New collection, iconography and molecular evidence for *Tylopilus neofelleus* (Boletaceae, Boletoideae) from southwestern China and the taxonomic status of *T. plumbeoviolaceoides* and *T. microsporus*

- Matteo Gelardi\(^a\)
- Alfredo Vizzini\(^b\),\(^c\)
- Enrico Ercole\(^b\)
- Yuichi Taneyama\(^e\)
- Tai-Hui Li\(^d\)
- Ming Zhang\(^d\),\(^e\)
- Wen-Juan Yan\(^d\)
- Wen-Jing Wang\(^f\)

doi:10.1016/j.myc.2014.12.001

Highlights

- A full description of the rare *Tylopilus neofelleus* is provided.
- The holotype collection of *T. neofelleus* is revised.
- Molecular (ITS and LSU analyses) confirmation of *T. neofelleus* from China.
- The holotype of *T. microsporus* (a Chinese taxon) is a posterior synonym of *T. neofelleus*.
- *T. plumbeoviolaceoides* (holotype sequenced), another taxon recently described from China, is a distinct species.

Abstract

Tylopilus neofelleus, a bolete belonging to *Tylopilus* s. str. and originally reported from Japan, is extensively revisited and illustrated. Based on a recent fresh collection from southwestern China, an exhaustive macro- and micromorphological description is provided and supported by molecular analyses of the nuclear ribosomal internal transcribed spacer (ITS) and nuclear ribosomal large subunit (LSU) sequences. Color pictures of both fresh basidiomes in habitat and dried material along with photomicrographs and line drawings of the main anatomical features and a comprehensive phylogram are provided, supported by comparative notes on lookalike and closely related species. Original materials of the Chinese *T. microsporus* and *T. plumbeoviolaceoides* were successfully sequenced and a type revision of *T. microsporus* and *T. neofelleus* is presented. Based
on molecular inference the holotype of *T. microsporus* is conspecific with Japanese samples of *T. neofelleus* and must be considered a posterior synonym. Phylogenetic data also demonstrate evidence for the presence of *T. neofelleus* in China and for a separation from the allied Chinese taxon *T. plumbeoviolaceoides*. Furthermore, morphological differences separate *T. neofelleus* from all other unsequenced species of the same consortium.

Keywords

- Boletales;
- Chinese ectomycorrhizal fungi;
- Molecular phylogeny;
- *Tylopilus griseipurpureus*;
- *Tylopilus plumbeoviolaceus* complex

1. Introduction

The pinkish-flesh or reddish to vinaceous-brown or brownish-purple spored taxa belonging to the family Boletaceae appear to be quite well represented in eastern and south-eastern Asia (Chiu, 1948, Chiu, 1957, Hongo, 1960, Corner, 1972, Zang, 1986, Imazeki et al., 1988, Nagasawa, 1997, Li and Song, 2000, Zhuang, 2001, Mao, 2009, Horak, 2011 and Wu et al., 2011). More than 40 species with a pinkish hymenophore and smooth spores have so far been reported from China (Li and Yang 2011), most of which are presently included in *Tylopilus* P. Karst. (Fu et al. 2006), a large ectomycorrhizal genus, typified by *T. felleus* (Bull.) P. Karst., that has proven definitely heterogeneous and polyphyletic (Binder and Bresinsky, 2002, Binder and Hibbett, 2006, Drehmel et al., 2008, Nuhn et al., 2013, Li et al., 2014 and Wu et al., 2014).

A number of new genera have recently been split from *Tylopilus* s.l. based on both morphological and molecular evidence (Li et al., 2011, Li et al., 2014, Halling et al., 2012a and Halling et al., 2012b), yet many groups remain to be phylogenetically re-evaluated using modern molecular tools. One of these species-complex is that of *T. plumbeoviolaceus* (Snell & E.A. Dick) Singer, a challenging consortium encompassing several cosmopolitan but biogeographically disjunct boletoid taxa, unified by fleshy basidiomes, purple-violaceous to reddish-brown colored pileus and stipe, pinkish to violaceous hymenophore, not reticulate stipital surface or only finely so at the very apex, whitish basal mycelium, extremely bitter-tasting context, smooth spores and cystidia with dextrinoid content.

Based on such traits and in agreement with Baroni and Both (1998), this group was ascribed to sect. *Tylopilus* as broadly defined by Singer (1986), in stirps *Rubrobrunneus* (Smith and Thiers 1971). According to the most recent comprehensive multilocus analyses carried out by Nuhn et al. (2013) and Wu et al. (2014), species of the *T. plumbeoviolaceus* complex are closely related to the generic type *T. felleus* and should therefore be considered members of *Tylopilus* s. str. (=*Tylopilus* clade in Nuhn et al. 2013) in the subfamily Boletoideae (Wu et al., 2014).

Due to the unsavoury organoleptic properties, species belonging to this group are unanimously considered inedible and thus rejected from consumption, although *T. griseipurpureus* (Corner) E. Horak, a species associated with introduced exotic plants, appears to be routinely eaten and found for sale in free markets of northeastern Thailand (Aungaudchariya et al. 2012; Arora, pers. comm.). However, American and Australasian species have till now been investigated mostly from the
morphological viewpoint and urgently require molecular adjustment (Fu et al., 2006 and Sitta et al., 2007).

During a recent field expedition carried out in north-western Yunnan (China), the first author recorded several specimens of a Tylopilus species related to T. plumbeoviolaceus and allied taxa, which later revealed to be T. neofelleus Hongo. The aim of the present study is to bring new insights to the knowledge of this interesting species and to elucidate its relationships and taxonomic placement within Tylopilus s. str.

2. Materials and methods

2.1. Collection site and sampling

Material was collected by the first author from Jinshan, Lijiang County, Yunnan Province, China, on September 2012 in a pine-trees woodland. Specimens examined in this study were deposited in Fungal Herbaria of the Guangdong Institute of Microbiology (GDGM), the State Key Laboratory of Mycology, Beijing Institute of Microbiology (HMAS) and the National Museum of Nature and Science, Tsukuba (TNS) as well as in the private herbarium of MG, MZ and YT. Herbarium acronyms follow Thiers (2014) except “MG”, “MZ” and “YT” that refer to the personal herbaria of Matteo Gelardi, Ming Zhang and Yuichi Taneyama, respectively.

2.2. Morphological studies

Macroscopical descriptions, macrochemical reactions, habitat notations and associated plant communities were based upon detailed field notes from fresh basidiomes. Colors were recorded under daylight and described in general terms only. Macro-photograph in habitat was taken by a Nikon D3100 camera. Micromorphological features were observed from dried material; sections were either rehydrated in water, 5% potassium hydroxide (KOH) or in ammoniacal Congo Red. Observation of structures and measurements of anatomical features were performed by mounting preparations in ammoniacal Congo Red, 30% NH₄OH and Phloxine B. Colors and amount of pigmentation was described after examination in water and 5% KOH. Measurements were made at 1000× with a calibrated ocular micrometer (Nikon Eclipse E200 optical light microscope). Spores were measured from the hymenophore of mature basidiomes, values are given as (minimum) average ± standard deviation (maximum), \(Q = \) average length/width ratio ± standard deviation with minimum and maximum values in parentheses, while average spore volume was approximately estimated as a rotation ellipsoid \(V = \frac{4}{3}(\text{length}/2) \times (\text{width}/2) \times \text{width} \times \pi/2 \) ± standard deviation. The notation \([n/m/p]\) indicates that measurements were made on “n” randomly selected spores from “m” basidiomes of “p” collections. Metachromatic, cyanophilic and iodine reactions were tested by staining the spores and the other microscopic elements in Brilliant Cresyl blue, Cotton blue and Melzer's reagent, respectively. Line-drawings of microstructures were made free hand from rehydrated material and based on photomicrographs.

2.3. DNA extraction, PCR amplification and sequencing

Total genomic DNA of 13 Tylopilus collections (Table 1) was extracted from dried specimens using the Sangon Fungus Genomic DNA Extraction kit (Sangon Biotech Co., Ltd., Shanghai, China) according to the manufacturer's instructions. The internal transcribed spacer (ITS/5.8S rRNA) was amplified with primers ITS1F and ITS4 (White et al. 1990). A portion of the nuclear ribosomal large subunit (LSU) was amplified with primers LROR and LR5 (Vilgalys and Hester 1990). PCR was performed in a total volume of 20 μl containing 10 μl PCR mix, 0.5 μl per primer
(10 μM), 0.5 μl DNA template. PCR reactions were performed with 4 min initial denaturation at 95 °C, followed by 34 cycles of denaturation at 94 °C for 40 s, annealing at 53 °C for 60 s, extension at 72 °C for 80 s and a final extension at 72 °C for 7 min. The amplified products were determined by electrophoresis on 1% agarose gels with known standard DNA marker and directly sequenced in Beijing Genomic Institute (BGI). The sequences are deposited in GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) under the accession numbers given in Table 1 and Fig. 1 and Fig. 2.

Table 1.

<table>
<thead>
<tr>
<th>Species</th>
<th>GenBank accession no.</th>
<th>Source and country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tylopilus griseipurpureus</td>
<td>KM975484 KM975493</td>
<td>MG521a, Nan'ao island, Guangdong, China</td>
</tr>
<tr>
<td>Tylopilus microsporus</td>
<td>KM975485 KM975494</td>
<td>HMAS84730, holotype, Yunnan, China</td>
</tr>
<tr>
<td>Tylopilus neofelleus</td>
<td>KF000100 KF000101</td>
<td>MZ-2013, China</td>
</tr>
<tr>
<td>Tylopilus neofelleus</td>
<td>KM975487 KM975495</td>
<td>YT20120811, Karasawa, Suwa, Nagano, Japan</td>
</tr>
<tr>
<td>Tylopilus neofelleus</td>
<td>KM975488 KM975496</td>
<td>YT20121007, Aga-cho, Higashikanbara-gun, Niigata, Japan</td>
</tr>
<tr>
<td>Tylopilus neofelleus</td>
<td>KM975489 KM975497</td>
<td>YT20090720, Ranjou-no-mori, Tonami, Toyama, Japan</td>
</tr>
<tr>
<td>Tylopilus plumbeoviolaceoides</td>
<td>KC984859 KC984858</td>
<td>GDGM20311, holotype, north suburbs, Guangzhou, Guangdong, China</td>
</tr>
<tr>
<td>Tylopilus plumbeoviolaceoides</td>
<td>– KM975498</td>
<td>GDGM42624, topotype, north suburbs, Guangzhou, Guangdong, China</td>
</tr>
<tr>
<td>Tylopilus plumbeoviolaceoides</td>
<td>KF000102 –</td>
<td>GDGM42625, Mount Baiyun, Guangzhou, Guangdong, China</td>
</tr>
<tr>
<td>Tylopilus plumbeoviolaceoides</td>
<td>KM975490 –</td>
<td>GDGM43255, Mount Baiyun, Guangzhou, Guangdong, China</td>
</tr>
<tr>
<td>Tylopilus plumbeoviolaceoides</td>
<td>KM975491 –</td>
<td>GDGM32630, Mount Baiyun, Guangzhou, Guangdong, China</td>
</tr>
<tr>
<td>Tylopilus sp.</td>
<td>KM975492 KM975499</td>
<td>MG509a, Dinghushan, Guangdong, China</td>
</tr>
</tbody>
</table>
Fig. 1.

Maximum likelihood phylogram obtained from the general ITS sequence alignment of Tylopilus s. str. species. Porphyrellus porphyrosporus is used as outgroup taxon. Support values in either the maximum likelihood [ML Bootstrap percentage (MLB)] or Bayesian [Posterior probabilities values (BPP)] analyses are indicated. Only MLB values over 50 (in bold) and BPP values over 0.75 are given above clade branches. Newly sequenced collections are in bold.
Maximum likelihood phylogram obtained from the general LSU sequence alignment of Tylopilus s. str. species. Porphyrellus porphyrosporus is used as outgroup taxon. Support values in either the maximum likelihood [ML Bootstrap percentage (MLB)] or Bayesian [Posterior probabilities values (BPP)] analyses are indicated. Only MLB values over 50 (in bold) and BPP values over 0.75 are given above clade branches. Newly sequenced collections are in bold.

2.4. Sequence alignment, data set assembly and phylogenetic analysis

Based on BLASTn results, preliminary phylogenetic analysis and outcomes of recent molecular studies on the Boletaceae (Binder and Hibbett, 2006, Nuhn et al., 2013 and Wu et al., 2014), sequences were retrieved from GenBank and UNITE (unite.ut.ee/) databases for comprehensive analysis. Two separate analyses of ITS and LSU sequences were carried out. Alignments were generated for each ITS and LSU data set using MAFFT (Katoh et al. 2002) with default conditions for gap openings and gap extension penalties. Alignments were then imported into MEGA 5.10 (Tamura et al. 2011) for manual adjustment. The best-fit substitution model for each alignment was estimated by both the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) with jModelTest 0.1.1 (Posada 2008) to provide a substitution model for the alignment. GTR + G model was chosen for the ITS alignment, while TrNef + τ was selected for LSU alignment. Based on the results of Nuhn et al. (2013) and Wu et al. (2014), Porphyrellus
Porphyrosporus (Fr. & Hök) E.-J. Gilbert (UDB001485, DQ534642) was chosen as outgroup taxon for both data sets.

Phylogenetic hypotheses were constructed using maximum likelihood (ML) and Bayesian inference (BI) criteria. ML estimation was performed with RAxML v.7.3.2 (Stamatakis 2006) with 1000 bootstrap replicates (Felsenstein 1985) using the GTRGAMMA algorithm to perform a tree inference and search for optimal topology. Support values from bootstrapping runs (MLB) were mapped on the globally best tree using the “-f a” option of RAxML and “-x 12345” as a random seed to invoke the novel rapid bootstrapping algorithm. The BI was performed with MrBayes 3.1.2 (Huelsenbeck and Ronquist 2001) with four incrementally heated simultaneous Monte Carlo Markov Chains (MCMC) run for 10 million generations, under the selected evolutionary model. Trees were sampled every 1000 generations, resulting in overall sampling of 10,001 trees; the first 2500 trees were discarded as “burn-in” (25%). For the remaining trees, a majority rule consensus tree showing all compatible partitions was computed to obtain estimates for Bayesian Posterior Probabilities (BPP).

Only MLB values over 50% and BPP values over 0.75 are reported in the resulting trees (Fig. 1 and Fig. 2). Branch lengths were estimated as mean values over the sampled trees. Pairwise % identity values of ITS sequences were calculated using MEGA 5.10 (Tamura et al. 2011). Alignments and phylogenetic trees are available at TreeBASE (www.treebase.org, submission number 16028).

3. Results

3.1. Molecular results

Both maximum likelihood and Bayesian analyses produced the same topology; therefore, only the ML trees with both MLB and BPP values are shown (Fig. 1 and Fig. 2). The ITS data matrix comprised a total of 36 sequences (including 20 from GenBank and 4 from UNITE databases); the alignment comprised 994 characters, and contains 601 variable sites. The LSU matrix consisted of 42 sequences (including 33 from GenBank); the alignment comprised 914 characters, and contains 259 variable sites.

In both the ITS and LSU analyses (Fig. 1 and Fig. 2), collections of T. neofelleus from China and Japan cluster with T. microsporus S.Z. Fu, Q.B. Wang & Y.J. Yao (holotype included) forming a well-supported T. neofelleus clade (MLB = 100%; BPP = 1). The ITS sequences of the T. neofelleus clade share a pairwise % identity value of 98.5. The ITS sequence (DQ407261) from the Chinese collection identified as “T. plumbeoviolaceoides” represents T. neofelleus. In the LSU phylogram (Fig. 2) T. otsuensis Hongo is sister to the T. neofelleus clade. According to both ITS and LSU data, T. plumbeoviolaceoides T.H. Li, B. Song & Y.H. Shen is a clearly circumscribed species. Finally, the ITS analysis recognized that multiple species are hidden under the name T. felleus.
3.2. Taxonomy

Tylopilus neofelleus Hongo, Journal of Japanese Botany 42: 154. 1967. Fig. 3, Fig. 4, Fig. 5 and Fig. 6.

Fig. 3.

Tylopilus neofelleus. Microscopic features (in Congo Red). A, B: Basidiospores (YT20090720, YT20120820). C, D: Elements of pileipellis (YT20121007, YT20110807-L). E, F: Cheilocystidia (YT 20110807-L, YT20120811). G: Pleurocystidia (YT20120820). H: Caulocystidia (YT20120811). All photos by Y. Taneyama. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Basidiomes large-sized. Pileus 5.0–15.5(–17.0) cm broad, at first hemispherical then persistently convex and finally broadly pulvinate-flattened, sometimes slightly depressed at center, fleshy, firm at the beginning but progressively softer with age; margin steady to faintly wavy-lobed, initially involute then curved downwards and finally plane or even uplifted, not or only a little extending beyond the tubes; surface matt, dry but slightly greasy with moist weather, very finely pruinose in the early stage of development but later smooth and glabrous, not cracked; cuticle somewhat variable in color, ranging from brownish to pale ochraceous-brown with olive shades and pale violet to grayish-lilac hues towards the margin, particularly in young specimens, gradually fading with age and becoming beige-ochraceous, especially on the peripheral surface; slowly and almost imperceptibly darkening on handling or when injured; subcuticular layer white. Tubes at first thin then increasingly broader and shorter than the thickness of pileus context (up to 2.5 cm long), adnate but soon depressed around the stipe apex, whitish at first to pale pinkish-flesh, pink-violaceous at maturity and further darkening up to dark violet in old fruiting bodies, unchangeable when cut. Pores initially forming a flat surface, later convex, at first small then gradually wider (up to 1 mm in diam.), simple, roundish to barely angular at maturity, concolorous with tubes and very slowly and faintly darkening on bruising or when injured, sometimes with rusty brown stains at the orifice. Stipe (4.0–)6.0–11.5(–16.0) × (1.0–)1.5–4.0(–4.5) cm, shorter than or as long as the pileus diameter at maturity, central to slightly off-center, solid, firm, dry, straight or curved, at first ovoid to ventricose-fusiform, later cylindrical but swollen towards the base or decidedly clavate, ending with a short taproot at the very base; surface showing an extremely fine pale violet reticulum.
restricted to the apex (better visible with a hand lens!), smooth to finely longitudinally fibrillose-ribbed downwards up to half way, always smooth and glabrous in the lower portion, evelate; whitish in the upper third, immediately below pinkish to pinkish-yellow, increasingly more violet to violaceous-brown and mottled downwards, whitish at the very base, unchangeable when pressed; basal mycelium white, rhizomorphs brownish. Context firm and tough when young, later soft textured in the pileus (up to 3.2 cm thick in the central zone), a little more fibrous in the stipe, white throughout, in mature specimens with olivaceous spots or shades at the stipe base, tending to spread over the entire stipe tissues with age; unchangeable when exposed to air; pale ochraceous where eroded by maggots; subhymenophoral layer white; exsiccate brownish to grayish-brown, sometimes brownish-reddish on the stipe. Smell mild to vaguely fruity, agreeable. Taste decidedly bitter, unedible. Spore print not obtained. Macrochemical reactions: 10% KOH: staining very pale yellow on context and hymenophore, no reaction elsewhere.

Basidiospores [50/4/1] (8.2–9.8 ± 1.3(–13.2) × (3.2–4.0 ± 0.4(–4.8) μm, $Q = (2.04–2.47 ± 0.21(–3.02), V = 85 ± 34 μm^3$, fairly variable in dimension, inequilateral, ellipsoid-fusiform to fusiform in side view and progressively tapering towards the apex which is sharply pointed, often with a shallow abaxial depression close to the distal end, ellipsoid to ellipsoid-fusiform in face view, smooth, with a short apiculus and without suprahilar depression, moderately thick-walled (0.5–0.7 μm), straw-yellow in water and 5% KOH, having one or two large oil droplets when mature, rarely pluri-guttulate, inamyloid, cyanophilic and with an orthochromatic reaction. Basidia (23–27–34(–40) × 6–10 μm ($n = 13$), cylindrical to cylindrical-clavate, moderately thick-walled (0.5–0.7 μm), predominantly 4-spored but also 1 or 2-spored, usually bearing relatively long stigmata (3–7 μm), hyaline to pale yellowish and containing straw-yellow oil guttules in water and 5% KOH, bright yellow (inamyloid) in Melzer's, without basal clamps; basidioles subcylindrical to faintly clavate, about the same size as basidia. Cheilocystidia (23–29–50(–58) × 5–10 μm ($n = 15$), very common, moderately slender, projecting straight to sometimes flexuous, irregularly cylindrical or cylindrical-fusiform to ventricose-fusiform or lageniform, showing a narrow and long neck, rarely short mucronate to subclavate, with rounded to subacute tip, smooth, moderately thick-walled (0.5–1.0 μm), with a straw-yellow vacuolar pigment in water and 5% KOH, reddish-brown (content strongly dextrinoid) in Melzer's, without epiparietal encrustations. Pleurocystidia (35–39–55(–60) × 7–11 μm ($n = 15$), decidedly frequent, shape, size, color and chemical reactions as in cheilocystidia. Pseudocystidia not recorded. Pileipellis a trichoderm consisting of strongly interwoven, elongated, filamentous and sinuous, frequently branched hyphae tending to be repent in the outermost layer and thus turning into a cutis not or only partially embedded in gelatinous matter; terminal elements 25–83 × (2–)3–8 μm, long and slender, cylindrical, apex rounded-obtuse, moderately thick-walled (up to 1 μm), hyaline to more often straw-yellow in water and 5% KOH, weakly dextrinoid in Melzer's, smooth to occasionally ornamented by a subtle zebra-like epiparietal encrustation; subterminal elements similar in shape, size and color to terminal elements. Stipitipellis a texture of slender, parallel to loosely intermingled and longitudinally running, smooth-walled, adpressed hyphae, 2–12 μm wide, hyaline to yellowish in water and 5% KOH; the stipe apex covered by a well developed caulohymenial layer consisting of sterile caulobasidioides, very sparse, predominantly 2-spored, fertile caulobasidia and abundant projecting caulocystidia similar in shape and color to hymenial cystidia but distinctly longer, (31–)33–82(–95) × 6–13(–15) μm ($n = 15$), having a wall up to 1 μm thick. Lateral stipe stratum under the caulohymenium present and well differentiated from the stipe trama, of the “boletoid type”, at the stipe apex a (25–)30–60(–80) μm thick layer consisting of divergent, inclined and running towards the external surface, loosely intermingled and branched hyphae remaining separate and embedded in a gelatinous substance. Stipe trama composed of confusedly and densely arranged, strongly interwoven, filamentous, smooth, inamyloid to barely dextrinoid hyphae, 2–13(–15) μm broad. Hymenophoral trama bilateral divergent of the “Phylloporus-type”, with very slightly divergent to nearly subparallel and tightly arranged, non-gelatinous hyphae (lateral strata hyphae in transversal section touching or almost
touching each other, 0–3 μm distant from one another, relatively short and inflated, 3–8 μm broad), hyaline in water and 5% KOH, inamyloid in Melzer's; lateral strata (10–)15–25(–30) μm thick, mediostratum 10–35 μm thick, consisting of a tightly adpressed, non-gelatinous bundle of hyphae, 3–6 μm broad; in Congo Red the mediostratum is concolorous with the lateral strata. Rhizomorphs consisting of parallel and densely arranged, unbranched, scarcely septate, filamentous, thick-walled (up to 2 μm), smooth hyphae, (10–)13–20 μm broad, hyaline (but wall straw-yellow) in 5% KOH, inamyloid; hyphae are intermixed with an amorphous, honey yellow to brownish-yellow (5% KOH) granular substance. Clamp connections absent in all tissues. Hyphal system monomitic. Ontogenetic development gymnocarpic.

Ecology: gregarious to scattered, in subtropical montane environment, several specimens (more than 15) in all developmental stages, growing on litter in a mono-dominant stand of Pinus yunnanensis on acidic red soil (pH 5.9–6.5).

Material examined: China, Yunnan Province, Lijiang County, Jinshan, 26°57′44″ N, 100°22′01″ E, 2470 m alt., M. Gelardi, E. Horak, A. Horak, G. Wu, K. Zhao, Q. Zhao and S.-B. Jiao, 16 Sep 2012, GDGM 42626 and MG475a (duplicate).

3.3. Revision of the holotype material of *T. neofelleus* (TNS-F-174771) (Fig. 6)

Basidiospores [174/1/1] (7.0–)8.3 ± 0.6(−10.3) × (2.0–)3.7 ± 0.2(−4.4) μm, $Q = (1.81–)$2.22 ± 0.23(−3.88), moderately thick-walled (0.3–0.7 μm), yellowish-gray in 5% KOH, inamyloid. Basidia clavate, 4-spored, 20–27 × 7–10 μm ($n = 10$), thin-walled. Cheilocystidia collapsed, with dextrinoid content. Pleurocystidia (30–)38–52(−58) × 6–11 μm ($n = 48$), yellowish in 5% KOH, with dextrinoid content. Hymenophoral trama bilateral divergent of the “Phyllaporus-type”, lateral stratum hyphae hyaline in 5% KOH, weakly dextrinoid, 5–10 μm broad; mediostratum hyaline in 5% KOH, dextrinoid, hyphae 2–4 μm broad. Pileipellis a trichoderm of interwoven hyphae, 3–7 μm wide, yellowish in 5% KOH, dextrinoid; terminal cells 23–56 × 4–11 μm, moderately thick-walled (up to 0.9 μm), yellowish in 5% KOH, dextrinoid. Stipitipellis hymeniform, elements with brownish intracellular pigment, dextrinoid. Lateral stipe stratum under caulohymenium present and differentiated from the stipe trama, of the “boletoid type”, at stipe apex a 30–70 μm thick layer, hyphae (2–) 3–6 (–9) μm wide. Caulocystidia thick-walled (up to 1.1 μm), at stipe apex (20–)27–60(−86) × (6–)7–11(−13) μm ($n = 21$); at middle part (30–)37–63(−82) × (6–)7–11(−15) μm ($n = 19$); at stipe base (45–)61–99(−118) × (6–)7–10 μm ($n = 19$). Stipe trama composed of filamentous, smooth, thick-walled (up to 1.3 μm), hyaline in 5% KOH, dextrinoid hyphae, (5–)7–11(−14) μm broad. Basal mycelium consisting of filamentous, hyaline in 5% KOH, dextrinoid, thin-walled hyphae. Clamp connections absent.

4. Discussion

Taxa belonging to the *T. plumbeoviolaceus* complex are notoriously difficult to separate from one another due to their morpho-chromatic and organoleptic affinities (Sitta et al. 2007). However, *T. neofelleus* appears to be well characterized amongst other species on account of the following set of distinctive macroscopic and anatomical features: 1) medium-to large-sized basidiomes; 2) pileus displaying somewhat drab and pallid colors, ranging from brownish to ochraceous-brown with olive shades and gradually fading to beige-ochraceous in aged specimens, with scattered grayish-lilac hues which are more pronounced in early developmental stages, without any noticeable discoloration on handling; 3) tubes and pores at first whitish then pinkish and finally violaceous; 4) stipe whitish in the upper third but bright vinaceous-purple, lilac to violet-brown downwards, fading to ochraceous-brown with age, with a very fine violet reticulum at apex; 5) basal mycelium white; 6) context white overall and unchangeable; 7) basidiospores small sized (but see below) and with a peculiar abaxial depression near the distal end; 8) cystidia mostly fusoid with a long, narrow neck, with dextrinoid content; 9) occurrence in mixed woodlands with *Pinus* (*P. yunnanensis*, *P. densiflora*, *P. kesiya* var. *langbianensis*, etc.) and Fagaceae (*Quercus*, *Castanopsis*, *Lithocarpus*). Sometimes, olivaceous tinges in the stipe base context are observable and are also visible in at least one recent Japanese collection (TNS-F-53608). The diagnostic significance of such a feature is yet to be fully understood as the phenomenon is rare in its occurrence. There appear to be some minor morpho-chromatic differences between Chinese and Japanese material referable to *T. neofelleus*, the latter having slightly smaller dimensions, chromatic variability of pileus and stipe and pore surface usually darker than tubes (Japanese specimens nearly always exhibit pores darker than tubes whereas this character is variable in Chinese population); such morphological traits, however, are not supported by molecular analysis and should be accounted as mere infraspecific variation.

Molecular outcomes undoubtedly demonstrate that *T. neofelleus* and *T. microsporus* are contaxic. ITS and LSU sequences obtained from the holotype of *T. microsporus* perfectly match with those obtained from Japanese material of *T. neofelleus* and from the Chinese collection described here, although the holotype of *T. neofelleus* was too old and not suitable for DNA extraction. However, a major discrepancy appears by comparing the spore dimensions of the present collection with those reported for *T. neofelleus* and *T. microsporus* in their respective original descriptions, as in both...
cases they appear distinctly shorter [T. neofelleus 6.5–9.5 × 3.5–4.5 μm, Hongo 1967; T. microsporus (6.5–)7.0–9.0(–10) × 3.0–4.0(–5.0) μm, Fu et al. 2006]. Critical re-examination of the anatomical characters of type material of T. microsporus from Yunnan Province (HMAS 84730) and of an additional sample from Sichuan (HMAS 84745) as well as of the holotype of T. neofelleus (TNS-F-174771) from Japan (Table 2), clearly revealed that spore values are congruent with those reported in the protologues. Consequently, since there are no other relevant morphological differences, we conclude that the spores may be longer than reported in literature under both names (Hongo, 1967, Hongo, 1973, Takahashi, 1986, Imazeki et al., 1988 and Wang et al., 2004 as “T. plumbeoviolaceoides”; Fu et al., 2006 and Wu et al., 2011) and, therefore, the circumscription of T. neofelleus/microsporus should be adjusted to account for such variation. Additionally, it should be emphasized that the hymenophoral trama bilateral divergent of the “Phylloporus-type” (or at most intermediate between the “Phylloporus” and “Boletus” types) and the presence of the lateral stipe stratum were also observed and confirmed from both the original material of T. microsporus and the Japanese samples, including the holotype of T. neofelleus. Interestingly, the description of T. neofelleus provided in Chen et al. (2004) does not seem to match with that of either the Japanese species or with T. microsporus and might indeed be T. plumbeoviolaceoides (see discussion below).

Table 2.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Voucher</th>
<th>Spore dimensions (μm)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tylopilus microsporus</td>
<td>HMAS 84730</td>
<td>(6.6–)8.1 ± 0.7(–9.7) × (3.5–)3.9 ± 0.1(–4.3)</td>
<td>2.0 ± 0.1</td>
</tr>
<tr>
<td>Tylopilus microsporus</td>
<td>HMAS 84745</td>
<td>(7.2–)8.0 ± 0.4(–9.0) × (3.5–)3.8 ± 0.1(–4.0)</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>Tylopilus neofelleus</td>
<td>TNS-F-174771 (holotype)</td>
<td>(7.0–)8.3 ± 0.6(–10.3) × (2.0–)3.7 ± 0.2(–4.4)</td>
<td>2.2 ± 0.2</td>
</tr>
<tr>
<td>Tylopilus neofelleus</td>
<td>GDGM 42626, MG475a</td>
<td>(8.2–)9.8 ± 1.3(–13.2) × (3.2–)4.0 ± 0.4(–4.8)</td>
<td>2.4 ± 0.2</td>
</tr>
<tr>
<td>Tylopilus neofelleus</td>
<td>YT20090720</td>
<td>(6.4–)7.5 ± 0.5(–9.3) × (3.0–)3.5 ± 0.2(–4.0)</td>
<td>2.2 ± 0.1</td>
</tr>
<tr>
<td>Tylopilus neofelleus</td>
<td>YT20120820</td>
<td>(6.3–)8.2 ± 0.6(–9.7) × (3.0–)3.6 ± 0.2(–4.1)</td>
<td>2.3 ± 0.1</td>
</tr>
<tr>
<td>Tylopilus neofelleus</td>
<td>TNS-F-53608</td>
<td>(5.6–)8.2 ± 0.6(–10.0) × (3.0–)3.7 ± 0.2(–4.4)</td>
<td>2.2 ± 0.1</td>
</tr>
</tbody>
</table>

The LSU sequence analysis (Fig. 2) suggests a close affinity of T. neofelleus with T. otsuensis, a species described from Japan (Hongo, 1966 and Hongo and Nagasawa, 1975) which differs mainly in having basidiomes without violet tinges, context turning reddish-brown when exposed, taste mild to slightly bitterish, pileipellis an adpressed palisade of erect hyphae consisting of 2–3 shortly fusoid-ventricose to inflated elements [(25.0–)28.3–35.3(–38.6) × (6.5–)8.0–12.3(–15.6) μm (n = 19), Y. Taneyama, unpublished data], shorter caulocystidia [(29.5–) 31.1–36.7 (–37.5) × (5.0–)5.0–8.9 (–11.7) μm (n = 10), Y. Taneyama, unpublished data] and largely ellipsoid to ovoid spores with obtuse-rounded apex [7–8 × 4.5–5 μm or 7.5–9 × 5–6.5 μm, according to Hongo 1966; 6–7.5–
9) × 4–4.5 μm, according to Hongo and Nagasawa 1975: (5.7–)6.9 ± 0.4(−8.2) × (3.6–)4.3 ± 0.3(−5.0) μm (n = 116), Q = (1.3–)1.6 ± 0.1(−1.9), Y. Taneyama, unpublished data].

Species morphologically close to *T. neofelleus* are distributed in Asia, America, Oceania and Europe and are discussed below.

Tylopilus plumbeoviolaceoides, described from China, closely resembles *T. neofelleus* in the general appearance but is steadily distinguished by the darkly colored pileus and stipe ranging from dark violaceous to brown-vinaceous or chestnut, the context discoloring pinkish to purplish when injured, a more obvious oxidation on pores surface when touched, usually longer and somewhat narrower spores [(7.5–)8.5–10.5(−12) × (2.5–)3–3.8(−4.2) μm, Q about 2.8], shorter basidia and the growth in association with fagaceous hosts only; moreover, the phenology is dissimilar as *T. plumbeoviolaceoides* occurs much earlier (in spring season, from late March to May) (Bi et al. 1997 as “*T. plumbeoviolaceus*”; Li et al., 2002, Li, 2011 and Wu et al., 2011) than *T. neofelleus* (summer to autumn). Molecular analyses further confirm the independent taxonomic position of *T. plumbeoviolaceoides* with respect to *T. microsporus*/*T. neofelleus* (Fig. 1 and Fig. 2). Two *T. plumbeoviolaceoides* LSU sequences retrieved from GenBank (HQ326937 and KF112431, from Chinese collections) are not phylogenetically related to the holotype collection and probably represent a different taxon (Fig. 2).

Amongst the Japanese entities, *T. vinosobrunneus* Hongo has noticeably smaller basidiomes (pileus 3–7 cm wide and stipe 3–9 × 0.5–2 cm), vinaceous-brown surfaces, stipe without reticulum, pores staining brown on pressure and context turning reddish or pinkish when cut, slightly larger basidiospores (9–12 × 4–5 μm), pileipellis a palisadoderm consisting of erect chains of short-cylindrical to inflated elements, 6.5–12.5 μm wide, and is associated with *Quercus* spp. (Hongo 1979).

Two additional species have recently been reported from Japan, viz. *T. fuligineoviolaceus* Har. Takah. and *T. obscureviolaceus* Har. Takah. The evenly dark purple colored pileus, smaller basidia and the habitat in pure *Quercus-Castanopsis* woodlands distinguish both species from *T. neofelleus* (Takahashi, 2004 and Takahashi, 2007). *Tylopilus obscureviolaceus* is further distinguished by the smaller and differently shaped spores (6–7.2 × 3.3–4 μm, Q = 1.8) (Takahashi 2004), while *T. fuligineoviolaceus* also differs by the pileus becoming blackish-brown overall at maturity, the brunnescent hymenophore when handled and the smaller cystidia (Takahashi 2007).

Tylopilus griseipurpureus was originally described from Malaysia and differs from *T. neofelleus* by smaller size, dark violet to violet-brownish pileus, slightly longer spores [9–10(−11) × 3.5–4 μm], a palisade-like pileipellis consisting of fusoid to cystidioid or clavate terminal cells, 20–45 × 4–9 μm, and the association with Myrtaceae (*Melaleuca, Eucalyptus*), Fabaceae (*Acacia*), Casuarinaceae (*Casuarina*) and probably Lecythidaceae (*Gustavia*) (Corner, 1972, Aungaudchariya et al., 2010, Aungaudchariya et al., 2012 and Horak, 2011; present study). The species has been reported from Thailand several times (Chandrasrikul et al., 2008, Seehanan and Petcharat, 2008, Pukahuta et al., 2009, Aungaudchariya et al., 2010 and Aungaudchariya et al., 2012) whereas the present collection (MG521a) is an additional finding to the sole record from southern China (Hainan Province) to date (Bi et al., 1997 and Li and Song, 2000). However, it seems to be likely that *T. griseipurpureus* is restricted to the Asian tropical belt.

Tylopilus atripurpureus (Corner) E. Horak is another Malaysian species of the same complex, differing from *T. neofelleus* by smaller size, velvety and blackish-violet to dark violet-brown pileus and stipe, slightly longer spores [9–10.5(−12) × 4–4.5 μm], longer hymenial cystidia (75–100 μm long) and pileipellis a palisadoderm with short-cylindrical to subconical terminal elements, 15–
25 × 8–10 μm (Corner, 1972 and Horak, 2011). *Tylopilus atripurpureus* has also been reported from China (Zang 2006).

Concerning the American species, *T. plumbeoviolaceus* has a deep violet-purplish then purple-brown to dull cinnamon-brown pileus which may be overlaid by a hoary bloom, different macrochemical reactions with KOH, larger basidiospores [10–13(–14) × 3–4(–5.5) μm, Q = 2.8], a pileipellis consisting of erect hymeniform terminal elements (pileocystidia) and the growth in mixed deciduous woods (Snell, 1936, Snell and Dick, 1941, Snell and Dick, 1970, Singer, 1947, Mazzer and Smith, 1967, Smith and Thiers, 1971, Wolfe, 1986, Cetto, 1989, Both, 1993, Bessette et al., 2000 and Kuo, 2005).

Another comparable species, *T. violatinctus* T.J. Baroni & Both, is easily separated by the more brightly colored, bluish-violet to lilac-lavender or purple-grayish pileus, bruising dark rusty-violet when handled, the stipe turning yellowish on bruising, cuticle and context staining yellowish-brown and negative to pinkish-brown with KOH, respectively, differently shaped basidiospores [(5.6–)7–9(–10) × 3–4 μm] and shorter basidia, distinctly smaller caulocystidia and the growth in mixed woodlands possibly with *Quercus*, *Fagus* or *Picea*, in any case not in association with pine trees (Baroni and Both, 1998, Bessette et al., 2000 and Ortiz-Santana et al., 2007).

Tylopilus rubrobrunneus Mazzer & A.H. Sm. differs from *T. neofelleus* in having larger size (pileus up to 30 cm diam. and stipe up to 20 cm long × 8 cm wide), a deep violet-brown pileus becoming reddish-brown to dingy cinnamon-tan or chocolate-brown in age, the stipe vinaceous-brown without violaceous to lilac shades which are replaced at maturity by the presence of olive or olive-brown tones, longer spores [(10–)12–14 × 3–4.5(–5) μm], shorter basidia, smaller caulocystidia, basidiomes staining reddish-brown overall with KOH and the occurrence mostly, if not exclusively, with hardwoods (especially *Quercus* and *Fagus*) or under Eastern Hemlock (*Tsuga canadensis*) (Mazzer and Smith, 1967, Smith and Thiers, 1971, Grund and Harrison, 1976, Both, 1993, Baroni and Both, 1998, Bessette et al., 2000, Roody, 2003 and Kuo, 2005).

Tylopilus williamsii Singer & J. García, described from Central America (Mexico), is readily discriminated by the smaller size (pileus 5–9 cm diam., stipe 4.5–6 × 1–1.3 cm), pinkish-gray to dark brown or chocolate pileus (the violet tinge, if at all present, is visible only in the primordia and disappears very early), pores turning ochraceous-yellowish when touched, not reticulated and whitish-yellow stipe with brown areas at maturity, different chemical color reactions, “Boletus-type” hymenophoral trama and association with oaks (Singer et al., 1991 and Baroni and Both, 1998).

The Costarican *T. bulbosus* Halling & G.M. Muell. differs from *T. neofelleus* based on context and hymenophore discoloring brownish to pinkish-brown on injury or exposure, mild taste, larger spores [10–14 × 4.2–4.9 (–5.6) μm], longer cystidia (50–80 × 8–14 μm) and occurrence in montane neotropical frondose woods dominated by *Quercus* spp. (Halling and Mueller 2001).

The Australian *T. austrofelleus* (Cleland) Watling & N.M. Greg. as originally delimited (Cleland 1924) is most likely a heterogeneous mixture of different taxa (Watling and Gregory 1989), however all samples attributable to this collective species are morpho- and ecologically totally different from *T. neofelleus* (Watling and Li 1999).

Stevenson (1962) described *T. formosus* G. Stev. from New Zealand. This species is readily separated from *T. neofelleus* based on the chocolate-brown to dark brownish-black pileus and stipe sometimes with deep purplish tints, the hymenophore becoming pale brownish-orange at maturity due to spores color, longer spores [9.8–14.2(–15) × 4–5.3 μm], broader hymenial cystidia (10–
16 μm wide) and growth in association with *Leptospermum* (Myrtaceae) and *Nothofagus* (Nothofagaceae) (Stevenson, 1962 and McNabb, 1968).

Tylopilus felleus, described originally from Europe but also present in North America and China (see Fig. 1 and Fig. 2), differs by the basidiomes without violaceous or purplish tinges in any developmental stage, a usually well developed and pronounced brownish reticulum covering the stipe throughout, the growth often amongst wood debris and longer, fusoid basidiospores, (10.2–11.7–14.5(–16.2) × (4.1–)4.5–5.3 μm, $Q = (2.3–)2.5–2.8(–3.0)$ (Breitenbach and Kränzlin, 1991, Lannoy and Estadès, 2001, Muñoz, 2005 and Watling and Hills, 2005). According to the ITS analysis (Fig. 1) it seems that some Asiatic and American collections labeled as “*T. felleus*” could represent distinct and (still) undescribed species.

It is to be noted that several taxonomic relationships within *Tylopilus* s.l. remain unresolved due to the relatively small number of DNA isolates currently available for this large puzzling genus and an evaluation of the species/group limits is still premature.

Disclosure

The authors declare no conflict of interest.

Acknowledgments

Special thanks to Z.-L. Yang of the Kunming Institute of Botany, China, for inviting and supporting logistic help during the stay of MG in China and for the fieldwork opportunities. The first author is also grateful to: G. Wu (Kunming, China) and other graduate and undergraduate students for their assistance in collecting fungi in Yunnan Province; T. Li (Guangzhou, China) for dedicating time to the extraction of DNA from additional *Tylopilus* isolates; A. Koyama (Fujimi-Cho, Japan) for giving us permission to use a picture of *T. neofelleus*; and Y.-C. Li (Kunming, China) for providing color pictures and field notes on another *T. neofelleus* collection from Yunnan. The loan of original icons (digitized by OSA supported by JSPS KAKENHI Grant number 23300333) and field notes by Hongo of *T. neofelleus* and *T. otsuensis* (D. Sakuma, Osaka Museum of Natural History, Osaka, Japan) and of type collection and additional material of *T. microsporus* from HMAS (Y.J. Yao, Institute of Microbiology, Beijing, China) for anatomical re-examination were greatly appreciated. We are indebted with the curator of the herbarium TNS K. Hosaka (Tsukuba, Japan) for sending the type material of *T. neofelleus* for re-examination. R.E. Halling (New York, USA) is warmly acknowledged for providing bibliographic material on American *Tylopilus* species and D. Arora (Gualala, USA) for sharing useful information.

References

1. Aungaudchariya et al., 2010
 - A. Aungaudchariya, P. Bangrak, B. Dell, N. Kamlangdee
 - Genetic study of *Boletus griseipurpureus* from Melaleuca forest
 - International Conference on Biotechnology and Healthy Living, The 22nd Annual Meeting of the Thai Society for Biotechnology, Prince of Songkla University, Trang Campus, Thailand, October 20–22 (2010), p. 8

2. Aungaudchariya et al., 2012
 - A. Aungaudchariya, P. Bangrak, B. Dell, S. Lumyong, N. Kamlangdee
Preliminary molecular identification of *Boletus griseipurpureus* Corner from Thailand and its nutritional value

3. Baroni and Both, 1998
 T.J. Baroni, E.E. Both
 Tylopilus violatinctus, a new species of *Tyopilus* for North America with comments on other violaceous *Tylopilus* taxa

4. Bessette et al., 2000
 A.E. Bessette, W.C. Roody, A.R. Bessette
 North American boletes. A color guide to the fleshy pored mushrooms

5. Bi et al., 1997
 Z.-S. Bi, T.-H. Li, W.-M. Zhang, B. Song
 A preliminary agaric flora of Hainan Province

6. Binder and Bresinsky, 2002
 M. Binder, A. Bresinsky
 Retiboletus, a new genus for species-complex in the Boletaceae producing retipolites
 Feddes Repertorium Specierum Novarum Regni Vegetabilis, 113 (2002), pp. 30–40
 http://dx.doi.org/10.1002/1522-239x(200205)113:1/2%3c30::aid-fedr30%3e3.0.co;2-d

7. Binder and Hibbett, 2006
 M. Binder, D.S. Hibbett
 Molecular systematics and biological diversification of Boletales
 Mycologia, 98 (2006), pp. 971–981 http://dx.doi.org/10.3852/mycologia.98.6.971

8. Both, 1993
 E.E. Both
 The boletes of North America. A compendium
 Buffalo Museum of Science, Buffalo (1993)

 J. Breitenbach, F. Kränzlin
 Pilze der Schweiz
 Röhrlinge und Blätterpilze, vol 3, Verlag Mykologia, Luzern (1991) (in German)

10. Cetto, 1989
 B. Cetto

11. Chandrasrikul et al., 2008
 A. Chandrasrikul, P. Suwanarit, U. Sangwanit, T. Morinaga, Y. Nishizawa, Y. Murakami
 Diversity of mushrooms and macrofungi in Thailand
 Kasetsart University Publishing House, Bangkok (2008)
12. Chen et al., 2004
 o C.M. Chen, Y.S. Ho, W.N. Chou, T.C. Lin
 o Four *Tylopilus* species (Boletaceae) new to Taiwan
 o *Taiwania*, 49 (2004), pp. 109–117

13. Chiu, 1948
 o W.F. Chiu
 o The boletes of Yunnan

14. Chiu, 1957
 o W.F. Chiu
 o Atlas of the Yunnan boletes – Bolete flora of Yunnan

15. Cleland, 1924
 o J.B. Cleland
 o Australian fungi: notes and descriptions no. V

16. Corner, 1972
 o E.J.H. Corner
 o *Boletus* in Malaysia
 o The Botanic Gardens, Government Printing Office, Singapore (1972)

17. Drehmel et al., 2008
 o D. Drehmel, T. James, R. Vilgalys
 o Molecular phylogeny and biodiversity of the boletes
 o *Fungi*, 1 (2008), pp. 17–23

18. Felsenstein, 1985
 o J. Felsenstein
 o Confidence limits on phylogenies: an approach using the bootstrap

19. Fu et al., 2006
 o S.Z. Fu, Q.B. Wang, Y.J. Yao
 o *Tylopilus microsporus*, a new species from Southwest China
 o *Mycotaxon*, 96 (2006), pp. 41–46

20. Grund and Harrison, 1976
 o D.W. Grund, A.K. Harrison
 o Nova Scotian boletes
 o *Bibliotheca Mycologica*, 47 (1976), pp. 1–283

 o R.E. Halling, G.M. Mueller
 o *Tylopilus bulbosus* sp. nov. from Costa Rica
22. Halling et al., 2012a
 - R.E. Halling, M. Nuhn, N. Fechner, T.W. Osmundson, K. Soytong, D. Arora, D.S. Hibbett, M. Binder
 - Sutorius: a new genus for Boletus eximius
 - Mycologia, 104 (2012), pp. 951–961 http://dx.doi.org/10.3852/11-376

23. Halling et al., 2012b
 - Affinities of the Boletus chromapes group to Royoungia and the description of two new genera, Harrya and Australopilus

24. Hongo, 1960
 - T. Hongo
 - The agaricales of Japan 1–2. Rhodophyllaceae, Paxillaceae, Gomphidiaceae, Boletaceae and Strobilomycetaceae

25. Hongo, 1966
 - T. Hongo
 - Notulae mycologicae (5)
 - Memoirs of the Faculty of Education of Shiga University, Natural Sciences, 16 (1966), pp. 57–62

26. Hongo, 1967
 - T. Hongo
 - Notes on Japanese larger fungi (19)

27. Hongo, 1973
 - T. Hongo
 - Enumeration of the Hygrophoraceae, Boletaceae and Strobilomycetaceae. Mycological reports from New Guinea and the Solomon Islands (16–21)
 - Bulletin of the National Science Museum (Tokyo), 16 (1973), pp. 537–557

28. Hongo, 1979
 - T. Hongo
 - Two new boletes from Japan
 - Beihefte zur Sydowia, 8 (1979), pp. 198–201

29. Hongo and Nagasawa, 1975
 - T. Hongo, E. Nagasawa
 - Notes on some boleti from Tottori
 - Reports of the Tottori Mycological Institute, 12 (1975), pp. 31–40

30. Horak, 2011
 - E. Horak
o Revision of Malaysian species of Boletales s.l. (Basidiomycota) described by E. J. H. Corner (1972, 1974)
 o (2011) Malayan Forest Records 51, Kuala Lumpur

31. Huelsenbeck and Ronquist, 2001
 o J.P. Huelsenbeck, F. Ronquist
 o MrBayes: Bayesian inference of phylogeny
 o Bioinformatics, 17 (2001), pp. 754–755
 http://dx.doi.org/10.1093/bioinformatics/17.8.754

32. Imazeki et al., 1970
 o R. Imazeki, T. Hongo, K. Tsubaki
 o Common fungi of Japan in color

33. Imazeki et al., 1988
 o R. Imazeki, Y. Otani, T. Hongo
 o Fungi of Japan

34. Katoh et al., 2002
 o K. Katoh, K. Misawa, K. Kuma, T. Miyata
 o MAFFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform
 o Nucleic Acids Research, 30 (2002), pp. 3059–3066
 http://dx.doi.org/10.1093/nar/gkf436

35. Kawamura, 1954
 o S. Kawamura
 o Icones of Japanese fungi, vol II, Kazamashobo, Tokyo (1954)

36. Kuo, 2005
 o M. Kuo
 o The genus Tylopilus

37. Lannoy and Estadès, 2001
 o G. Lannoy, A. Estadès
 o Flore Mycologique d'Europe 6 – Les Bolets
 o (2001) Documents Mycologiques, Mém. hors série 6, Lille

38. Li, 2011
 o F. Li
 o Atlas of macrofungi in Heishiding

39. Li and Song, 2000
 o T.H. Li, B. Song
 o Chinese boletes: a comparison of boreal and tropical elements
40. Li et al., 2002
 T.H. Li, B. Song, Y.H. Shen
 A new species of *Tylopilus* from Guangdong
 Mycosystema, 21 (2002), pp. 3–5

41. Li et al., 2011
 Y.C. Li, B. Feng, Z.L. Yang
 Zangia, a new genus of Boletaceae supported by molecular and morphological evidence

42. Li et al., 2014
 Y.C. Li, B. Ortiz-Santana, N.K. Zeng, B. Feng, Z.L. Yang
 Molecular phylogeny and taxonomy of the genus *Veloporphyrellus*

43. Li and Yang, 2011
 Y.C. Li, Z.L. Yang
 Notes on tropical boletes from China

44. Mao, 2009
 X.L. Mao
 Macromycetes of China
 Science Press, Beijing (2009)

45. Mazzer and Smith, 1967
 S.J. Mazzer, A.H. Smith
 New and interesting boletes from Michigan
 The Michigan Botanist, 6 (1967), pp. 57–67

46. McNabb, 1968
 R.F.R. McNabb
 The Boletaceae of New Zealand
 New Zealand Journal of Botany, 6 (1968), pp. 137–176
 http://dx.doi.org/10.1080/0028825X.1968.10429056

47. Muñoz, 2005
 J.A. Muñoz
 Boletus s.l. (excl. Xerocomus)
 - E. Nagasawa
 - A preliminary checklist of the Japanese Agaricales. I. The Boletineae
 - Reports of the Tottori Mycological Institute, 35 (1997), pp. 39–78

49. Nuhn et al., 2013
 - M.E. Nuhn, M. Binder, A.F.S. Taylor, R.E. Halling, D.S. Hibbett
 - Phylogenetic overview of the Boletineae
 - Fungal Biology, 117 (2013), pp. 479–511
 http://dx.doi.org/10.1016/j.funbio.2013.04.008

50. Ortiz-Santana et al., 2007
 - B. Ortiz-Santana, D.J. Lodge, T.J. Baroni, E.E. Booth
 - Boletes from Belize and the Dominican Republic

51. Posada, 2008
 - D. Posada
 - jModeltest: phylogenetic model averaging
 http://dx.doi.org/10.1093/molbev/msn083

52. Pukahuta et al., 2009
 - C. Pukahuta, W. Palasarn, A. Pimmongkol
 - Taxonomic study of wild edible pore fungi found in Ubon Ratchathani
 - Journal of Microscopy Society of Thailand, 23 (2009), pp. 30–33

53. Roody, 2003
 - W.C. Roody
 - Mushrooms of West Virginia and the Central Appalachians

54. Seehanan and Petcharat, 2008
 - S. Seehanan, V. Petcharat
 - Some species of wild Boletes in Thailand

55. Singer, 1947
 - R. Singer
 - The Boletoidae of Florida. The Boletineae of Florida with notes on extralimital species III

56. Singer, 1986
 - R. Singer
 - The agaricales in modern taxonomy

57. Singer et al., 1991
 - R. Singer, J. García, L.D. Gómez
 - The Boletineae of Mexico and Central America – III
58. N. Sitta, N. Togni, M. Zotti
Guida alla conoscenza e all'analisi dei funghi secchi – Capitolo 4
AA.VV. (Ed.), Parliamo di funghi – Manuale per i corsi di formazione per il rilascio
dell'attestato di Micologo, vol 6 & 7, Provincia Autonoma di Trento – Assessorato alle
Politiche per la salute, Trento (2007), pp. 237–318

59. Smith and Thiers, 1971
A.H. Smith, H.D. Thiers
The Boletes of Michigan
University of Michigan Press, Ann Arbor (1971)

60. Snell, 1936
W.H. Snell
Notes on boletes. V

61. Snell and Dick, 1941
W.H. Snell, E.A. Dick
Notes on boletes. VI

62. Snell and Dick, 1970
W.H. Snell, E.A. Dick
The boleti of Northeastern North America

63. Stamatakis, 2006
A. Stamatakis
RAxML-VI-HPC: maximum likelihood based phylogenetic analyses with
thousands of taxa and mixed models
Bioinformatics, 22 (2006), pp. 2688–2690
http://dx.doi.org/10.1093/bioinformatics/btl446

64. Stevenson, 1962
G. Stevenson
The Agaricales of New Zealand. I. Boletaceae and Strobilomycetaceae

65. Takahashi, 1986
H. Takahashi
A new form of Tylopilus neofoelleus from eastern Japan
Transactions of the Mycological Society of Japan, 27 (1986), pp. 95–97

66. Takahashi, 2004
H. Takahashi
Two new species of Agaricales from southwestern islands of Japan
67. Takahashi, 2007
 - H. Takahashi
 - Five new species of the Boletaceae from Japan

68. Tamura et al., 2011
 - K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar
 - MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary
distance, and maximum parsimony methods
 - Molecular Biology and Evolution, 28 (2011), pp. 2731–2739
 http://dx.doi.org/10.1093/molbev/msr121

69. Thiers, 2014
 - B. Thiers
 - Index Herbariorum: a global directory of public herbaria and associated staff
 - Botanical Garden's Virtual Herbarium, New York (2014 (continuously updated))

70. Vasil'jeva, 1978
 - L.N. Vasil'jeva
 - Edible mushrooms of the Far East

71. Vilgalys and Hester, 1990
 - R. Vilgalys, M. Hester
 - Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from
 several Cryptococcus species
 - Journal of Bacteriology, 172 (1990), pp. 4238–4246

72. Wang et al., 2004
 - X.H. Wang, P.G. Liu, F.Q. Yu
 - Color atlas of wild commercial mushrooms in Yunnan

73. Watling and Gregory, 1989
 - R. Watling, N.M. Gregory
 - Observations on the boletes of the Cooloola Sandmass, Queensland and notes on their
distributions in Australia. Part 2C: smooth spored taxa – Strobilomycetaceae

74. Watling and Hills, 2005
 - R. Watling, A.E. Hills
 - Boletes and their allies – Boletaceae, Strobilomycetaceae, Gyroporaceae, Paxillaceae,
 Coniophoraceae, Gomphidiaceae (revised and enlarged edition)
 - D.M. Henderson, R. Watling (Eds.), British fungus flora, agaries and boleti, vol 1, HMSO,
 Edinburgh (2005)

75. Watling and Li, 1999
 - R. Watling, T.H. Li
 - Australian boletes. A preliminary survey
76. White et al., 1990
○ T.J. White, T.D. Bruns, S. Lee, J. Taylor
○ Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics

77. Wolfe, 1986
○ C.B. Wolfe
○ Type studies in *Tylopilus*. III. Taxa described by Walter H. Snell, Esther A. Dick and co-workers

78. Wu et al., 2014
○ Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae
○ Fungal Diversity (2014) http://dx.doi.org/10.1007/s13225-014-0283-8 (online first)

79. Wu et al., 2011
○ X.L. Wu, Y.C. Dai, T.H. Li, Z.L. Yang, B. Song
○ Fungi of tropical China

80. Ying and Zang, 1994
○ J.Z. Ying, M. Zang
○ Economic macrofungi from southwestern China

81. Zang, 1986
○ M. Zang
○ Notes on the Boletales from Eastern Himalayas and adjacent areas of China (in Chinese)
○ Acta Botanica Yunnanica, 8 (1986), pp. 1–22

82. Zang, 2006
○ M. Zang
○ Boletaceae (I)

83. Zhuang, 2001
○ W.Y. Zhuang
○ Higher fungi of tropical China
○ Mycotaxon, Ithaca (2001)

Corresponding author. Tel.: +39 011 6705702; fax: +39 011 6705962.
Recommended articles

1. Lectotypification, epitypification, and molecular phylogeny of the synnematous hyphomycete *Pseudogliophragma indicum*, the second genus in the *Wiesneriomycetaceae*

2015, Mycoscience

2. *Coprinopsis igarashii* sp. nov., a coprophilous agaric fungus from Hokkaido, northern Japan

2015, Mycoscience

3. Phylogenetic relationships among biological species of *Armillaria* from China

2015, Mycoscience