis (Schwarzer et al., 2005). Phagocytosed HZ ferries those lipid derivatives into the phagocyte, while ingested HZ further produces the same compounds (Schwarzer et al., 2003). Mechanistically, we have provided evidence that specific HETE, HODE or HNE generated by HZ were responsible for the abrogation of oxidative burst and other inhibitory effects mediated by HZ phagocytosis (see above). HNE, which avidly reacts with thiols and amino groups of proteins to form stable Michael adducts or Schiff base crosslinks (Skorokhod et al., 2005), seems to play an important mechanism role. Work in progress will determine in detail localization of protein-HNE adducts in the various HZ-affected systems.

Acknowledgements

Supported by Compagnia di San Paolo-IMI (Italian Malaria Network), University of Torino intramural research funds, and Regione Piemonte research funds (Ricerca Sanitaria Finalizzata)

References


