Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis

This is the author's manuscript

Original Citation:
Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis / Martin Adam; Tamara Schikowski; Anne Elie Carsin; Yutong Cai; Benedicte Jacquemin; Margaux Sanchez; Andrea Vierkötter; Alessandro Marcon; Dirk Keidel; Dorothee Sugiri; Zaina Al Kanani; Rachel Nadif; Valérie Siroux; Rebecca Hardy; Diana Kuh; Thierry Rochat; Pierre-Olivier Bridevaux; Marloes Eeftens; Ming-Yi Tsai; Simona Villani; Harish Chandra Phuleria; Matthias Birk; Josef Cyrys; Marta Cirach; Audrey de Nazelle; Mark J Nieuwenhuijsen; Bertil Forsberg; Kees de Hoogh;

Availability:
This version is available http://hdl.handle.net/2318/151734 since

Published version:
DOI:10.1183/09031936.00130014

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Long-term exposure to air pollution and lung function in adults: multicentre cohort study and meta-analysis, the ESCAPE project

Martin Adam1,2*, Tamara Schikowski1,2,3*, Anne Elie Carsin4*, Yutong Cai5, Benedicte Jacquemin6,7, Margaux Sanchez6,7, Andrea Vierkötter1, Alessandro Marcon8, Dirk Keidel1,2, Dorothee Sugiri3, Zaina Al Kanani5, Rachel Nadi6,7, Valérie Siroux9,10, Rebecca Hardy11, Diana Kuh11, Thierry Rochat12, Pierre-Olivier Bridevaux12, Marloes Eeftens1,2,13, Ming-Yi Tsai1,2, Simona Villani14, Harish Chandra Phuleria1,2, Matthias Birk15, Josef Cyrys15,16, Marta Cirach4, Audrey de Nazelle17, Mark J Nieuwenhuisen5, Bertil Forsberg18, Kees de Hoogh9, Christophe Declerq19, Roberto Bono20, Pavilio Piccioni21, Ulrich Quass22, Joachim Heinrich15, Deborah Jarvis5,23, Isabelle Pin5,10,24, Rob Beelen13, Gerard Hoek13, Bert Brunekreef13,25, Christian Schindler1,2, Jordi Sunyer4, Ursula Krämer8, Francine Kauffmann6, Anna L Hansell5,6, Nino Künzli1,2, Nicole Probst-Hensch1,2,*. contributed equally; # Steering Committee of ESCAPE Work Package 4 on Respiratory Health in Adults.

Corresponding Author:
Prof. Dr. Nicole Probst-Hensch
Head Unit Chronic Disease Epidemiology
Swiss Tropical and Public Health Institute
Socinstrasse 57, P.O. Box, 4002 Basel, Switzerland
PHONE: 0041-61-284 83 78
FAX: 0041-61-284 81 05
EMAIL: Nicole.Probst@unibas.ch

1 Swiss Tropical and Public Health Institute, 4002 Basel
2 University of Basel, Switzerland;
3 Leibniz Research Institute for Environmental Medicine (IUF), 40225 Düsseldorf, Germany
4 Centre for Research in Environmental Epidemiology (CREAL), 08003 Barcelona, Spain
5 MRC-PHE Centre for Environment and Health, Dept of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG London, UK
6 Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, Respiratory and Environmental Epidemiology Team, 94807, Villejuif, France
7 Univ Paris-Sud, UMRS 1018, 94807, Villejuif, France.
8 Unit of Epidemiology and Medical Statistics, Department of Public Health and Community Medicine, University of Verona, 37134 Verona, Italy
9 Inserm U823, Environmental Epidemiology Applied to Reproduction and Respiratory Health team, 38042 Grenoble, France;
10 Univ Joseph Fourier, 38041 Grenoble, France
11 MRC University Unit for Lifelong Health & Ageing at University College London WC1E 6BT, UK
12 Division of Pulmonary Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland
13 Institute for Risk Assessment Sciences, Utrecht University, 3508 TD Utrecht, The Netherlands
14 Unit of Biostatistics and Clinical Epidemiology Department of Public Health, Experimental and Forensic Medicine University of Pavia, 27100 Pavia, Italy.
15 Helmholtz Zentrum, München & German Research Centre for Environmental Health, Institute of Epidemiology I, 85764 Neuherberg, Germany
16 Environmental Science Center, University Augsburg, 86150 Augsburg, Germany
17 Centre for Environmental Policy, Imperial College London, London SW7 1NA, UK
18 Environmental and Occupational Medicine, Department of Public Health and Clinical Medicine, Umeå University, SE-901 85 Umeå, Sweden
19 French Institute for Public Health Surveillance, 94415 Saint-Maurice, France.
20 Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
21 SC Pneumologia CPA ASL 4 Turin, 10154 Turin, Italy
22 Air Quality and Sustainable Nanotechnology, IUTA Institut für Energie- und Umwelttechnik e.V., 47229 Duisburg, Germany
23 Department of Respiratory Epidemiology and Public Health, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
24 Pédiatrie, CHU de Grenoble, 38700 La Tronche, France.
25 Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
26 Public Health and Primary Care Directorate, Imperial College Healthcare NHS Trust, London SW7 2AZ, UK
Abstract

Objectives To investigate the association of long-term exposure to ambient air pollution with lung function level and change in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE).

Design Multicentre cohort study and meta-analysis of the results.

Setting Centres from five cohorts in Belgium, France, Germany, Italy, Spain, Sweden, Switzerland and the United Kingdom

Participants 7613 participants undergoing spirometry twice within a decade were enrolled.

Main outcome measures Residential exposure to nitrogen oxides (NO2, NOx) and particulate matter (PM) was modeled and traffic indicators were assessed in a standardized manner. The spirometric parameters FEV1 and FVC were considered as outcomes. Cohort-specific analyses were performed by mixed linear regression adjusting for sex, age, height, BMI, education and smoking status. Cohort-specific results were combined using meta-analysis.

Results We did not observe an association of air pollution with the longitudinal change in lung function, but we observed that a 10 µg/m³ increase in NO2 exposure was associated with lower levels of FEV1 (-14.0 mL (95%CI: -25.8, -2.1)) and FVC (-14.9 mL (-28.7, -1.1)). An increase of 10 µg/m³ in PM10, but not other PM metrics (PM2.5, PM coarse, PM absorbance), was associated with a lower level of FEV1 (-44.6mL (-85.4, -3.8)) and FVC (-59.0mL (-112.3, -5.6)). Higher traffic load at home address was also significantly associated with lower levels of FEV1. The associations were particularly strong in obese persons.

Conclusions This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe.
Introduction
Lung function specifically, forced vital capacity [FVC] and forced expiratory volume in one second [FEV1]) are objectively measurable quantitative parameters of respiratory health. It is an early indicator of respiratory and systemic inflammation, and associated with cardiorespiratory morbidity and mortality. Acute effects of air pollution on lung function at levels currently observed in Western Europe at all ages are well established. To what extent long-term exposure to air pollution results in lower lung function remains less clear.

Evidence for long-term pollution effects on slowing down lung function growth in children is strong, while data for chronic lung function effects in adults is more limited and mostly restricted to susceptible populations. In the largest of the predominantly cross-sectional studies, Forbes et al. found increases in 10 μg/m³ of PM10 associated with a decrease of about 3% in FEV1. At 1st spirometry SAPALDIA found an increase of 10 μg/m³ in annual mean concentration of PM10 was associated with 3.4% lower FVC and 1.6% lower FEV1. The SALIA study of women showed negative associations of PM10 concentrations with FEV1 and FVC (5.1% and 3.7% respectively, per 7 μg/m³ 5-year annual mean PM10). The strongest indirect evidence for adverse long-term pollution effects on lung function decline in adults comes from a single follow-up study demonstrating that improvements in PM10 exposure over a period of eleven years attenuated the age-related decrease in respiratory function. A more recent study found cumulative long-term exposure to ambient PM10 and ozone associated with both FEV1 and FVC decline in an elderly population and suggested an increased susceptibility among frail persons. Statistically significant associations were also reported for NO2 and traffic exposure.

The ESCAPE project (European Study of Cohorts for Air Pollution Effects) combined data from over 30 cohort studies and modeled home outdoor levels of air pollution in a standardized manner. This paper makes use of five health cohorts with spirometry data, to investigate the association of air pollution with lung function level and age-related decline.

Methods
Design and Participants
This study is an analysis of cohort data obtained by ESCAPE to investigate the long term effects of exposure to air pollution on respiratory health in Europe and a meta-analysis of the cohort specific results. The present study included 5 European cohorts/studies from eight countries with information on lung function and the most important potential confounders. The analyses were based on subpopulations from European Community Respiratory Health Survey (ECRHS), French Epidemiological study on Genetics and Environment of Asthma (EGEA), the National Survey of Health and Development (NSHD), Study on the influence of Air pollution on Lung function, Inflammation and Aging (SALIA) and Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) (Supplemental Material: Methods (Cohorts) and Supplemental Table 1). Criteria for inclusion of cohort participants in the present analyses were: at least 20 years old; pre-bronchodilation spirometry data from two different time points approximately one decade apart (referred to as first (1st) and second (2nd) spirometry, respectively); non-missing information for the primary covariates used in the main models (questionnaire-based variables: age, sex, smoking status, education; measured variables: height and BMI (derived from measured height and weight); living in cohort areas selected for ESCAPE monitoring.
campaigns; and successfully assigned home outdoor exposure estimates for NO\textsubscript{2}/NO\textsubscript{x}/Traffic indicators (referred to as NO-population) and PM metrics (a subsample of the NO population, referred to as PM-population). Of 13259 participants with 1st and 2nd spirometry living in ESCAPE monitoring areas, 7615 and 4233, respectively provided complete datasets towards analysis of NO\textsubscript{2}/NO\textsubscript{x}/Traffic indicators and PM metrics (Supplemental Figures 1a-e).

Exposure data

ESCAPE exposure assessment was described before and is based on fully standardized measurement and modeling protocols (http://www.escapeproject.eu/manuals/)10-13. The general concept consisted in the individual assignment of outdoor annual mean concentrations of a pre-defined set of air pollution markers to each participant’s residential address.

ESCAPE monitoring campaigns in different study areas between 2008-2011 measured NO\textsubscript{2} and NO\textsubscript{x} as well as in a smaller number of areas PM\textsubscript{2.5}, PM\textsubscript{10}, the coarse fraction of PM (PM\textsubscript{10} minus PM\textsubscript{2.5}) and light absorbance of PM\textsubscript{2.5}. Within each study area, concentration levels were monitored at 40 (NO\textsubscript{2}, NO\textsubscript{x}) or 20 (PM measures) predefined sites during three seasonally distinct 2-week periods13,14. Land use regression (LUR) models were developed to explain the spatial variation of measured annual average air pollutant concentration within each study area. This technique combines measurement data with Geographic Information System (GIS) derived land-use and traffic information to predict annual pollution concentration at sites without measurements and was used to estimate annual pollutant concentrations at each participant’s residential address10,11.

In addition to pollutant concentrations, we also used as indicators of local exposure to traffic related pollutants traffic intensity at the road nearest to a participant’s home and total traffic load on major roads in a 100 meter buffer of the home. Traffic measures were often used in other studies as proxies of exposure to near-road pollutants such as e.g. ultrafine particles or NO, which exponentially decay within 100-150 m from the curb side.

To address the time discrepancy between air pollution monitoring (2008-2011) and health examination (spirometry conducted between 1985-2010; Supplemental Table 2), sensitivity analyses replaced ESCAPE exposure estimates with estimates back extrapolated to the time of 1st and 2nd spirometry (except for the time a. of 1st spirometry in ECRHS and EGEA, where no historical data was available and b. 2nd up spirometry in NSHD and SALIA conducted between 2006-2010, sufficiently close to the ESCAPE monitoring campaigns). During the past decades, air quality has in general improved. Given the lack of historic LUR models, ESCAPE could not individually estimate within-city contrasts of air quality for these past years. Instead, where available, annual means from fixed site monitoring stations were used to derive past annual mean concentrations for pollutants with available historic data (NO\textsubscript{2} and PM\textsubscript{10}, only). For each study participant’s home address the back extrapolated concentration was obtained by multiplying the modeled ESCAPE annual mean concentration with the ratio between average annual concentrations as derived from the routine monitoring site(s) for the period in the past and for the ESCAPE measurement period time (for details see in (http://www.escapeproject.eu/manuals/)12. The procedures applied assumed that the
within-city spatial contrasts remained proportional over time. Gulliver et al confirmed the validity of this assumption for the United Kingdom.\(^{15}\)

Lung Function Metrics and Outcomes

FEV\(_1\) and FVC were used as outcome metrics. In cross-sectional analysis, we focused on lung function measured at the 2\(^{nd}\) spirometry (time point closest to ESCAPE air pollution monitoring). Change in lung function between 1\(^{st}\) and 2\(^{nd}\) spirometry was assessed as both annual lung function change (mL/year) and annual change in lung function as a percentage of the 1\(^{st}\) spirometry value (%/year) (Supplemental Material: Methods (Lung Function Metrics and Outcomes)), with a negative value representing a decline. Data presented are restricted to absolute change as results did not materially differ for percent (%) change as outcome.

Statistical analyses

Firstly, study specific data were analyzed separately following identical analytical procedures. Associations of air pollutants with lung function metrics were estimated using multivariable mixed linear regression models with a random intercept for ESCAPE areas with their own exposure monitoring and modeling. Three confounder models were specified a priori, adjusting for an increasing number of covariates selected on the basis of previous cohort studies of air pollution and lung function and the availability of data for most cohorts, excluding missing values on any of the covariates. The covariate definitions were standardized across studies (see Supplemental Material: Methods). In the absence of materially different effect estimates derived from models adjusting for additional covariates, we chose as main analytic model the one adjusting for age (years), age squared, height (cm), sex, body mass index (BMI, kg/m\(^2\)), educational level (low as reference, medium, high), and smoking status (never as reference, ever). Models analyzing traffic exposure indices were additionally adjusting for background NO\(_2\) concentrations. The traffic indicator coefficients are thus assumed to reflect the impact of pollutants highly concentrated along the roads. The median of traffic indicator values across all studies was chosen as cutoff for dichotomizing the continuous traffic exposure (\(\leq\)5000 and >5000 [cars per day] for traffic intensity on the nearest major road; \(\leq\)500 and >500 [cars-km driven per day] for the traffic intensity on major roads in a 100m buffer) (Supplemental Material: Methods (Statistical Models). Traffic variables were also analyzed on a continuous scale but this did not produce meaningful results.

Secondly, cohort specific overall and stratum-specific effect estimates obtained by mixed linear regression models were meta-analyzed (Supplemental Material: Methods (Meta-analysis)).

A pre-defined set of variables considering previous evidence and cohort differences was tested for effect modification. We compared the summary estimates of the two opposite subgroups (females vs. males; not obese vs. obese; never vs. ever smokers; never asthma vs. ever asthma) using a Chi\(^2\)-test with one degree of freedom. In sensitivity analyses we restricted the analytic model to non-movers and participants aged 30+ (age at 1\(^{st}\) spirometry).

Statistical analyses were performed using STATA, version 12 (StataCorp. 2011. Stata Statistical Software: Release 12. College Station, TX: StataCorp LP).
Results

Study characteristics. Table 1 provides a description of the cohort specific study populations. The average age of the cohorts at the time of 2nd spirometry ranged from 43 years (ECRHS) to 73 years (SALIA). The SALIA population, consisting exclusively of women, exhibited the lowest mean levels of FEV1 (2.20 L) and FVC (2.91 L) (see Table 1) (for the smaller PM subpopulation and for the cohort-specific lung function distributions stratified by sex, smoking and asthma status see Supplemental Table 3).

Air pollution exposure. Table 2 shows the distribution of the air pollution metrics for each study area. Variance explained by LUR models varied between 55% and 92% for NO2 and between 68% and 90% for PM10 (Supplemental Table 4). Mean exposure was lowest for all air pollution metrics in NSHD. Within-study contrasts were smallest for SALIA and SAPALDIA reflecting the restricted geographic region covered (Supplemental Table 5). The study specific correlations between the exposure metrics were generally highest between NO2 and NOx (rho of 0.90-0.98), but moderate to low between pollutants and traffic indicators (Supplemental Table 6). ESCAPE derived exposures were highly correlated with the exposures backextrapolated to the time of the 2nd spirometry (\(\text{rho}_{\text{NO2}} \geq 0.94\); \(\text{rho}_{\text{PM10}} \geq 0.91\)), but less strongly correlated with exposures backextrapolated to the 1st spirometry (0.56 \(\leq \text{rho}_{\text{NO2}} \leq 0.92\); 0.47 \(\leq \text{rho}_{\text{PM10}} \leq 0.74\)).

Association between air pollution and lung function. The main meta-analysis results for associations of each air pollution metric with level and change of lung function are presented in Table 3. No associations between any exposure metric and lung function decline were present, irrespective of covariate adjustment and subgroup (gender, obesity, asthma, smoking). Looking at levels of lung function cross-sectionally, we found higher NO2 and NOx exposures to be associated with lower levels of FVC and FEV1. An increase of 10 \(\mu\text{g/m}^3\) in NO2 exposure was associated with a -14.0 mL lower level of FEV1 (95%CI: -25.8,-2.1) and -14.9 mL lower level of FVC (-28.7,-1.1) (Table 3, Figures 1 and 2). An increase of 20 \(\mu\text{g/m}^3\) in NOx exposure was associated with a lower level of FVC by -12.9 mL (-23.8,-2.0) and of FVC by -13.3 mL (-25.9,-0.7) and an increase of 10 \(\mu\text{g/m}^3\) in PM10 was associated with a lower level of FEV1 (-44.6mL (-85.4,-3.8)) and FVC (-59.0mL (-112.3,-5.7)) (Table 3). The other PM metrics were not associated with lung function level. Higher traffic load on major roads in a 100m buffer from residential address was associated with lower levels of FEV1 (-32.34mL (-59.30,-5.38)).

Associations observed for NO2 and PM10 with FEV1 and FVC at 2nd spirometry remained largely unaltered when ESCAPE exposure estimates of NO2 and PM10 in ECRHS, EGEA and SAPALDIA were replaced with NO2 and PM10 estimates backextrapolated to the time point of the 2nd spirometry. The inverse association between PM10 and FVC became stronger and statistically significant (Supplemental Table 7).

In subgroup analysis, the NO2 and NOx (data not shown) associations with FEV1 and FVC were particularly observed in obese participants (FEV1: Figures 3 and 4, FVC: Supplemental Figures 2 and 3) (p-values for heterogeneity obese vs. non-obese: \(p=0.098\) (NO2/FEV1) (Figures 3 and 4); \(p=0.026\) (NO2/FVC) (Supplemental Figures 2 and 3), \(p=0.050\) (NOx/FVC). All other tested factors (gender, smoking and asthma status) showed no or only weak evidence for
modification of the air pollution lung function associations (NO$_2$: Supplemental Table 8). The effect modification by obesity was also evident in gender-stratified analyses, with substantially stronger inverse NO$_2$ and NO$_x$ associations with FEV$_1$ and FVC, in both obese women and men (NO$_2$: Supplemental Table 9).

In sensitivity analysis, looking at non-movers and participants aged 30 years or more, we did not find a particular difference to the observed main associations (Supplemental Table 10).

Discussion

This study in adults contributes to the evidence of long-term exposure to ambient air pollution being associated with the level of lung function. The meta-analysis was based on individual-level exposure assessment standardized across different cities and regions in Europe. Impaired lung function characterized by reduced FEV$_1$, a powerful marker of future morbidity and mortality 16, exhibited the most consistent association with different pollution metrics. It was inversely related to nitrogen oxides, PM$_{10}$ as well as traffic load at the residential address. Our data suggest that obese persons are particularly sensitive to air pollution.

Comparison with other studies

Results from previous cross-sectional studies predominantly relied on exposure measured at the level of a few communities. They point to an inverse association of adult lung function with air pollution and traffic load 1,6. But as the measurement and meaning of specific pollution metrics differs between studies their comparative relevance remains inconclusive. This also applies to the current study. According to the site-specific differences in correlations between exposure metrics (Supplemental Table 6) they capture different sources of air pollution and thereby different components. The absence of associations with most of the PM metrics may additionally be rooted in the more limited sample size. PM measurements were only performed in a restricted number of centers. NO$_2$ which characterizes the spatial variation of traffic related air pollution has been linked with stronger lung function impairment depending on the parameter studied, but evidence for PM effects to be stronger has also been published 3,7.

The interaction between air pollution exposure and obesity on lung function parallels a recent SAPALDIA report and adds evidence to the interdependence of the two important global epidemics of environmental pollution and obesity 17. Many studies have demonstrated an association between obesity and lung function. Lung function improves after weight loss in obese persons, and weight gain is associated with lung function decline in asthmatics and in the general population $^{17-19}$. The mechanical effect of excess body fat on lung volumes and airway caliber is well accepted 18. In addition, inflammatory pathways may play a role, as overweight is associated with an underlying state of oxidative stress and inflammation 17,20. Air pollution and obesity seemingly have more than additive effects on systemic inflammation 21,22. In animal models, ozone-induced pulmonary injury and inflammation were greater in obese versus lean mice 23,24. In humans, acute ozone effects on lung function were more prominent among obese 25,26.
The null finding investigating the association of air pollution with the change in lung function is consistent with a previous report from the ECRHS cohort [superscript 27], but extends the finding to older cohorts. In light of the positive findings for the cross-sectional associations, this null finding may be surprising. Cross-sectional differences are expected to result at least in part from differences in age-related decline. Based on the current results it seems premature to conclude that long-term exposure to air pollution does not affect FEV₁ and FVC decline.

Strengths and weaknesses

Our study benefits from a large number of observations, and the multi-centric design across different European regions, which cover a broad range of different types of environment and climates and a wide age range of participants. Furthermore, the individual-level exposure assessment was harmonised, a common study protocol of exposure and outcome definition was developed and the analytic approach was standardised. However, this study has also several limitations.

Several methodological issues related to outcome and exposure assessment may have biased the longitudinal association. Data from only two spirometry time points and from spirometries conducted in different seasons and times of the day may have decreased the precision in estimating lung function decline. As common in long-term lung function studies, spirometry devices had to be updated with new software or replaced during follow-up. Such changes can be an inherent source of differences in the measured lung function and its temporal change [superscript 28]. The inherent limitations in exposure assessment are also amplified in the longitudinal analyses. Most importantly, back extrapolation of residential pollution levels is of prime relevance to properly characterize exposure at 1st spirometry, and then derive the change in exposure over time. Uncertainties with the back extrapolated values may be substantial and if unrelated to the true exposure, may bias findings towards the null. In addition LUR models have inherent limitations. Cross-validation of the LUR’s varied across regions [superscript 10, 11] and performance of models based on 20 or 40 measurement sites may be overestimated [superscript 29, 30].

Additional limitations of the study beyond back extrapolation include the non-availability of information on short-term exposure at the time of spirometry for a sufficient number of sites and pollution metrics. Adjustment for short-term exposure in SAPALDIA did not alter the associations. Heterogeneity of study populations poses a challenge to meta-analysis and makes it difficult to exclude residual confounding and unrecognized effect modification. The associations were not sensitive to the SALIA study consisting exclusively of women and exhibiting the lowest mean levels of lung function (Supplemental Figures 4 and 5 for associations of NO₂ with FEV₁ and FVC in women). Non-participation at follow-up of subjects with low lung function may bias observed associations or limit their generalizability. In SAPALDIA subjects with better lung function were more likely to participate at the 2nd spirometry. But sensitivity analyses using inverse probability weighting to account for non-participation did not alter associations between air pollution and lung function [superscript 8].

Conclusion

The current study, which includes a large number of observations from different regions, environments and climates in Europe, and standardized exposure assessment, provides firm
support to an adverse association between ambient air pollution and lung function in adults. Inverse associations could be observed at very low air pollution levels in Europe. The policy relevance of these findings is further strengthened by the observation that obese persons may be particularly susceptible.
What is already known on this topic

- Acute effects of air pollution on lung function at levels currently observed in Western Europe at all ages are well established.

- The association between long term exposure to air pollution and lower lung function in adults remains less clear.

What this study adds

- This paper contributes important evidence towards the EU air quality policy debates.

- In the largest European wide meta-analysis of its kind, we report associations of NO$_2$, NO, and PM$_{10}$ with lung function.

- The study provides suggestive evidence for an increased susceptibility of obese persons, pointing to the interdependence of environmental and health policies.

Role of the funding source

The funding source had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. The authors had full access to all data and had final responsibility for the decision to submit the paper.

Competing interests

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethics committee approval

All included cohort studies were approved by the institutional medical ethics committees and undertaken in accordance with the Declaration of Helsinki. Each cohort study followed the rules for ethics and data protection set up in the country in which they were based.

Transparency statement

The lead author affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained.

Data sharing

Meta-analytic data and statistical code are available from the corresponding author.

Copyright for authors

“The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide licence to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish,
reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any third party to do any or all of the above”.

Open access

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/.

Contributors

MA, NPH drafted the manuscript; BB, BF, JS, UK, FK, AH, NK, NPH contributed to the design of the study; MA, TS, AEC, AM, BJ, VS, CS, JS, UK, FK, AH, NK, NPH contributed to the data analysis plan; MA, TS, AEC; YC, BJ, MS, AV, AM, DK, SD, ZAK, GH, contributed to the statistical script and data analysis; RN, VS, RH, DK, TR, POB, RB, PP, JH, DJ, IP, JS, UK, FK, AH, NK, NPH provided local cohort data; DS, ME, MYT, SV, HCP, MB, JC, MC, ADN, MJN, BF, KDH, CD, UQ, RB, GH, BB contributed to exposure assessment; all co-authors contributed to the interpretation of the results and have read, revised and approved the final version of the submitted manuscript.
Funding

The research leading to these results has received funding from the European Community’s Seventh Framework Program (FP7/2007-2011) under grant agreement number: 211250.

ECRHS was supported by the European Commission, as part of their Quality of Life program. The coordination of ECRHS II was supported by the European Commission, as part of their Quality of Life programme. The following bodies funded the local studies in ECRHS II in this article.

Albacete-Fondo de Investigaciones Santarias (grant code: 97/0035-01, 13 99/0034-01, and 99/0034-02), Hospital Universitario de Albacete, Consejeria de Sanidad. Antwerp-FWO (Fund for Scientific Research)- Flanders Belgium (grant code: G.0402.00), University of Antwerp, Flemish Health Ministry.

Barcelona-Fondo de Investigaciones Sanitarias (grant code: 99/0034-01, and 99/0034-02), Red Respira (RTIC 03/11 ISC IIF). Ciber of Epidemiology and Public Health has been established and founded by Instituto de Salud Carlos III.

Erfurt-GSF—National Research Centre for Environment & Health, Deutsche Forschungsgemeinschaft (DFG) (grant code FR 1526/1-1).

Galdakao-Basque Health Department.

Ipswich and Norwich-National Asthma Campaign (UK).

Paris-Ministere de l’Emploi et de la Solidarite, Direction Generale de la Sante, UCBPharma (France), Aventis (France), Glaxo France, Programme Hospitalier de Recherche Clinique-DRC de Grenoble 2000 no. 2610, Ministry of Health, Direction de la Recherche Clinique, CHU de Grenoble.

Measurements and models for PM in Grenoble (ECRHS) were funded by Region Rhônes-Alpes.

Pavia-Glaxo, Smith & Kline Italy, Italian Ministry of University and Scientific and Technological Research (MURST), Local University Funding for Research 1998 & 1999 (Pavia, Italy).

Turin-ASL 4 Regione Piemonte (Italy), AO CTO/ICORMA Regione Piemonte (Italy), Ministero dell’Università e della Ricerca Scientifica (Italy), Glaxo Wellcome spa (Verona, Italy).

Umeå-Swedish Heart Lung Foundation, Swedish Foundation for Health Care Sciences & Allergy Research, Swedish Asthma & Allergy Foundation, Swedish Cancer & Allergy Foundation. Verona-University of Verona; Italian Ministry of University and Scientific and Technological Research (MURST); Glaxo, Smith & Kline Italy.

EGEA is funded in part by PHRC-Paris, PHRC-Grenoble, ANR 05-SEST-020-02/05-9-97, ANR-06-CEBS, ANRCES- 2009, Région Nord Pas-de-Calais, Merck Sharp & Dohme (MSD).
NSHD and Professors Hardy and Kuh are supported by core funding and grant funding (U1200632239 and U12309272) from the UK Medical Research Council. We acknowledge the NSHD participants and the NSHD scientific and data collection teams.

SALIA received funds from the German state (NRW) and federal Ministries of the Environment. The follow-up investigation was funded by the DGUV (German statutory accident assurance) VT 266.1.

SAPALDIA received funds from the Swiss National Science Foundation (grants no 33CSCO-134276/1, 33CSCO-108796, 3247BO-104283, 3247BO-104288, 3247BO-104284, 3247-065896, 3100-059302, 3200-052720, 3200-042532, 4026-028099), the Federal Office for Forest, Environment and Landscape and several Federal and Cantonal authorities.

Acknowledgements

We acknowledge the support of an external advisory board consisting of Mike Jerrett (UC Berkeley, Berkeley CA), Joel Kaufman (University of Washington, Seattle WA), Ross Anderson (King’s College London UK), Michal Krzyzanowski (WHO Bonn, Germany), Aaron Cohen (Health Effects Institute Boston MA).

We thank all study members and staff involved in data collections in each cohort and also the respective funding bodies for ECRHS, EGEA, NSHD, SALIA and SAPALDIA:

ECRHS

The ECRHS data incorporated in this analysis would not have been available without the collaboration of the following individuals and their research teams.

ECRHS Co-ordinating centre: P Burney, D Jarvis, S Chinn, J Knox (ECRHS II), C Luczynska*, J Potts.

The excellent fieldwork by Gabriele Wölke and Matthias Birk is highly acknowledged.

EGEA

Coordination: V Siroux (epidemiology, PI since 2013); F Demenais (genetics); I Pin (clinical aspects); R Nadif (biology); F Kauffmann (PI 1992-2012).

Genetics: Inserm U 393, Paris: J Feingold; Inserm U 946, Paris: E Bouzigon, F Demenais, MH Dizier; CNG, Evry: I Gut (now CNAG, Barcelona, Spain), M Lathrop (now Univ McGill, Montreal, Canada).

Clinical centers: Grenoble: I Pin, C Pison; Lyon: D Ecochard (Egea1), F Gormand, Y Pacheco; Marseille: D Charpin (Egea1), D Vervloet (Egea1-2); Montpellier: J Bousquet; Paris Cochin: A Lockhart (Egea1), R Matran (now in Lille); Paris Necker: E Paty (Egea1-2), P Scheinmann (Egea1-2); Paris-Trousseau: A Grimfeld (Egea1-2), J Just.

Data and quality management: Inserm ex-U155 (Egea1): J Hochez; Inserm CESP/U 1018, Villejuif: N Le Moual; Inserm ex-U780: C Ravault (Egea1-2); Inserm ex-U794: N Chateigner (Egea1-2); Grenoble: J Quentin-Ferran (Egea1-2).

NHSD

We acknowledge the NSHD participants and the NSHD scientific and data collection teams.

SALIA

During the last decades a lot of scientists, study nurses and laboratories were involved in conducting the study. As representatives for all these people we would like to thank especially Reinhard Dolgner (MD) for organizing the baseline study and Barbara Schulten as study nurse for her help in organizing the follow-up study. We are most grateful for all the women from the Ruhr area and from Borken who participated in the study during decades.

SAPALDIA
Study directorate: T Rochat (p), NM Probst Hensch (e/g), JM Gaspoz (c), N Künzli (e/exp), C Schindler (s).

Scientific team: JC Barthélémy (c), W Berger (g), R Bettschart (p), A Bircher (a), G Bolognini (p), O Brändli (p), C Brombach (n), M Brutsche (p), L Burdet (p), M Frey (p), U Frey (pd), MW Gerbase (p), D Gold (e/c/p), E de Groot (c), W Karrer (p), R Keller (p), B Knöpfli (p), B Martin (pa), D Miedinger (o), U Neu (exp), L Nicod (p), M Pons (p), F Roche (c), T Rothe (p), E Russi (p), P Schmid-Grendelmeyer (a), A Schmidt-Trucksäss (pa), A Turk (p), J Schwartz (e), D. Stolz (p), P Straehl (exp), JM Tschopp (p), A von Eckardstein (cc), E Zemp Stutz (e).

Scientific team at coordinating centers: M Adam (e/g), E Boes (g), PO Bridevaux (p), D Carballo (c), E Corradi (e), I Curjuric (e), J Dratva (e), A Di Pasquale (s), L Grize (s), D Keidel (s), S Kriemler (pa), A Kumar (g), M Imboden (g), N Maire (s), A Mehta (e), F Meier (e), H Phuleria (exp), E Schaffner (s), GA Thun (g) A Ineichen (exp), M Ragettli (e), M Ritter (exp), T Schikowski (e), G Stern (pd), M Tarantino (s), M Tsai (e), M Wanner (pa)

(a) allergology, (c) cardiology, (cc) clinical chemistry, (e) epidemiology, (exp) exposure, (g) genetic and molecular biology, (m) meteorology, (n) nutrition, (o) occupational health, (p) pneumology, (pa) physical activity, (pd) pediatrics, (s) statistics

The study could not have been done without the help of the study participants, technical and administrative support and the medical teams and field workers at the local study sites.

Administrative staff: C Gabriel, R Gutknecht.
References

10. Eeftens M, Beelen R, de Hoogh K, et al. Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project. *Environmental science & technology* 2012; 46(20): 11195-205.
13. Eeftens M, Tsai MY, Ampe C, et al. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 - Results of the ESCAPE project. *Atmos Environ* 2012; 62: 303-17.
Table 1. Description of cohort-specific study populations. Characteristics \(^a\) are presented for the larger subgroup of participants included in the analysis of NO\(_2\) and NO\(_x\) and traffic indicators (Characteristics for the smaller subgroup of participants included in the PM metrics analyses are presented in Supplemental Table 1).

<table>
<thead>
<tr>
<th>Study</th>
<th>ECRHS</th>
<th>EGEA</th>
<th>NSHD</th>
<th>SALIA</th>
<th>SAPALDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N_{\text{total}})3859</td>
<td>(N_{\text{total}})568</td>
<td>(N_{\text{total}})844</td>
<td>(N_{\text{total}})580</td>
<td>(N_{\text{total}})1764</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N/mean</th>
<th>%/SD</th>
<th>N/mean</th>
<th>%/SD</th>
<th>N/mean</th>
<th>%/SD</th>
<th>N/mean</th>
<th>%/SD</th>
<th>N/mean</th>
<th>%/SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>1981</td>
<td>51.3%</td>
<td>303</td>
<td>53.3%</td>
<td>471</td>
<td>55.8%</td>
<td>580</td>
<td>100.0%</td>
<td>980</td>
<td>55.6%</td>
</tr>
<tr>
<td>Age</td>
<td>43.0</td>
<td>7.2</td>
<td>53.1</td>
<td>11.3</td>
<td>63.3</td>
<td>1.1</td>
<td>73.3</td>
<td>3.4</td>
<td>53.2</td>
<td>11.0</td>
</tr>
<tr>
<td>BMI [kg/m(^2)]</td>
<td>25.7</td>
<td>4.6</td>
<td>25.3</td>
<td>4.3</td>
<td>27.7</td>
<td>4.9</td>
<td>27.4</td>
<td>4.5</td>
<td>25.4</td>
<td>4.3</td>
</tr>
<tr>
<td>Height [in cm]</td>
<td>168.6</td>
<td>9.5</td>
<td>168.5</td>
<td>8.4</td>
<td>167.4</td>
<td>8.6</td>
<td>162.3</td>
<td>5.5</td>
<td>168.8</td>
<td>9.0</td>
</tr>
<tr>
<td>Ex-smoker</td>
<td>1064</td>
<td>27.6%</td>
<td>206</td>
<td>36.3%</td>
<td>497</td>
<td>58.9%</td>
<td>99</td>
<td>17.1%</td>
<td>568</td>
<td>32.2%</td>
</tr>
<tr>
<td>Current smoker</td>
<td>1224</td>
<td>31.7%</td>
<td>81</td>
<td>14.3%</td>
<td>77</td>
<td>9.1%</td>
<td>18</td>
<td>3.1%</td>
<td>492</td>
<td>27.9%</td>
</tr>
<tr>
<td>Pack years at 1(^{st}) spirometry(^b^)</td>
<td>7.7</td>
<td>12.0</td>
<td>5.9</td>
<td>10.0</td>
<td>9.1</td>
<td>12.6</td>
<td>2.8</td>
<td>8.4</td>
<td>10.9</td>
<td>17.9</td>
</tr>
<tr>
<td>Pack years from 1(^{st}) to 2(^{nd}) spirometry(^b^)</td>
<td>3.9</td>
<td>10.9</td>
<td>1.7</td>
<td>8.3</td>
<td>0.7</td>
<td>2.5</td>
<td>0.6</td>
<td>6.7</td>
<td>3.1</td>
<td>6.5</td>
</tr>
<tr>
<td>Medium educational level(^b^)</td>
<td>1321</td>
<td>34.2%</td>
<td>118</td>
<td>20.8%</td>
<td>439</td>
<td>52.0%</td>
<td>276</td>
<td>47.6%</td>
<td>1121</td>
<td>63.5%</td>
</tr>
<tr>
<td>High educational level(^b^)</td>
<td>1420</td>
<td>36.8%</td>
<td>263</td>
<td>46.3%</td>
<td>102</td>
<td>12.1%</td>
<td>199</td>
<td>34.3%</td>
<td>520</td>
<td>29.5%</td>
</tr>
<tr>
<td>Environmental tobacco exposure at home or at work(^b^)</td>
<td>676</td>
<td>17.5%</td>
<td>233</td>
<td>41.0%</td>
<td>168</td>
<td>19.9%</td>
<td>347</td>
<td>59.8%</td>
<td>119</td>
<td>6.7%</td>
</tr>
<tr>
<td>Occupational exposure to dust/fumes or gases(^a^)</td>
<td>1685</td>
<td>43.7%</td>
<td>125</td>
<td>22.0%</td>
<td>246</td>
<td>29.1%</td>
<td>39</td>
<td>6.7%</td>
<td>460</td>
<td>26.1%</td>
</tr>
<tr>
<td>Ever asthma(^a),(^c^)</td>
<td>616</td>
<td>16.0%</td>
<td>183</td>
<td>32.2%</td>
<td>83</td>
<td>9.8%</td>
<td>50</td>
<td>8.6%</td>
<td>155</td>
<td>8.8%</td>
</tr>
<tr>
<td>FEV(_1) [L](^d^)</td>
<td>3.47</td>
<td>0.81</td>
<td>3.03</td>
<td>0.85</td>
<td>2.83</td>
<td>0.66</td>
<td>2.20</td>
<td>0.42</td>
<td>3.10</td>
<td>0.82</td>
</tr>
<tr>
<td>FVC [L]</td>
<td>4.33</td>
<td>0.10</td>
<td>4.00</td>
<td>1.01</td>
<td>3.57</td>
<td>0.81</td>
<td>2.91</td>
<td>0.54</td>
<td>4.08</td>
<td>1.02</td>
</tr>
<tr>
<td>change of FEV(_1) [L](^d^)</td>
<td>-0.026</td>
<td>0.032</td>
<td>-0.028</td>
<td>0.031</td>
<td>-0.022</td>
<td>0.025</td>
<td>-0.020</td>
<td>0.014</td>
<td>-0.033</td>
<td>0.030</td>
</tr>
<tr>
<td>change of FVC [L](^d^)</td>
<td>-0.018</td>
<td>0.040</td>
<td>-0.015</td>
<td>0.037</td>
<td>-0.025</td>
<td>0.034</td>
<td>-0.022</td>
<td>0.019</td>
<td>-0.022</td>
<td>0.041</td>
</tr>
</tbody>
</table>

The table shows the amount of observations (N, and % of total N) for categorical variables, and the mean value (and standard deviation (SD)) in case of continuous variables. \(^a^\) Characteristics refer to time point of 2\(^{nd}\) spirometry. \(^b^\) Information missing on a limited number of subjects. \(^c^\) Asthma diagnosed by a physician at 1\(^{st}\) and/or at 2\(^{nd}\) spirometry. \(^d^\) Change in lung function between 1\(^{st}\) and 2\(^{nd}\) spirometry.
Table 2
Distribution of all exposure estimates (annual averages of ambient air pollutants and traffic indicators), at participants residential addresses in each cohort.

<table>
<thead>
<tr>
<th>Exposures</th>
<th>ECRHS</th>
<th>EGEA</th>
<th>NSHD</th>
<th>SALIA</th>
<th>SAPALDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>IQR</td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>PM$_{2.5}$[µg/m3]</td>
<td>1830</td>
<td>15.9</td>
<td>7.0</td>
<td>342</td>
<td>15.3</td>
</tr>
<tr>
<td>PM$_{2.5}$absorbance [10$^{-5}$m$^{-1}$]</td>
<td>1540</td>
<td>2.0</td>
<td>1.6</td>
<td>148</td>
<td>2.1</td>
</tr>
<tr>
<td>PM$_{10}$[µg/m3]</td>
<td>1830</td>
<td>25.8</td>
<td>9.7</td>
<td>342</td>
<td>25.1</td>
</tr>
<tr>
<td>PM$_{coarse}$[µg/m3]</td>
<td>1830</td>
<td>10.3</td>
<td>4.7</td>
<td>342</td>
<td>9.4</td>
</tr>
<tr>
<td>NO$_2$[µg/m3]</td>
<td>3859</td>
<td>28.9</td>
<td>18.7</td>
<td>568</td>
<td>27.4</td>
</tr>
<tr>
<td>NO$_x$[µg/m3]</td>
<td>3859</td>
<td>50.5</td>
<td>34.5</td>
<td>568</td>
<td>46.7</td>
</tr>
<tr>
<td>Traffic intensity on nearest road [cars/day]</td>
<td>2492</td>
<td>4807</td>
<td>5509</td>
<td>568</td>
<td>6633</td>
</tr>
<tr>
<td>Traffic load on nearest major road [cars-km/day; in thousand]a</td>
<td>2687</td>
<td>1.45</td>
<td>1.67</td>
<td>568</td>
<td>1.37</td>
</tr>
<tr>
<td>NO$_2$ (backextrapolated to 1st spirometry) [µg/m3]</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>PM$_{10}$ (backextrapolated to 1st spirometry) [µg/m3]</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>NO$_2$ (backextrapolated to 2nd spirometry) [µg/m3]</td>
<td>3859</td>
<td>34.2</td>
<td>23.0</td>
<td>568</td>
<td>32.1</td>
</tr>
<tr>
<td>PM$_{10}$ (backextrapolated to 2nd spirometry) [µg/m3]</td>
<td>1388</td>
<td>27.1</td>
<td>8.4</td>
<td>148</td>
<td>27.0</td>
</tr>
</tbody>
</table>

PM$_{2.5}$: particulate matter with a diameter of 2.5 micrometers or less; PM$_{2.5}$abs: absorbance of particulate matter with a diameter of 2.5 micrometers; PM$_{10}$: particulate matter with a diameter of 10 micrometers or less; PM$_{coarse}$: coarse fraction of PM$_{2.5}$ to PM$_{10}$; NO$_2$: nitrogen dioxide; NO$_x$: nitrogen oxides. a Traffic load on nearest major road within a 100m buffer presented in thousands. b No complete exposure backextrapolation to 1st spirometry available. c No backetrapolation applied as time point of 2nd spirometry coincides with time point of ESCAPE monitoring campaign.
Table 3:

Results of meta-analyses for the association \(^a\) between level (upper part of table) and change (lower part of table) of lung function and exposure to air pollution and traffic intensity indicators.

<table>
<thead>
<tr>
<th>Level of lung function(^b)</th>
<th>FEV(_1) (in mL)</th>
<th>FVC (in mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure</td>
<td>beta(^c)</td>
<td>95%CI</td>
</tr>
<tr>
<td>NO(_2) (10 (\mu g/m^3))</td>
<td>-13.98</td>
<td>-25.82 to -2.14</td>
</tr>
<tr>
<td>NO(_x) (20 (\mu g/m^3))</td>
<td>-12.91</td>
<td>-23.79 to -2.04</td>
</tr>
<tr>
<td>PM(_{10}) (10 (\mu g/m^3))</td>
<td>-44.56</td>
<td>-85.36 to -3.76</td>
</tr>
<tr>
<td>PM(_{2.5}) (5 (\mu g/m^3))</td>
<td>-21.14</td>
<td>-56.37 to 14.08</td>
</tr>
<tr>
<td>PM(_{2.5})absorbance (10(^{-5})m(^{-1}))</td>
<td>-24.40</td>
<td>-55.58 to 6.79</td>
</tr>
<tr>
<td>PM(_{2.5})coarse (5 (\mu g/m^3))</td>
<td>-22.36</td>
<td>-94.00 to 49.27</td>
</tr>
<tr>
<td>Traffic intensity on nearest road(^e)</td>
<td>-27.61</td>
<td>-59.62 to 4.39</td>
</tr>
<tr>
<td>Traffic load on nearest major road in a 100m buffer(^e)</td>
<td>-32.34</td>
<td>-59.30 to -5.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in lung function</th>
<th>FEV(_1) (in mL/year)</th>
<th>FVC (in mL/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure</td>
<td>beta(^d)</td>
<td>95%CI</td>
</tr>
<tr>
<td>NO(_2) (10 (\mu g/m^3))</td>
<td>0.30</td>
<td>-0.39 to 0.98</td>
</tr>
<tr>
<td>NO(_x) (20 (\mu g/m^3))</td>
<td>0.18</td>
<td>-0.44 to 0.80</td>
</tr>
<tr>
<td>PM(_{10}) (10 (\mu g/m^3))</td>
<td>-0.39</td>
<td>-2.85 to 2.06</td>
</tr>
<tr>
<td>PM(_{2.5}) (5 (\mu g/m^3))</td>
<td>-0.14</td>
<td>-2.26 to 1.98</td>
</tr>
<tr>
<td>PM(_{2.5})absorbance (10(^{-5})m(^{-1}))</td>
<td>0.88</td>
<td>-0.76 to 2.52</td>
</tr>
<tr>
<td>PM(_{2.5})coarse (5 (\mu g/m^3))</td>
<td>0.26</td>
<td>-3.92 to 4.43</td>
</tr>
<tr>
<td>Traffic intensity on nearest road(^e)</td>
<td>-0.74</td>
<td>-2.58 to 1.10</td>
</tr>
<tr>
<td>Traffic load on nearest major road in a 100m buffer(^e)</td>
<td>-0.32</td>
<td>-1.81 to 1.11</td>
</tr>
</tbody>
</table>

\(^{a}\)Associations are presented for the following increments in exposure: 10 \(\mu g/m^3\) for NO\(_2\), 20 \(\mu g/m^3\) for NO\(_x\), 1 \(\times\) 10\(^{-5}\)m\(^{-1}\) for PM\(_{2.5}\) absorbance, 5 \(\mu g/m^3\) for PM\(_{2.5}\), 10 \(\mu g/m^3\) for PM\(_{10}\), 5 \(\mu g/m^3\) for PM\(_{coarse}\), traffic intensity on the nearest street (2 categories: low \(\leq\) 500 and high\(>500\) [cars/day]); and for traffic load on major roads within a 100 m buffer (2 categories: low \(\leq\) 500 and high\(>500\) [cars-km/day]). \(^{b}\)Level of lung function for cross-sectional analysis was derived from 2\(^{nd}\) spirometry. \(^{c}\)The betas for the association between level of lung function and exposure, are adjusted for age, age squared, height, sex, BMI, highest educational level, and smoking status at 2\(^{nd}\) spirometry; a negative sign indicates lower lung function with increasing exposure. \(^{d}\)the betas of the association between change in lung function and exposure, are adjusted for sex, age and height at 1\(^{st}\) spirometry, highest educational level, smoking at 1\(^{st}\) spirometry, smoking cessation and change in BMI to the 2\(^{nd}\) spirometry; a negative sign indicates steeper lung function decline with increasing exposure. \(^{e}\)associations with traffic intensity (2 categories: low \(\leq\) 5000 and high\(>5000\) [cars/day]) and traffic load (2 categories: low \(\leq\) 500 and high\(>500\) [cars-km/day]) were additionally adjusted for background NO\(_2\) concentrations. \(^{f}\)I\(^2\) and Cochran’s test for heterogeneity of effect estimates between cohorts.
Figure 1 and Figure 2

Forest plot displaying the study-specific mixed linear regression model estimates \(^a\)\(^b\) of the association of NO\(_2\) with **level of lung function** (FEV\(_1\); FVC; in mL) (Based on all study participants living in sites with ESCAPE models available).

NO\(_2\)_1 indicates NO\(_2\) measured at time of ESCAPE. \(^a\)Associations with lung function measures are presented as increments in NO\(_2\) per 10µg/m\(^3\). I-square: variation in estimated effects attributable to heterogeneity. D+L (Der Simonian and Laird method): pooled estimate of all studies. \(^b\)The mixed linear regression models were adjusted for: age, age squared, height, sex, BMI, highest educational level, and smoking status at 2\(^{nd}\) spirometry; negative estimates indicated lower lung function with increasing exposure.
Figure 3 and Figure 4

Forest plot displaying the study-specific mixed linear regression model estimates\(^a,b\) of the association of NO\(_2\) with level of FEV\(_1\) (in mL) \textit{stratified by obesity status}\(^c\).

\begin{itemize}
 \item \textbf{NO\(_2\)_1} indicates NO\(_2\) measured at time of ESCAPE.\(^a\) Associations with lung function measures are presented as increments in NO\(_2\) per 10µg/m\(^3\). I-square: variation in estimated effects attributable to heterogeneity. D+L (Der Simonian and Laird method): pooled estimate of all studies.\(^b\) The mixed linear regression models were adjusted for: age, age squared, height, sex, BMI, highest educational level, and smoking status at 2\(^{nd}\) spirometry; negative estimates indicated lower lung function with increasing exposure.\(^c\) Obesity has been stratified as not obese “BMI<30 kg/m\(^2\)” and obese “BMI>=30 kg/m\(^2\)”. P-value for heterogeneity obese vs. non-obese: 0.098 for FEV\(_1\).
\end{itemize}