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ABSTRACT 

In primates, different cortical areas send axons of different diameter into comparable tracts, 

notably the corpus callosum (Tomasi et al. 2012). We now explored if an area also sends axons 

of different diameter to different targets. We find that the parietal area PEc sends thicker axons 

to area 4 and 6, thinner ones to the cingulate region (area 24). Areas 4 and 9, each sends axons of 

different diameter to the nucleus caudatus, to different levels of the internal capsule, and to 

thalamus.  The internal capsule receives the thickest axon, followed by thalamus and nucleus 

caudatus. The two areas (4 and 9) differ in the diameter and length of axons to corresponding 

targets. We calculated how diameter determines conduction velocity of the axons and together 

with pathway length determines transmission delays between different brain sites.  We propose 

that projections from and within cerebral cortex consist of a complex system of lines of 

communication with different geometrical and time computing properties. 

 

Key words: conduction velocity, cortical area, internal capsule, nucleus caudatus, thalamus 
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Axons originating in different cortical areas of the macaque monkey differ in their diameter, with 

thickest axons originating in primary motor and somatosensory areas and the thinnest ones in 

prefrontal and temporal areas (Tomasi et al. 2012). Areal differences in axon diameter were 

found for callosal axons and for cortico-thalamic axons, but not for intra-area axons. The 

diameter of outgoing axons, therefore, appears to be a feature characterizing cortical areas, in 

addition to the classical size and distribution of cell bodies, degree of myelination, topography of 

connections, neuronal response properties, etc. Axon diameter determines conduction velocity 

and together with axon length generates temporal delays whereby different brain sites 

communicate. It was proposed that conduction delays may constrain processing speed and that 

there may be a hierarchy of processing speeds among cortical areas, with premotor, motor and 

primary somatosensory areas on the lead (Tomasi et al. 2012).  Areas with, on average, thicker 

axons also had an increased spectrum of axon diameters and of conduction delays. These 

differences appear to be exaggerated in evolution in parallel with the increased volume of the 

brain and might enrich cortical dynamics (Caminiti et al. 2009). 

 It was unclear if diameter relates only to the area of origin of the axons or also to their 

sites of termination. This question was tackled in the present study by comparing the diameter of 

axons originating in posterior parietal cortex and terminating in motor, premotor and cingulate 

cortex. We also compared axons originating in area 4, and in prefrontal cortex area 9, and 

terminating in the caudate, and thalamus or continuing into the internal capsule. 

 

Materials and Methods 
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Two monkey brains injected with biotinylated dextran amine (BDA) in the dorsal part of area 4, 

presumably the proximal arm/trunk representation, were at our disposal (Tomasi et al. 2012); one 

of them was also injected in prefrontal area 9. This allowed reducing the number of animals as 

much as possible since in studies with primates the repetition of experiments is restricted by 

ethical considerations and administrative rules; the projection from parietal cortex was studied in 

a third animal.  An additional monkey injected in area PEc was prepared for electron microscopy 

(EM) and intracortical axons were measured in parietal cortex. The surgical methods were 

reported in detail in Tomasi et al. (2012). Briefly, deeply anaesthetized animals received three to 

five 0.3-0.5 µl injections of BDA (Invitrogen, Carlsbad, CA) MW 10 000 (10% in 0.01 M 

phosphate buffer) in area 4, 9 and PEc/PE border (area 5). The monkeys were males ranging 

between 6 and 8 years of age and weighing between 6 and 10 kg. 

For EM, one animal was perfused 5 minutes with heparinized buffered saline followed by 

2 Lt of 3% paraformaldehyde (PAF) and 1% glutaraldehyde in 0.9% NaCl in 0.15 M Phosphate 

Buffer (PB). The skull and the dura were opened and the head was stored in 3% PAF in 0.9% 

NaCl in 0.15 M overnight. The following day, the corpus callosum was cut on the midline. 

Parasagittal blocks were cut from each hemisphere, containing the injection site and the labeled 

fibers. 80 µm-thick sections were obtained at the vibratome and reacted for BDA according to 

Wang et al. (2010). Selected sections were osmicated and flat embedded in Araldite, to be 

sectioned for EM. Semithin sections were cut on the ultramicrotome with a glass knife, to outline 

the area of interest; ultrathin sections (from silver to gold) were cut with a diamond knife, 

counterstained with uranyl acetate and lead citrate, and observed with a JEM-1010 transmission 

electron microscope (JEOL, Tokyo, Japan) equipped with a Mega-View-III digital camera and a 

Soft-Imaging-System (SIS, Münster, Germany) for the computerized acquisition of the images, 
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at the magnification of 10k or 20k, for measuring myelinated and unmyelinated fibers, 

respectively. The diameter of BDA labeled axons identified in the gray matter near the injection 

site was measured in four different specimens, using the software ImageJ (NIH, USA) by 

drawing a line along the shortest axis of the axon profile. BDA-labeled axons were identified 

under the EM by the greater electron density of the cytoplasm, except for mitochondria, 

particularly in the vicinity of vesicular and other membranes. 

For light microscopy (LM) sections from brains cryoprotected in 30% (wt/vol) sucrose in 

PBS were cut frozen at 34 µm and reacted for BDA with alternating sections stained for cresyl 

violet and the Gallyas method for myelin as in Tomasi et al. (2012). 

Axons originating in area PEc/PE were sampled and measured as in Tomasi et al. (2012). 

The axons profiles at the upper or lower surface of the sections were approximated to circles 

whose size was incremented in 0.09 µm steps. Axons originating in areas 4 and 9 were sampled 

and measured with the following strategy using the Neurolucida software (MBF Biosciences, 

Williston, VT). Since each monkey had received injections at different locations a preliminary 

sketchy reconstruction of the pathway was performed at 345 x (2 cm=58 µm) magnification to 

separate the different projections. Areas of interest were circumscribed and within these areas 

80-119 axon segments traversing the section were drawn at 3448 x magnification (2 cm=5.8 µm) 

over their entire length i.e. between 5 and 70 µm faithfully following the changes in diameter 

that the axon undergoes in its trajectory. The Neuroexplorer software (MBF Biosciences, 

Williston, VT) calculated the diameter of the axonal segment at the surface of the section as well 

as the average diameter of the axonal segment. The two types of measurements are similar but 

not identical. The average diameter can be affected by apparent thinning of the axon due to 

incomplete visualization in the depth of the section. The diameter of the axon at the surface of 
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the section more closely approximates the measurements performed with the circle and, as the 

latter, is affected by whether the section fell by chance on a thin or on a varicose portion of the 

axon. Eventually the latter measurement at the surface of the section was retained. 

Significance of differences was tested with the Mann Whitney two-tailed U test. 

Lengths of tracts were measured as curvilinear segments with one of the Neuroexplorer 

software options (MBF Biosciences, Williston, VT). 

Correction for shrinkage. Shrinkage in this material consisted of two components. The 

first component is due to the perfusion–fixation and was estimated by comparing the distance 

between the sites of injection at the time of the stereotaxic measurements and on the sections in 4 

animals. This component varied between 1.1 and 1.4 (mean 1.2). The second component is the 

differential shrinkage between the BDA and the cresyl violet or myelin staining. This component 

was negligible. Therefore we applied a 1.3 correction for shrinkage to the results on the 

distribution of axon diameters and conduction velocities of axons originating in area 4 in order to 

test if the shrinkage of the histological material might explain the differences between our 

anatomical results and some electrophysiological data in the literature (Discussion). 

 

Results 

 

Sites of Injection and Axonal Trajectories 

The sites of injection are shown in Fig. 1. The core of the injections was between 500 µm and 2 

mm in diameter, restricted to the gray matter. The location was based on cytoarchitectonic 

criteria and on comparisons with Paxinos et al. (2000) atlas. The axonal trajectories correspond 

to those reported by Schmahamann and Pandya (2009) for similar injection locations 
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(Discussion). They can also be appreciated in Figs 3 and 5 and therefore they will not be 

described in detail. 

 

Electron Microscopic Analysis of Axon Diameters 

The limited resolution of the LM could introduce biases in our assessment of axon diameters. For 

certain tracts, notably the corpus callosum, our estimates could be compared with EM data in the 

literature and this possible source of error could be avoided (discussed in Tomasi et al. 2012). 

Unfortunately, a comparison of our measurements with EM data is not available for all tracts and 

it is not feasible to analyze all the corticofugal tracts of the monkey with combined tract-tracing 

and EM techniques. In this study one monkey was injected with BDA in the PEc subdivision of 

area 5, and the diameter of the labeled local intra-cortical axons was measured in EM 

photomicrographs. The choice was dictated by two considerations. The first is that the local 

intra-cortical axons are likely to be the thinnest since many of them span much shorter distances 

than the other corticofugal axons. The second is that the diameter of local intra-cortical axons 

was found to be surprisingly similar in the five areas (9, 9/46, 6, 6-F4 and 4) where they were 

studied in three different animals (Tomasi et al. 2012). If a comparable spectrum of axon 

diameters were to be found in the new experiment, it could confirm that i) the LM analysis is not 

seriously biased by missing small axons and that ii) the intracortical axons are indeed of similar 

diameter across different cortical areas. Examples of BDA-labeled myelinated and unmyelinated 

axons are shown in Fig. 2. Sixty-six myelinated axons were measured. Their mean diameter was 

0.76 µm (+ 0.29, sd; median 0.71), of which the axoplasm was 0.53 µm (+ 0.24, sd; median 

0.49). The axoplasm/axon ratio was, as expected, almost exactly 0.7. Seventy-five unmyelinated 

axons were measured and their mean diameter was 0.44 µm (+ 0.16, sd; median 0.4; marginally 
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smaller, P<0.05, than the axoplasm of the myelinated-axons). Since BDA appears not to diffuse 

into the myelin sheath, the comparison between EM and LM data was restricted to the axoplasm. 

The EM values we found for the axoplasm of BDA labeled axons falls within the range of 

intracortical axon diameters previously measured with LM (0.48-0.66 µm; Tomasi et al. 2012) 

and it is nearly identical to the axon diameters found in the same study (0.48-0.51 µm) in areas 9, 

9/46, 6 and 6-F4 while those from area 4 were slightly thicker (0.54, 0.66 µm). 

 

Cortico-cortical Projections from Area PEc 

The cortico-cortical axons originating in area PEc (Fig. 3) course in the superior longitudinal 

fasciculus (SLF; subdivision SLF I of Schamahmann and Pandya, 2009). They terminated at 

three separate locations in areas 4, 24 and 6. In area 4, the axons ended in its caudal part, in three 

columns with the densest terminals in superficial layers, particularly in layer I.  The projection is 

reciprocal since, in spite of the fact that the BDA used is transported overwhelmingly 

anterogradely, a few retrograde labeled neurons were seen in layer 3.  In area 6, the axons ended 

on the convexity of the superior frontal gyrus in the dorso-caudal division of premotor cortex, 

cytoarchitectonically corresponding to area F2 of Belmalih et al. (2007).   At the same 

rostrocaudal levels axons also terminated at the fundus and on the dorsal bank of the cingulate 

sulcus. This site of termination is cytoarchitectonically different from the more dorsal area 6m of 

Paxinos et al. (2000) (F3, according to Belmalih et al. 2007). The difference is the disappearance 

of large pyramids in layer 5, replaced by a band of medium size pyramids in layers 3 and 5 

which therefore cannot be differentiated, also due to the absence of layer 4.  This area of 

termination is characterized by a superficial band of tangentially coursing, myelinated axons 

which acquire a deeper location and lose their identity in the more dorsal cortex.  The 
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termination corresponds to a subdivision of area 24 in the proximity to the fundus of the sulcus 

but it extends more dorsally than what could be expected from the published boundaries of this 

area and might reach area 6/32 according to Paxinos et al. (2000). At roughly corresponding 

locations Picard and Strick (1996) described cingulate motor areas, notably CMAd. It will be 

referred to as area 24 in the rest of this paper. 

Axons were measured in the SLF I before they distribute to their sites of termination and 

then at their entrance into the gray matter (Table 1 and Figs 3 and 4).  Axons in the SLF were 

1.03 µm on average (median 0.8). Those to areas 4 and 6 had similar diameters (means 0.95 and 

0.96 µm; medians 0.8 and 0.87, respectively) while those to area 24 were thinner (mean 0.77 µm, 

median 0.73). Mann Whitney U test reported highly significant differences (P<0.001) between 

the axons to area 6 and those to area 24, marginally not significant differences (P=<0.05) for the 

other comparisons. 

The axons labeled by the BDA injection in area PEc were a subpopulation of the myelin-

stained SLF axons. Profiles of cross-sectioned myelinated axons were sampled in SLF (10921; 

preliminary work for another study). Their average near-neighbor distance of myelinated axons 

in SLF was only 6.3 µm but 33 µm for the BDA labeled axons suggesting that only one in five 

axons was BDA labeled. Myelinated axons (10921 axons were measured as preliminary work for 

another study) were also significantly thicker (1.3 µm on average) than the BDA labeled axons. 

This is not surprising since at the locations measured SLF I contain also axons originating in area 

4 and elsewhere (see Schmahamann and Pandya, 2009). 

 

Descending Projections from Areas 4 and 9 
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Axons were sampled at four locations:  i) at their entrance into the dorsal aspect of the caudate, 

ii) in the proximal part of the internal capsule, dorsal to the entrance into the thalamus, iii) at 

entrance into the thalamus, in proximity to their principal thalamic nuclei, i.e. VL and MD, 

where a few retrogradely labeled neurons were also seen, and iv) in the distal part of the internal 

capsule. This location corresponded to the entrance into the cerebral peduncle for the axons from 

area 4; the axons from area 9 were sampled more dorsally just ventral to the thalamus while 

coursing towards the zona incerta, since the axons reaching the cerebral peduncle were few and 

difficult to separate from those labeled by the more caudal injection in area 4. In addition, in one 

experiment, the main tract streaming from the injection site was sampled, i.e. the axons dorsal to 

the separation of axons directed to the corpus callosum, to the internal capsule and to the caudate 

(Fig. 5). 

To test the consistency of measurements across studies we re-sampled axons to the 

proximal internal capsule and the results (Table 2 and Fig. 6) well correspond to those of earlier 

measurements (Tomasi et al. 2012). The mean value of axon diameters from area 4 to the 

proximal internal capsule is 0.74 and 0.91 µm (medians 0.6 and 0.7 µm) in the two experiments 

compared to the 0.68 and 1.01 µm (medians 0.59 and 0.89 µm) of the previous estimates in the 

same animals (Tomasi et al. 2012). For area 9 we found an average diameter of 0.59 µm (median 

0.50) vs. 0.51 (mean; 0.46 median) of the previous estimates. Although the results are consistent, 

in spite of the different methodologies and sampling strategies used, in the two studies, tThe 

small differences might suggest the existence of local heterogeneities in the axonal composition 

of the various projections, which further studies might document. 

The axons originating from motor cortex area 4 and directed to the thalamic nucleus VL 

are significantly thicker than those originating from prefrontal cortex area 9 and directed to the 
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nucleus MD (0.63 and 0.69, in two experiments vs. 0.44 µm; P<0.001). The difference in favor 

of area 4 is even larger for axons directed to the distal internal capsule (1.4 and 1.37 vs. 0.54 µm; 

P<0.001). Differences in the projection from areas 4 and 9 to the caudate (0.4 and 0.49 vs. 0.36 

µm) and to the proximal internal capsule (0.74 and 0.91 vs. 0.59 µm) were just below the 

significance level (P<0.05) in one experiment, but were significant in the other. 

In conclusion, motor cortex area 4 sends the thickest axons towards the cerebral peduncle 

(distal internal capsule) (1.4 and 1.37 µm in the two experiments), thinnest axons to the caudate 

nucleus (0.4 and 0.49 µm) while the thalamic nucleus VL receives axons between those two 

(0.63 and 0.69 µm). These differences are statistically significant at the 0.05-0.001 level. 

The distribution of different diameter axons to different targets could be implemented in 

two different ways i.e., collateralization of the axons or parallel axonal systems. Figure 7 

illustrates what the two hypotheses predict. Collateralization predicts that the axons within a tract 

would become thinner in the proximal to distal direction while the parallel projection hypothesis 

allows for thicker axons distally (Fig. 7).  The results of the present measurements are clearly in 

favor of the second possibility. Indeed, This is further illustrated in Fig. 8 which shows that the 

projection from area 4 (Fig. 8) contains progressively thicker axons in the proximal to distal 

direction, while the contingent of thin axon progressively decreases, consistent with the 

hypothesis that these axons have terminated at their proximal targets, caudate and thalamus, in 

particular. 

 

Consequences for Conduction Velocities and Delays 

From the estimated diameters we calculated the conduction velocities and from the length of the 

pathways the approximate delay to the target (Table 3 and Fig. 9). Velocity (V) was computed as 
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previously publications (Tettoni et al. 1998; Caminiti et al. 2009; Tomasi et al. 2012) as 

V=(5.5/0.7)*diameter. As confirmed above the factor 0.7 is the average axoplasm-to-myelin 

ratio and it corrects for the fact that BDA visualizes only the axoplasm, without percolating into 

the myelin sheath. 

The median axon diameter from area PEc to area 4 being 0.8 µm in diameter, it is 

expected to conduct at approximately 6.3 m/s. The distance (D) from the injection to the site 

where the diameters  were sampled was measured as a single curvilinear segment with one of the 

Neuroexplorer software options (MBF Biosciences, Williston, VT) and was found to be of 

approximately 12 mm. The delay to target (T= D/V) can be expected to should be in the order of 

1.9 ms. The projection to area 24, being 0.73 µm in diameter it is expected to conduct at 5.7 m/s 

and the over a distance to the sites of axonal measurements being approximately of 20.2 mm 

generating the delays to target is expected to be in the order of 3.5 ms. The median axon to area 6 

being 0.87 µm in diameter its conduction velocity 6.8 m/s and the path to target  approximately 

23 mm the delay to target can be expected to be 3.3 ms.  Therefore it appears that the 

information from area PEc should reach area 4 in advance of area 24 or 6. 

The conduction velocity from area 4 to VL was 3.9 and 5.5 m/s in CCT 2 and CCT 5, 

respectively generating delays of 5 and 3.7 ms over conduction distances of 19.6 and 20.3 mm. 

In contrast the conduction velocity from area 9 to MD was 3.1 m/s, generating delays of 8.3 ms. 

These findings confirm the previous estimates that delays to their principal thalamic nuclei is 

greater for prefrontal than motor projections (Tomasi et al. 2012). The estimated conduction 

velocities to the caudate turned out to be the similar in all experiments (3.1 m/s). The estimated 

conduction delays ranged between 3.4 and 4.3 ms. 
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Finally considerable differences in the conduction velocities of axons to the distal internal 

capsule were found between axons originating in area 4 (7.9 and 9.5 m/s in the two experiments) 

vs. those originating in area 9 (3.5 m/s).  It should be stressed that the conduction delays are 

rough estimates since axons de-fasciculate near their targets; and therefore more precise 

estimates amenable to rigorous statistical evaluations would require the serial reconstruction of 

individual axons to their sites of termination, which was impossible on the present material. 

 

Discussion 

 

Goals and Methodological Considerations 

In this study as in previous ones (Caminiti et al. 2009; Tomasi et al. 2012) we have chosen to 

undertake a light microscopic analysis of axonal projections originating in the cerebral cortex of 

the macaque monkey with focus on axon diameters and length of the projections. This work has 

three long-term goals. One is to explore cortical connectivity at the cellular resolution, when this 

is missing in the current database of brain structure. The second is to allow predictions on the 

conduction velocity and timing of interaction between the different structures connected to the 

cerebral cortex, which is relevant for the speed of information processing in the brain and for 

cortical dynamics (Roxin et al. 2005; Roberts and Robinson, 2008; Caminiti et al. 2009; Panzeri 

et al. 2010). The third is to allow translation from the structure of the monkey brain to that of the 

human and/or of other primates in view of applications to human misconnectivity syndromes and 

to the evolution of the primate brain (Caminiti et al. 2009; Caminiti et al. 2010). Comparisons of 

cellular monkey data to the human are timely since non-invasive imaging techniques are 
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approaching the level of resolution required to analyze the axonal diameters in fiber tracts (e.g. 

Barazany et al. 2009; Dyrby et al. 2012). 

 The LM analysis is bound to miss axons with diameters below the level of optical 

resolution i.e., 0.2-0.3 µm but it appears to be the only approach possible, in view of the 

difficulty of performing systematic EM analyses of labeled axons in primates, particularly in 

humans, and in protected primate species. The error intrinsic to the LM analysis of the monkey 

material can be estimated by comparison with EM data in the literature when they exist (e.g. the 

corpus callosum; discussed in Tomasi et al. 2012). For reasons explained above (Results) we 

have chosen to EM-examine the diameter of intracortical axons in the parietal cortex. Our EM 

measurements were in the order of the previous LM estimates of intracortical axon diameters 

suggesting, as previously proposed (Tomasi et al. 2011), that “the structure of the cortical 

modules “columns” or “cortical output units” is invariant across areas because they perform 

similar computations” while the computations performed by long projections, and hence their 

structure, varies across areas. 

 

Comparison with Previous Studies 

The cortico-cortical projections from area PEc resemble those documented in case 3 of 

Schmahamann and Pandya (2009). They described projections to area 4 and 6 as well as a 

projection to the bottom of the cingulate sulcus in their sections 81-89. Unfortunately our 

material did not extend further and therefore we could not analyze the more rostral sites of 

termination. As mentioned (Results) our site of termination near the bottom of the cingulate 

sulcus has distinct cytoarchitectonic features from the more dorsal part of area 6, which are most 
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evident in layers 3 and 5, particularly in the pattern of myelination and it appears to correspond 

to a subdivision of area 24. 

Our injection sites in area 4 resemble the more lateral injection of case 1 of Kultas-

Ilinsky et al. (2003) and case 27 of Schmahamann and Pandya (2009) but are somewhat smaller 

and more medial than the latter. The trajectory and location of the descending projection is 

similar to that documented in the second study. In Kultas-Ilinsky et al. study (2003) the 

projection was studied within the thalamic nuclei themselves and in ours at the entrance into the 

thalamus, to measure axonal trunks rather than collaterals. The two studies agree that the 

projection to the VL overwhelmingly consists of “small” axons, which in their case, distributed 

small terminal boutons in the order of 0.21-0.6 µm
2
 occasionally larger. In addition they found 

large axons projecting to other thalamic nuclei. These axons might have contributed to our 

previous sample of the projection to the VL (Tomasi et al. 2012) which consisted of slightly 

thicker axons. It should be mentioned that Differences in the diameter of axons directed to 

different thalamic nuclei might be a general feature of cortical projections, across systems and 

species (e.g. Rockland 1994; Rouiller and Welker 2000; Cappe et al. 2007). The two types of 

axons might originate from different layers, with thick axons mainly from layer 5 and thin ones 

from layer 6 as discussed by Kultas-Ilinsky et al. (2003). The projection from area 4 included 

large axons directed to the cerebral peduncle. 

Our conclusion that the projection from area 4 to the thalamus, to the caudate, and to the 

cerebral peduncle consists mainly or exclusively of different axonal systems seems consistent 

with the data in the literature which instead reports higher degree of collateralization for 

descending projections in the brain stem (Lemon 2008). The projection to the thalamus 

originates mainly from layer 6, while that to the cerebral peduncle and to the striatum is mainly 
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from layer 5, presumably, in primates, from different neuronal populations. This conclusion is 

tentative since our work cannot exclude the possibility that, as in the rat, a small population of 

small or medium size axons may send collaterals to multiple targets including the striatum, 

thalamus and to the subthalamic nucleus (Kita and Kita, 2012). 

Our injection in area 9 is more medially located than that of case 31 of Schmahamann 

and Pandya (2009) but the axonal trajectories are similar, i.e., to the dorsal aspect of the caudate, 

to the thalamic nucleus MD , and to the zona incerta where we sampled and measured axons. 

The finding that axons from area 4 projecting to the cerebral peduncle conduct much 

faster than those to the caudate is compatible with the electrophysiological evidence that axons to 

the pyramidal tract are faster than those to another compartment of the basal ganglia, the 

putamen (Bauswein et al. 1989). However the distribution of axons diameters in the cerebral 

peduncle (Fig. 8) did not provide the clear bimodal distribution of fast and slow axons, expected 

from the classical electrophysiological work on the pyramidal tract. Furthermore only 23 of 185 

axons measured in two experiments had diameters equal or greater than those compatible with 

velocities of 25 m/s, which is the cut off proposed by Humphrey and Corrie (1978) between the 

two populations. This is far from the 45% found by the same authors electrophysiologically with 

antidromic activation. Also, only one of our axons might have conducted faster than 35 m/s. 

Humphrey and Corrie (1978) attributed the discordance between their electrophysiological 

findings and the anatomical data available at the time to a strong electrophysiological sampling 

bias in favor of large cell bodies. The correction they proposed does indeed provide a better 

match between their electrophysiological data and our estimates of conduction velocities 

computed from diameters (Suppl Fig. 1) although our sample still misses axons which could 

conduct at above 35 m/s. Perhaps thicker axons originate from It is possible that we would have 
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found larger axons had a portions of area 4 corresponding to the distal extremity representation 

been injectedthan in the proximal limb/trunk area we injected. Alternatively, the axons we 

measured might have shrunken, due to the fixation and histological processing. The correction 

for shrinkage we applied (Methods) returned slightly higher conduction velocities (Suppl Fig.2), 

but the results are still far from the electrophysiological data. The electrophysiological bias 

remains the most likely explanation of the discrepancy of data although in a previous paper 

(Tomasi et al. 2012) we found that conduction velocities and latencies predicted from the 

anatomical data (uncorrected for shrinkage) of interhemispheric connections of peristriate areas 

perfectly matched those found in an electrophysiological study of antidromic responses. 

 

Consequences and determinants of axon diameters 

Confirming and extending previous results (Caminiti et al. 2009; Tomasi et al. 2012) we found 

that axons of different caliber originate from different areas. The comparison of projections 

issued from area 4 and 9, chosen because they represent the extremes in the spectrum of 

outgoing-axon diameters, showed thinner axons from area 9 to the thalamus and internal capsule, 

in addition to the corpus callosum (Caminiti et al. 2009; Tomasi et al. 2012). Interestingly this 

appears not to apply to the projections to the caudate which receives similarly thin axons from 

the two areas nor to the intra-areal axons. 

It remained to be clarified if an area also sends different diameter axons to different 

targets. The finding that parietal cortex projects thinner cortico-cortical axons to area 24 than to 

area 4 and 6 and the analysis of comparable projections in the two animals injected in the motor 

cortex area 4 indicate unequivocally that they do. Moreover it appears that axons with different 
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diameter originate from different neuronal populations and proceed in parallel to the different 

targets. 

 The relations between origin and termination of cortical axons and their diameters 

highlight what appear to be new aspects of cortical organization. Together they suggest that the 

overall picture which should arise from systematic studies of this kind is one of an extraordinary 

complexity of axonal pathways operating at different conduction speed and generating different 

conduction delays between brain sites. The complexity is exaggerated by the finding that each 

projection consists of axons with different diameter, which therefore cause a spectrum of 

activation delays at their targets. In the evolution of primates the diameter of axons increases less 

than the distance between sites caused by brain enlargement and the spectrum of delays 

increased as well with probable consequences for brain dynamics (Caminiti et al. 2009). An 

additional question is whether feed-forward and feed-back projections between two areas use 

similar spectra of axon diameters and conduction velocities as this appears to be the case for the 

V1-V2 projections in the monkey (Girard et al., 2001). 

Which could be the consequences of the different conduction properties of cortical 

axons? One might be the existence of a hierarchical organization of cortical areas in terms of 

processing speed, the primacy going to the premotor, motor and somatosensory systems (Tomasi 

et al. 2012). Unfortunately, at least three crucial pieces of information are missing. One is that 

the axon diameters are roughly proportional to size of the parent somata (Tomasi et al. 2012), 

which might have different activation threshold and this could compensate for the delays 

generated by the axons. The second is that different diameter axons might contact different types 

of neurons. For example, it was suggested that inhibitory influences between the hemispheres 

might be carried by faster axons (Makarov et al. 2008) although the slower interhemispheric 
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input may be overwhelmingly excitatory (Makarov et al. 2008; Wunderle et al. 2012). The third 

unknown concerns the conduction and synaptic properties of the intracortical, terminal portion of 

the axons and the dynamics of the neuronal compartments they impinge. This includes the 

neuronal integration time, discussed by Budd and Kisvarday (2012). 

A different set of questions, which will be only briefly mentioned here, relates to the 

mechanisms which control axon diameter. In development, large axon diameters progressively 

differentiate from an initially uniform or almost uniform distribution of small axons (Berbel et al. 

1988; LaMantia and Rakic 1990).  What causes this differentiation? Area-of-origin axonal 

signatures appear to be a new aspect of cortical regionalization and an additional, possibly 

genetically determined feature of cortical areas. The search for area specific genes has proven to 

be a difficult task, particularly in primates (Yamamori et. al. 2006; Molnar and Clowry 2012) 

although promising perspectives emerge from complex layer- and area-specific gene clustering 

analyses (Bernard et al. 2012) and from the study of the differences in the transcriptional activity 

of certain genes (Konopka et al. 2012). Axonal differences related to the site of termination are 

probably the expression of the genotypic identity of cortical projection neurons (e.g. Leone et al. 

2008; Molyneaux et al. 2007; Shim et al. 2012), but also of possible retrograde signals from the 

target.  Beyond the likely genetic predisposition neural activity certainly plays a role as shown by 

the catastrophic consequences of interfering with activity on the development of callosal 

projections (reviewed in Innocenti 2007; see also Wang et al. 2007). 

The cellular mechanisms of axonal radial growth are incompletely known. Cytoskeletal 

components the neurofilaments, in particular their heavy subunit, but also the intermediate 

molecular weight subunit are involved in axonal maturation (Figlewicz et al. 1988) and radial 

growth (Rao et al. 2003; Perrot et al. 2007 and references therein). It was long believed that all 
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the axonal proteins are synthetized in the cell body but now unequivocal evidence of axonal 

translation has accumulated (Keonig et al. 1967; Giuditta et al. 1968; reviewed in Jung et al. 

2012) although thus far evidence that the cytoskeletal proteins are also axonally synthetized is 

lacking. A key element in the regulation of axonal caliber is the oligodendrocyte as shown by the 

finding that axons fail to grow at sites where oligodendrocytes have been deleted by irradiation 

(Colello et al. 1994). Some of the molecular mechanisms of the oligodendrocytic action on the 

axon have been discovered recently (Lee et al. 2012). Oligodendrocyte proliferation is in turn 

regulated by a host of factors, including the already mentioned neurofilament proteins proteins 

(Fressinaud et al. 2012). Obviously the reciprocal interactions between axons, axonal 

cytoskeleton, olygodendrocytes and neural activity remain elusive. 

 It would be important to know how the many complex cellular and molecular events 

which determine axon diameters and the conduction delays are coordinated and regulated over 

the whole brain, in development and possibly in adulthood.  The counterpart of this question is 

what the consequences of deregulation might be, a possible cause for misconnectivity 

syndromes, including schizophrenia (Innocenti et al. 2003) resulting in psychiatric and/or 

neurological symptoms. 
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TABLES 

 

 SLF to area 4 to area 24 to area 6 

Mean 1.03 0.95 0.77 0.96 

Median 0.80 0.80 0.73 0.87 

Mode 0.51 0.44 0.66 0.58 

St Deviation 0.75 0.57 0.21 0.36 

Sample Variance 0.56 0.33 0.05 0.13 

Kurtosis 4.87 5.86 2.10 2.03 

Skewness 2.09 2.04 1.40 1.21 

Range 4.16 3.50 1.16 1.97 

Minimum 0.29 0.29 0.44 0.44 

Maximum 4.45 3.79 1.60 2.41 

Count 273 207 203 164 

 

Table 1 Axons from area PEc projecting to other cortical areas. 
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Motor Area 4 (µm) 

CCT 2   

to 

caudatus 

to ic 

prox 

to 

thalamus to ic dist 

Mean 0.40 0.74 0.63 1.40 

Median 0.40 0.60 0.50 1.20 

Mode 0.40 0.40 0.40 1.60 

St Deviation 0.19 0.54 0.33 0.85 

Sample Variance 0.04 0.29 0.11 0.73 

Kurtosis 15.55 6.75 2.43 0.70 

Skewness 3.51 2.23 1.38 0.99 

Range 1.20 3.20 1.80 3.50 

Minimum 0.20 0.20 0.20 0.30 

Maximum 1.40 3.40 2.00 3.80 

Count   80 87 80 84 

 

CCT 5 

main 

tract 

to 

caudatus 

to ic 

prox 

to 

thalamus to ic dist 

Mean 0.79 0.49 0.91 0.69 1.37 

Median 0.50 0.40 0.70 0.70 1.00 

Mode 0.30 0.40 0.40 0.40 1.20 

St Deviation 0.67 0.25 0.66 0.32 1.10 

Sample Variance 0.45 0.06 0.44 0.10 1.21 

Kurtosis 4.18 5.67 15.90 0.87 5.86 

Skewness 1.81 2.07 3.06 1.01 2.11 

Range 3.70 1.50 5.00 1.50 6.60 

Minimum 0.20 0.20 0.20 0.30 0.20 

Maximum 3.90 1.70 5.20 1.80 6.80 

Count 105 119 108 104 101 

 

Prefrontal Area 9 µm 

CCT 2   

to 

caudatus 

to ic 

prox 

to 

thalamus to ic dist 

Mean 0.36 0.59 0.44 0.54 

Median 0.40 0.50 0.40 0.45 

Mode 0.40 0.40 0.40 0.40 

StDeviation 0.11 0.25 0.13 0.27 

Sample Variance 0.01 0.06 0.02 0.07 

Kurtosis 2.22 1.21 5.16 3.50 

Skewness 0.62 1.14 1.95 1.64 

Range 0.60 1.20 0.80 1.40 

Minimum 0.10 0.30 0.20 0.20 

Maximum 0.70 1.50 1.00 1.60 

Count   80.00 103.00 100.00 100.00 
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Table 2 Size of axons originating from different injection sites and projecting to n. caudatus, 

internal capsule and to the thalamus. 
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Cortico-cortical axons     

 

diameter 

median µm 

velocity 

m/s 

path 

µm 

delay 

µs 

PEc to a 4 0.8 6.29 12041 1916 

PEc to a 24 0.73 5.74 20201 3522 

PEc to a 6 0.87 6.84 23001 3365 

     

Descending axons     

 

diameter 

median µm 

velocity 

m/s 

path 

µm 

delay 

µs 

CCT2 area 9 to MD 0.4 3.14 25934 8252 

CCT2 area 4 to VL 0.5 3.93 19615 4993 

CCT5 area 4 to VL 0.7 5.50 20306 3692 

CCT2 area 9 to caudate 0.4 3.14 10586 3368 

CCT2 area 4 to caudate 0.4 3.14 13475 4288 

CCT5 area 4 to caudate 0.4 3.14 12293 3911 

CCT2 area  9 to distal 

ic 0.45 3.54   

CCT2 area 4 to distal ic 1.2 9.43   

CCT5 area 4 to distal ic 1 7.86   

 

Table 3 Conduction velocities path lengths and delays 
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CAPTIONS TO FIGURES 

 

Figure 1.  Location and extent of BDA injection sites. Top: area PEc injection in experiment 

CCT1; middle: area 9 injection in CCT2; bottom: area 4 injection in CCT5.  Each injection site is 

shown in outlines of the section and in photomicrographs of BDA-reacted material. Vertical 

segments mark the boundaries of area PEc close to the border with PE (top panel), 9L and 46 

(and the 9/46 transition between the two, not labeled; middle panel) and area 4 (bottom panel); 

the outlines of the injection site are also projected on the CV stained section were the large 

pyramids of layer 5 can be appreciated and the injection track is marked by an arrow. Calibration 

bars are 1 mm in the section outlines and 500 µm in the photomicrographs. 

 

Figure 2. Photomicrographs of three myelinated (A, B, D) and one unmyelinated (C), BDA 

labeled axons. Calibration bars are 0.5 µm. 

 

Figure 3. Location of axon measurement sites (white polygons) in the SLF (bottom panel), and 

at the entrance of axons in area 4 (top left), areas 24 and 6 (top right) along the sketched axonal 

pathways in superposed outlines of sequential, non-consecutive, sections. Calibration bars are 

2000 µm. 

 

Figure 4. Bar diagram of axon diameters at different locations long the parieto-frontal 

projection. S35 denotes the section where measurements were performed. 
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Figure 5. Location of axon measurement sites (white polygons) at different locations in the 

projection from area 4, along the sketched axonal pathways in superposed outlines of sequential, 

non-consecutive, sections (experiment CCT2). Insets show axonal labeling and selection of 

axonal segments at the entrance into caudate and traced axons in proximal internal capsule in 

experiment CCT5. 

 

Figure 6. Bar diagram of mean axon diameters (and standard deviations) at different locations in 

the projections from areas 4 and 9. 

 

Figure 7. The collateralization and parallel pathway hypotheses and their predictions. 

 

Figure 8. Axon diameter distributions show a progressive proximo-distal shift towards thicker 

axons and disappearance of thinner axons compatible the parallel pathway hypothesis (Fig. 7). 

 

Figure 9. Schematic representation of diameters and estimated conduction delays for the 

connections studied, in this paper and in Tomasi et al. (2012). Thickness of arrow segments is 

proportional to median diameter; projections from area 4 are the means of two animals. Delays 

are calculated on conduction velocities and pathway lengths (Table 3).  Delays computed in the 

same animal are shown in different colors i.e. CCT1: black, CCT2: red, CCT5: blue. Filled boxes 

are areas studied in the present paper. Open boxes are from Tomasi et al (2012); ptem and mtem 

refer to posterior and middle temporal areas. 
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Figure 1.  Location and extent of BDA injection sites. Top: area PEc injection in experiment CCT1; middle: 
area 9 injection in CCT2; bottom: area 4 injection in CCT5.  Each injection site is shown in outlines of the 
section and in photomicrographs of BDA-reacted material. Vertical segments mark the boundaries of area 

PEc close to the border with PE (top panel), 9L and 46 (and the 9/46 transition between the two, not 
labeled; middle panel) and area 4 (bottom panel); the outlines of the injection site are also projected on the 
CV stained section were the large pyramids of layer 5 can be appreciated and the injection track is marked 

by an arrow. Calibration bars are 1 mm in the section outlines and 500 µm in the photomicrographs.  
87x125mm (300 x 300 DPI)  
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Figure 2. Photomicrographs of three myelinated (A, B, D) and one unmyelinated (C), BDA labeled axons. 
Calibration bars are 0.5 µm.  
80x70mm (300 x 300 DPI)  
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Figure 3. Location of axon measurement sites (white polygons) in the SLF (bottom panel), and at the 
entrance of axons in area 4 (top left), areas 24 and 6 (top right) along the sketched axonal pathways in 

superposed outlines of sequential, non-consecutive, sections. Calibration bars are 2000 µm.  

180x134mm (300 x 300 DPI)  
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Figure 4. Bar diagram of axon diameters at different locations long the parieto-frontal projection. S35 
denotes the section where measurements were performed.  

66x54mm (600 x 600 DPI)  
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Figure 5. Location of axon measurement sites (white polygons) at different locations in the projection from 
area 4, along the sketched axonal pathways in superposed outlines of sequential, non-consecutive, sections 

(experiment CCT2). Insets show axonal labeling and selection of axonal segments at the entrance into 

caudate and traced axons in proximal internal capsule in experiment CCT5.  
179x132mm (300 x 300 DPI)  
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Figure 6. Bar diagram of mean axon diameters (and standard deviations) at different locations in the 
projections from areas 4 and 9.  
97x59mm (600 x 600 DPI)  
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Figure 7. The collateralization and parallel pathway hypotheses and their predictions.  
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Figure 8. Axon diameter distributions show a progressive proximo-distal shift towards thicker axons and 
disappearance of thinner axons compatible the parallel pathway hypothesis (Fig. 7).  
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Figure 9. Schematic representation of diameters and estimated conduction delays for the connections 
studied, in this paper and in Tomasi et al. (2012). Thickness of arrow segments is proportional to median 
diameter; projections from area 4 are the means of two animals. Delays are calculated on conduction 

velocities and pathway lengths (Table 3).  Delays computed in the same animal are shown in different colors 
i.e. CCT1: black, CCT2: red, CCT5: blue. Filled boxes are areas studied in the present paper. Open boxes are 

from Tomasi et al (2012); ptem and mtem refer to posterior and middle temporal areas.  
254x190mm (300 x 300 DPI)  

 

 

Page 40 of 42Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Supplementary Figure 1. Superposition of the spectrum of conduction velocities computed from axon 

diameters in this study (red histogram) on conduction velocity measurements of Humphrey and Corrie 

(1978). 
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Supplementary Figure 2. Table and histograms of distribution of conduction velocities computed from 

axonal diameters before and after correction for shrinkage (see text). 
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