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Abstract

This paper formalizes the pervasive phenomenon of the self-serving bias

within the framework of reference dependent preferences. This formulation

allows the stating of a simple rule to assess the existence of the bias at the

aggregate level as well as a procedure that identifies the minimum number

of biased agents. We apply the model to two standard situations: a litigation

between a plaintiff and a defendant and a bankruptcy problem. In the litigation

case, we show how the combination of self-serving bias and reference dependent

preferences increases the likelihood that a dispute proceeds to trial. In the

bankruptcy case, we show how the existence of individuals with self-serving

biased reference points exacerbates the conflict between equity and effi ciency of

the final allocation.
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1 Introduction

Self-serving bias is a pervasive phenomenon that influences individual behavior in a

variety of ways: people tend to overestimate their own merits and abilities, to favor-

ably acquire and interpret information, to give biased judgments about what is fair

and what is not, and to inflate their claims and contributions.1 As such, self-serving

bias (from now on SSB) can have important social and economic implications. For

instance, it is considered as one of the main causes of costly impasses in bargaining

and negotiations (see Babcock et al., 1995 and Babcock and Loewenstein, 1997) as

well as a source of political instability (Heyndels and Ashworth, 2003). Moreover, it

has been argued that SSB increases the propensity to strike (Babcock et al., 1996),

the incidence of trials (Farmer and Pecorino, 2002), and the intensity of marital con-

flicts (Schütz, 1999). Even if the importance of SSB is widely acknowledged in the

economic literature, a proper formalization of the concept, as well as the analytical

study of its implications, are still somehow scarce and case-specific. In this paper we

aim to introduce a more general theoretical framework for modeling and studying

the effects of the bias. This framework combines SSB with the notion of reference

dependent preferences.

Reference dependent preferences (from now on RDP) explicitly acknowledge the

fact that an agent’s evaluation of a given outcome can be influenced by comparing

it with a certain reference point. This intuition goes back to the loss aversion

conjecture introduced in the classical article by Kahneman and Tversky (1979) and

more recently modeled by Koszegi and Rabin (2006): people define gains and losses

with respect to a reference point and losses loom larger than gains.

We postulate that SSB affects agents’reference points in a trivial but systematic

1Research in psychology and sociology provides many convincing examples for the existence of
such a bias. For instance, Svenson (1981) reports that the overwhelming majority of subjects (93%)
feel they drive better than the average while Ross and Sicoly (1979) show how, within married
couples, the sum of the two self-assessed personal contributions to various household tasks usually
exceeds 100%.
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way. We claim in fact that, everything else being equal, a self-serving biased agent

will have the tendency to set a reference point that is higher then the one his unbiased

counterpart would set. This consideration leads to a simple rule for assessing the

existence of SSB at the aggregate level: whenever agents’reference points are not

mutually compatible (i.e., their sum exceeds the surplus available in the transaction)

then one can conclude that at least some of the players are self-serving biased. By

recursively applying this rule to progressively smaller sets of agents, we are also able

to put a lower bound on the number of biased individuals.

We investigate the implications of the proposed framework in two common situ-

ations where SSB is (very) likely to play a role: a litigation between two parties and

a bankruptcy problem.2 In the first case, we model the choices of a plaintiff and a

defendant who can either settle their dispute out of court or proceed to a costly trial.

This is a major topic as a noticeable percentage of litigations reach the courtroom

with obvious costs for the contendants as well as for the effi ciency and speed of the

legal system.3 Shavell (1982) and Bebchuk (1984) have been the first to show how

wrong beliefs (and in particular optimistic beliefs) about the likelihood of prevailing

at trial reduce the space for settlements and make trials more likely. More recently,

Farmer and Pecorino (2002) have explicitly analyzed the role of the self-serving bias

in litigations. In their formulation, SSB takes the form of a multiplicative bias that

inflates (for the plaintiff) or deflates (for the defendant) the objective probability

that the judge will decide in favor of the plaintiff. Despite some peculiar situations,

the authors find that usually a larger SSB increases the incidence of trials. Bar-Gill

(2005) studies instead the evolutionary properties of optimistic beliefs (but argues

that the analysis also applies to other cognitive biases such as the SSB) and shows

2As such, the paper also contributes to the growing literature about behavioral welfare economics
(see Bernheim and Rangel, 2007, for a recent review) that studies the welfare/policy implications
of behavioral models vis-à-vis traditional models.

3 In general, around 10% of legal disputes are litigated in a trial (Bar-Gill, 2005). However, in
the case of medical malpractice lawsuits this figure climbs up to 39% (Studdert et al., 2006).
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that this bias is evolutionary stable as it makes a party more succesfull in extracting

more favorable settlements. Building on these papers, we show how the combination

of SSB and RDP confirms the detrimental role that the bias has in the chances of

reaching a settlement out of the court but, perhaps surprisingly, does not further

amplify it.

The second application that we investigate is a classical bankruptcy problem

(see Thomson, 2003, for a recent review about the vast literature on the topic),

i.e., the problem of optimally allocating a scarce resource among a finite number

of claimants. We show that whenever at least some of the claimants display SSB

then the allocation that matches each agent’s reference point is unfeasible. The

planner is thus forced to disappoint at least some of the claimants and this raises

a number of interesting questions. Shall the planner disappoint (a little) all the

claimants? Or shall he match the expectations of a few while disappointing (a

lot) the remaining ones? If so, who shall the planner favor? We investigate these

issues under different social welfare specifications and show how the combination of

SSB and RDP exacerbates the trade-off between equity and effi ciency of the final

allocation.

The paper is organized as follows. Section 2 introduces a model of self-serving

biased reference points and presents some general results. Section 3 applies the pro-

posed model to a litigation problem. Section 4 investigates a bankruptcy problem.

Section 5 concludes.

2 Reference dependent preferences and self-serving bias

Koszegi and Rabin (2006) introduced the following analytical formulation of refer-

ence dependent preferences:

u(x, r) = m(x) + µ(m(x)−m(r))
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The increasing function m(·) captures the direct effect that the possession or

consumption of good x has on total utility u(·). The function µ(·) is a “universal

gain-loss function”. Given the reference point r, µ(·) reflects the additional effects

that perceived gains or losses have on u(·). More precisely, and in line with the orig-

inal prospect theory formulation of Kahneman and Tversky (1979), µ(·) is assumed

to satisfy the following properties:

P1: µ(z) is continuous for all z, strictly increasing and such that µ(0) = 0.

P2: µ(z) is twice differentiable for z 6= 0.

P3: µ′′(z) > 0 if z < 0 and µ′′(z) < 0 if z > 0.

P4: if y > z > 0 then µ(y) + µ(−y) < µ(z) + µ(−z).

P5: limz→0− µ
′(z)/ limz→0+ µ

′(z) ≡ λ > 1.

Therefore the function µ(·) is convex for values of x that are below r (domain

of losses) and concave for values of x that are above r (domain of gains). Property

P3 also implies that the marginal influence of these perceived gains and losses is

decreasing.4 P4 means that for large absolute values of z the function µ(·) is more

sensitive to losses than to gains. P5 implies the same result for small values of z:

µ(·) is steeper approaching the reference point from the left (losses) rather than from

the right (gains). Taken together, these last two properties capture the loss aversion

phenomenon.

On the other hand, the five properties are silent about how an individual sets his

reference point r. This is clearly a problematic issue to tackle given the subjective

nature of such a choice. Different individuals can set different reference points ac-

cording to what they have (as in the traditional status quo formulation of Kahneman

4 In the two applications that we will later consider (Section 3 and Section 4) we will actually
work with linear functions that do not capture diminishing sensitivity but still provide an adequate,
and much more tractable, characterization of RDP. In those contexts property P3 will thus be
substituted by property P3′: For all z, µ′′(z) = 0. This alternative property is also mutuated from
Koszegi and Rabin (2006, see property A3′, page 1140).

5



and Tversky, 1979), to what they expect (as proposed in Koszegi and Rabin, 2006)

or to what they think they deserve, just to name a few possibilities.

No matter the specific features of this introspective process, we argue that the

self-serving bias affects in a systematic way the reference point the agent set. Bab-

cock and Loewenstein (1997, p. 110) define SSB as a tendency “to conflate what is

fair with what benefits oneself”. In line with this definition, we claim that, every-

thing else being equal, a biased agent will set a higher reference point with respect

to his hypothetical unbiased counterpart, i.e., r(biased) > r(unbiased). This simple

consideration implies that SSB has a negative effect on individual utility. In fact,

a biased reference point leads to either smaller perceived gains or larger perceived

losses. The following lemma clarifies this point.

Lemma 1 For any given x, u(x, r(biased)) < u(x, r(unbiased)).

Proof. Property P1 and the fact that m(·) is an increasing function imply that

µ(·) is decreasing in r. Given the assumption r(biased) > r(unbiased), this implies

that, for any given x, µ(m(x)−m(r(biased))) < µ(m(x)−m(r(unbiased))). Therefore,

u(x, r(biased)) < u(x, r(unbiased)).

Now consider all those situations in which n ≥ 2 agents have preferences that

can be captured by RDP and that are defined on all the possible allocations of

a given surplus of size S ∈ R. The cases in which the surplus available in the

problem under scrutiny is negative (perhaps because of the existence of some kind

of transaction costs) are then captured by setting S < 0. A classical example is a

costly trial between a plaintiff and a defendant in a suit for damages. The case with

S = 0 mimics a zero-sum game of pure transfers among the agents. The case with

S > 0 captures instead all the situations in which a positive surplus must be shared

among different claimants. Examples include bankruptcy and bargaining problems,

principal-agent relations and lobbying.
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Let the utility function of agent i ∈ {1, ..., n} be ui(xi, ri) = m(xi) + µ(m(xi)−

m(ri)).5 Now imagine that agents have reference points that are not self-serving

biased. Almost tautologically, unbiased reference points should be mutually com-

patible. This means that the sum of these reference points should be equal to the

available surplus, i.e.,
∑

i ri(unbiased) = S. The framework of unbiased reference

points provides a benchmark that can be used to assess the existence of agents that

are self-serving biased.

Definition 1 If
∑

i ri > S then at least some of the agents are self-serving biased.

Notice that Definition 1 allows the identification of the existence of SSB only at

the aggregate level. For instance, in the case with S > 0, we did not define SSB

at the individual level with the condition ri > S
n . In fact, it could well be the case

that an agent sets ri > S
n without being biased but simply because he objectively

deserves more than others. However, if claims are not compatible (i.e., if
∑

i ri > S)

then SSB surely inflates the reference point of some of the players.6 By recursively

applying Definition 1 to progressively smaller sets of agents, it is possible to set a

lower bound on the number of biased individuals.

Proposition 1 Given n ≥ 2 agents and their reference points ri where, without loss

of generality, r1 ≤ r2 ≤ ... ≤ rn, then the number of self-serving biased agents is at

least n− k + 1 where k is such that
∑k

i=1 ri > S and
∑k−1

i=1 ri ≤ S.

Proof. Consider the set N = {1, ..., n} and, without loss of generality, let r1 ≤ r2 ≤

... ≤ rn. If
∑n

i=1 ri > S, then, by Definition 1, at least one player is biased. Imagine

that agent n is the only biased agent. Moreover, imagine that his bias is extreme,
5Notice that this specification allows for heterogeneity in agents’reference points but assumes

that the functions m(·) and µ(·) are the same across individuals.
6We do not consider the situation of

∑
i ri < S as this would imply that some agents display a

self-defeating bias, an hypothesis whose empirical support is much weaker.
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i.e., rn(unbiased) = 0. Now consider the set N\ {n} = {1, ..., n− 1}. If
∑n−1

i=1 ri > S

then, again by Definition 1, there must be at least another biased agent. Remove

agent n− 1 and apply the same procedure. The process is iterated until one reaches

the set N\ {k, ..., n} = {1, ..., k − 1} with
∑k

i=1 ri > S and
∑k−1

i=1 ri ≤ S. This is

the largest possible set that is consistent with the hypothesis of unbiased agents. It

follows that n − k + 1 is the minimum number of self-serving biased agents within

the original set N .

Example 1 Consider two hypothetical situations with n = 4 and S = 1. In the

first one, let r1 = 0.2, r2 = 0.3, r3 = 0.3 and r4 = 0.5 such that
∑4

i=1 ri = 1.3.

Given that
∑3

i=1 ri < 1, we have that k = 4 and n − k + 1 = 1. Therefore, we can

only conclude that there is at least one biased claimant. In the alternative scenario,

let r1 = 0.4, r2 = 0.7, r3 = 0.8 and r4 = 0.9 such that
∑4

i=1 ri = 2.8. Given that∑2
i=1 ri > 1 and

∑1
i=1 ri < 1, we have that k = 2 and n − k + 1 = 3. Therefore,

there are at least three biased agents.

3 An application to a litigation problem

In this section we apply the framework of RDP and SSB to a standard litigation

problem. We want to investigate which are the implications of the proposed model

for what concerns agents’decision to proceed to a costly trial versus a settlement out

of court. In particular, we compare the results of the model (subsection 3.3) with

two benchmark situations: the case in which litigants have perfect information and

rational preferences (subsection 3.1) and the case in which litigants have self-serving

biased beliefs but, other than that, still standard rational preferences (subsection

3.2).

The general structure of our analysis follows the one introduced in Shavell (1982)

and more recently used by Bar-Gill (2005). As such, we model a litigation as a game
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between two risk-neutral players: a plaintiff (p) and a defendant (d). The plaintiff

moves first and must decide if to sue the defendant. In case of suit, then the two

players can either agree on a certain settlement or proceed to court. Let cp, cd > 0

be the costs that the two players must bear if the case goes to trial and C = cp+ cd

the sum of these legal costs,7 q ∈ (0, 1) the true probability of a judgement in favor

of the plaintiff, and W > 0 the true reimbursement the defendant must pay the

plaintiff in case the latter wins the trial. We assume that qW − cp > 0 such that the

expected value of the trial for the plaintiff.

3.1 The case with perfect information

If both players know q and W with certainty, the plaintiff always sues the defen-

dant and then the two agents always agree on a settlement where the defendant

pays the plaintiff an amount qW . Agents’ expected payoffs are in fact given by

E(up/suit, settlement) = qW and E(ud/settlement) = −qW that strictly dominate

the expected payoffs that would follow a trial, namely E(up/suit, trial) = qW − cp
and E(ud/trial) = −qW −cd. It follows that if information was perfect trials should

never be observed.

3.2 The case with self-serving bias

A necessary condition for a litigation to proceed to trial is thus that at least one

of the two parties does not possess perfect information and displays some sort of

bias in his beliefs about the unknown parameters of the model. In this section, we

assume that litigants do not know the true W and that their subjective ex-ante

assessment Wi with i ∈ {p, d} can be influenced by the self-serving bias.8 More

7We analyze the situation under the so-called American rule according to which each contendant
bears his own legal costs no matter the result of the trial.

8Notice that this is a slightly different approach with respect to how Shavell (1982) and Bar-Gill
(2005) model optimistic beliefs (see also Langlais, 2008). In fact in these papers agents do not
know the true q and optimism influences qi, the perceived probability of a judgement in favor of the
plaintiff. In our model agents do not know W and SSB affects Wi, the perceived reimbursement
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precisely, Wp = Wd = W if both agents are unbiased. On the other hand, Wp > W

if the plaintiff is biased while W > Wd if the defendant is biased. Expected payoffs

are thus given by:

Expected utility of the plaintiff p:

 E(up/suit, trial) = qWp − cp
E(up/suit, settlement) =

qWp−cp+qWd+cd
2

Expected utility of the defendant d:

 E(ud/trial) = −qWd − cd
E(ud/settlement) = − qWp−cp+qWd+cd

2

Where, in line with Bar-Gill (2005), we have assumed that in a settlement the

defendant pays the plaintiff an amount qWp−cp+|−qWd−cd|
2 . This amount corresponds

to the mean of the two reservation prices (i.e., the expected payoffs in case of trial).9

The analysis of the payoffs confirms a well-known result (Shavell, 1982, Bar-Gill,

2005): the litigation proceeds to trial if and only if the condition

qWp − cp > qWd + cd (1)

holds. On the other hand, settlement thus occurs whenever qWp − cp ≤ qWd + cd.

Condition 1 also allows to determine the maximum level of legal costs ci with

i ∈ {p, d} for which agent i still prefers to proceed to trial. More precisely, agent i

proceeds to trial whenever ci < ĉi where ĉi = qWp − qWd − cj with j ∈ {p, d} and

j 6= i.10 We will compare these thresholds with those that emerge in a situation

where SSB is modeled within RDP.

the defendant must pay if the plaintiff wins the trial. While the analytical implications of the
two approaches are basically the same (what matters are expected payoffs), we think that our
characterization better matches the definition of SSB as a bias that inflates “how much an agent
thinks he deserves” (and similarly their approach better describes optimism, i.e., a bias that leads
agents to overestimate their probability to win).

9 In other words, we imagine a situation in which the two players announce their reservation
prices and then bargain with equal bargaining power such that they settle on the mean value.
10This formulation confirms the standard result according to which “Under the American system,

there will be a trial if and only if the plaintiff ’s estimate of the expected judgment exceeds the
defendant’s estimate by at least the sum of their legal costs”(Shavell, 1982, page 63). In fact, trial
occurs if and only if ci < ĉi, i.e., ci < qWp − qWd − cj for some i ∈ {p, d} and j 6= i. It follows that
trial occurs if and only if qWp − qWd > ci + cj .
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3.3 The case with self-serving biased reference points

Now let the two litigants display reference dependent preferences à la Koszegi and

Rabin (2006), i.e., ui(xi, ri) = xi + µ(xi − ri) where xi is the monetary transfer

that agent i ∈ {p, d} receives/pays and ri is his ex-ante reference point.11 In such

a context reference points are naturally given by players’ expectations about the

outcome of the trial. More precisely, rp = qWp − cp > 0 and rd = −qWd − cd < 0

where, as in the previous section, Wp ≥ W ≥ Wd with strict inequalities if agents

are self-serving biased.

Notice moreover that the surplus available in the transaction is negative. In

fact, while the amount of money that the defendant pays to the plaintiff is a simple

monetary transfer between the two agents, the legal costs that agents incur in case

of a trial are dissipated. Therefore, using the notation introduced in Section 2, we

have S < 0 and in particular S = −C where C = cp + cd. In line with Definition

1, we thus observe that rp + rd = S if both agents are unbiased while rp + rd > S

whenever at least one of the two agents displays a self-serving biased reference point.

We can also express the proposed settlement identified in Subsection 3.2 in terms

of the reference points given that qWp−cp+qWd+cd
2 =

rp−rd
2 . The condition that leads

to trial (qWp − cp > qWd + cd, see condition (1) in the previous subsection) can be

reformulated as rp > |rd|. It follows that settlement occurs if and only if rp ≤ |rd|.

Agents’expected payoffs are given by:12

Expected utility of the plaintiffp:

 E(up/suit, trial) = rp

E(up/suit, settlement) =
rp−rd
2 + µ

(
−rp−rd

2

)
11Notice that with respect to the more general formulation introduced in Section 2 (i.e.,

ui(xi, ri) = m(xi) + µ(m(xi) −m(ri))), here we are assuming that the function m(·) is such that
m(x) = x for any x ∈ R. This assumption is made for the sake of tractability but it does not
undermine the general results.
12More precisely E(up/trial) = rp + µ(rp − rp) = rp because µ(0) = 0 given property P1 of the

function µ. And E(up/settlement) =
rp−rd
2

+ µ
(
rp−rd
2
− rp

)
which becomes E(up/settlement) =

rp−rd
2

+ µ
(
−rp−rd

2

)
. Same simplifications apply to the defendant’s payoffs.
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Expected utility of the defendant d:

 E(ud/trial) = rd

E(ud/settlement) = − rp−rd
2 + µ

(
−rp−rd

2

)
The game with unbiased agents (i.e., Wp =Wd =W and rp + rd = S) simplifies

to the situation analyzed in Section 3.1 such that litigants always agree on the

settlement qW .

On the other hand, whenever at least one of the agents is biased, the two reference

points are no more compatible (rp + rd > S) and thus, depending on the size of the

legal costs, the option to proceed to trial can be characterized by a higher expected

payoff. The following proposition shows a surprising result: while a model of self-

serving biased reference points clearly increases the incidence of trials with respect

to the case in which agents are unbiased and have perfect information (Subsection

3.1), it does not further increase the likelihood of trials in comparison with the case

in which only SSB, but not RDP, is present (Subsection 3.2).

Proposition 2 If agents display reference dependent preferences and at least one

of them has a self-serving biased reference point, then a litigation proceeds to trial

whenever legal costs of at least one player are below the threshold c̃i = ĉi−µ
(
−rp−rd

2

)
with i ∈ {p, d} and where ĉi = qWp− qWd− cj, with j 6= i, is the threshold if agents

had no RDP.

Proof. The condition that makes the plaintiff prefer the trial with respect to the

settlement is given by E(up/suit, trial) > E(up/suit, settlement), i.e., rp >
rp−rd
2 +

µ
(
−rp−rd

2

)
. This inequality holds for any cp < c̃p where c̃p = qWp − qWd − cd −

µ
(
−rp−rd

2

)
. Similarly, the defendant prefers the trial if and only if E(ud/trial) >

E(ud/settlement), i.e., rd > − rp−rd
2 +µ

(
−rp−rd

2

)
which holds for any cd < c̃d where

c̃d = qWp−qWd−cp−µ
(
−rp−rd

2

)
. Therefore, for any i ∈ {p, d}, c̃i = ĉi−µ

(
−rp−rd

2

)
where ĉi is the threshold if agents had no RDP. Focusing on the last term, and given

property P1 of the µ(·) function, we have that
[
−µ
(
−rp−rd

2

)]
> 0 whenever rp > |rd|
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while
[
−µ
(
−rp−rd

2

)]
≤ 0 whenever rp ≤ |rd|. As such, c̃i > ĉi if rp > |rd| and c̃i ≤ ĉi

if rp ≤ |rd|.

Notice therefore that the combination of RDP and SSB does not modify the

decision of the litigants if to proceed to trial or settle. In fact, if rp > |rd| then

ci < ĉi < c̃i and agent i prefers to go in front of the judge both with (this subsection)

and without (Subsection 3.2) RDP. At the opposite, if rp ≤ |rd| then ci ≥ ĉi ≥ c̃i and

agent i prefers to settle both with and without RDP. The intuition for this result is

that litigants with RDP compare the proposed settlement with their reference point

(the expected payoff of the trial). The additional disutility (respectively utility) that

agents get from this comparison makes less binding the critical level of legal costs

below (resp. above) which the trial (resp. settlement) is preferred. In other words,

if legal costs of agent i are below the threshold without RDP (ĉi) then a fortiori

they are below the threshold with RDP (c̃i). See the example below. While, at the

opposite, if ci is above ĉi then a fortiori ci is above c̃i.

Example 2 Let q = 0.5, W = 100, Wp = 120, Wd = 90, cp = 8 and cd = 3. And if

litigants have RDP assume also that m(x) = x and that the function µ(·) is linear

with µ(x) = x for x < 0 and µ(x) = 1
2x if x ≥ 0. Then rp = 52 and rd = −42 such

that the proposed settlement is given by 52−(−42)
2 = 47. Thresholds for legal costs are

given by ĉp = 12 and ĉd = 7 if litigants had no RDP, and by c̃p = ĉp−(−5) = 17 and

c̃d = ĉd − (−5) = 12 if litigants had RDP. Given that cp < ĉp < c̃p and cd < ĉd < c̃d

then both the plaintiff and the defendant choose to procede to trial no matter if they

have RDP or not.

4 An application to a bankruptcy problem

Consider the problem of a social planner who must allocate a homogeneous and

perfectly divisible good (whose amount we normalize to S = 1) among n ≥ 2
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claimants.13 Let N = {1, ..., n} denote the set of claimants. The notation x =

(x1, ..., xn) indicates a possible allocation such that xi is the amount of the good

that the planner assigns to claimant i ∈ N . Feasible allocations are the ones for

which xi ∈ [0, 1] for any i and
∑

i xi ≤ 1. The vector u = (u1, ..., un) with ui = ui(xi)

collects individual utilities.

The social planner wants to maximize social welfare. His objective function is

given by a social welfare function (SWF) W (u) that aggregates individuals’utilities

into social utilities. We assume that the social planner is not biased towards any

particular claimant and therefore we only consider symmetric SWFs that give equal

weight to every agent. More precisely, we consider two classical welfare functions:

the utilitarian SWF (Bentham, 1789) defined as Wut (u) =
∑

i ui and the maxmin

SWF (Rawls, 1971) defined as Wmm (u) = min {u1, ..., un}. We will indicate an

optimal allocation with the vector x̂w = (x̂w1 , ..., x̂
w
n ) where x̂w = argmaxWw(u)

and w ∈ {ut,mm}.

4.1 The case with rational preferences

Traditional neoclassical analysis postulates agents have preferences that lead to con-

tinuous, increasing, and concave utility functions. If claimants are endowed with

preferences of this kind, the utilitarian SWF selects x̂ut such that u′i(x̂
ut
i ) = u′j(x̂

ut
j )

for any i, j ∈ N . In fact, the function Wut(u) is concave (it is the sum of n concave

functions) and it is thus maximized by the allocation that equalizes agents’mar-

ginal utility. If, on the other hand, the social planner adopts the maxmin SWF, the

optimal allocation is the one that equalizes individuals’actual utility, i.e., x̂mm is

such that ui (x̂mmi ) = uj

(
x̂mmj

)
for any i, j ∈ N . Alternatively, another common

13Countless are the possible examples for such a situation: a parent who wants to divide a
chocolate bar among her children, a boss who must share a monetary bonus among his subordinates,
a judge called to decide how to divide the belongings of a divorcing couple, an organization that
must allocate humanitarian aid to different villages hit by a natural disaster.
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formulation of rational utility functions is the linear one.14 In this case, x̂ut is such

that x̂uti = 1 for the i (assumed to be unique) with u′i > u′j for any j 6= i and x̂mm

is such that ui (x̂mmi ) = uj

(
x̂mmj

)
for any i, j ∈ N .

4.2 The case with self-serving biased reference points

With respect to the rational formulation, RDP seem better suited to model the

preferences of claimants involved in an allocation problem. This is, in fact, a typical

situation in which a claimant’s utility, although mainly depending on the amount

of resource that the agent gets, is usually also affected by comparisons between the

actual allocation and the expected one (i.e., the reference point). And, as already

discussed, reference points are in turn likely to be affected by the self-serving bias.15

Let claimants have preferences à la Koszegi and Rabin (2006), i.e., ui(xi, ri) =

m(xi) + µ(m(xi) −m(ri)). As in Section 3, here we assume again that m(xi) = xi

such that ui(xi, ri) = xi + µ(xi − ri). In the context of a bankruptcy problem this

assumption proves to be very useful as the linear form of m(·) implies that the

properties of the function µ(·) directly translate into equivalent properties of the

utility function ui(·).16 Finally, let
∑

i ri > 1 such that, in line with Definition 1, at

least some of the claimants have self-serving biased reference points. The planner

knows the vector r = (r1, ..., rn) but he does not know the size of individual biases

so that he cannot correct for them.

In such a situation, utilitarian SWF is given by Wut = 1+
∑

i µ(xi− ri). Notice

that the function Wut is not guaranteed to be concave. In fact, the allocation

x = (r1, ..., rn) is unfeasible and the planner is forced to disappoint at least some

of the claimants, i.e., he must allocate xi < ri to some i ∈ N . This implies that

14This formulation can be considered as an approximation of a concave function for the cases in
which the admissible range of xi is small enough to make the marginal decreases in utility negligible.
Because of this, linear utility functions are often implicitly assumed in many low stakes experimental
studies about strategic interactions (bargaining games, ultimatum games, dictator games).
15 In such a context, reference points can be seen as claims on shares of the total amount S.
16See Proposition 2 in Koszegi and Rabin (2006) for a formal statement and proof of this result.
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some of the µ(xi − ri) functions are convex. Nevertheless, it is easy to prove that

the optimal utilitarian allocation cannot be such that xi < ri for all i.

Proposition 3 The optimal utilitarian allocation x̂ut = (x̂ut1 , ..., x̂
ut
n ) is such that

x̂uti ≥ ri for some i ∈ N .

Proof. By contradiction. Assume x̂ut is such that x̂uti < ri for all i. Property P3

of the function µ(·) states that µ′′i (x̂uti ) > 0 such that, given the linear form of m(·),

the functions ui are convex at x̂uti . Therefore the function Wut is also convex. This

implies that x̂ut cannot be a maximum because it fails the second order necessary

condition.

In terms of utilitarian welfare, any allocation such that xi < ri for all i (like

for instance the famous proportional rule that assigns xi = ri/
(
ri +

∑
j 6=i rj

)
) is

thus ineffi cient. In particular, these allocations are dominated by any allocation

that matches the reference points of some agents and leaves the others as residual

claimants. In other words, it is more effi cient to satisfy some agents and disappoint

a lot the remaining ones rather than to disappoint a little all of them. The question

is then how to decide who are the agents to disappoint and by how much. The

following proposition addresses this point.

Proposition 4 Assume that the constraint xi ≤ ri for any i ∈ N must hold and,

without loss of generality, order the claimants such that r1 ≤ r2 ≤ ... ≤ rn. Then the

allocation x̂ut = (x̂ut1 , ..., x̂
ut
n ) with x̂

ut
i = min

{
ri,max

{
1−

∑
j<i rj , 0

}}
is optimal.

Proof. The planner’s problem is given by maxWut = 1 +
∑

i µ(xi − ri). This

is equivalent to min
∑

i µ(xi − ri) given that xi ≤ ri must hold and therefore, by

property P1, the functions µ(·) are non positive. Moreover, property P3 ensures that

µ(·) exhibits diminishing marginal sensitivity such that µ(a)+µ(b) < µ(0)+µ(a+b)
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for any a, b < 0. This implies that the planner must allocate xi = ri to as many

agents as possible (i.e., starting from those with the lowest ri) while disappointing

as much as possible the claimants that can be disappointed the most. The allocation

rule x̂uti = min
{
ri,max

{
1−

∑
j<i rj , 0

}}
fulfills this goal.

The optimal allocation x̂uti identified by Proposition 4 is unique whenever rn−1 <∑n
i=1 ri−1 ≤ rn. If this condition does not hold then there could be multiple optimal

allocations. Still, x̂uti always belongs to the set of optimal solutions.

Example 3 Consider two hypothetical situations with n = 4. In the first one let

r1 = 0.1, r2 = 0.3, r3 = 0.5 and r4 = 0.7. Given that r3 <
∑

i ri−1 ≤ r4, Proposition

4 identifies the unique optimal solution x̂ut = (0.1, 0.3, 0.5, 0.1). In the alternative

scenario let r1 = 0.1, r2 = 0.2, r3 = 0.5 and r4 = 0.6. Given that the condition

r3 <
∑

i ri−1 ≤ r4 does not hold, there are multiple optimal allocations. Proposition

4 identifies x̂ut = (0.1, 0.2, 0.5, 0.2). But also the allocation x̂′ut = (0.1, 0.2, 0.1, 0.6)

achieves the maximal welfare Wut = 1 + µ(−0.4).17

Proposition 4 provides the solution to the problem when the condition xi ≤ ri

must hold for all i. Relaxing this constraint, can it be welfare enhancing to allocate

xi > ri to some of the agents? The answer to this question clearly depends on

the specific shape of claimants’utility functions. In particular, starting from the

allocation x̂ut identified by Proposition 4, the answer can be positive if and only if

the decrease in welfare associated with further disappointing the residual claimant

ı̃ (in both scenarios of Example 3 this would be agent 4) by allocating him x̂utı̃ − ε

with x̂utı̃ = 1−
∑ı̃−1

j=1 rj ≥ ε > 0 is more than compensated by the increase stemming

from redistributing ε among the claimants i = {1, ..., ı̃− 1}. Formally, if and only

if the condition (̃ı − 1)µ
(

ε
ı̃−1

)
> −

[
µ(x̂utı̃ − ε− rı̃)− µ(x̂utı̃ − rı̃)

]
holds. If this is

17Notice anyway that a social planner with lexicographic preferences defined over utilitarian
welfare and equality would strictly prefer the allocation x̂ut over x̂′ut.
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the case, then these unconstrained optimal allocations are identified by first- and

second-order conditions or they emerge as a corner solution.

In any case, utilitarian welfare is surely smaller than 1. Utilitarian welfare would

be larger (Wut = 1) if the social planner could match all claims, i.e., if agents were

unbiased and
∑

i ri = 1. In other words, self-serving bias is welfare detrimental not

only at the individual level (see Lemma 1) but also at the aggregate level.

Consider now what happens if the social planner adopts the maxmin SWF. This

function selects the allocation at which utility functions intersect. Given the shape

of agents’utility functions and the hypothesis of SSB, such a condition, if feasible,

will usually arise in the interval where xi < ri for all i. This implies that in general

the optimal maxmin allocation is ineffi cient from a utilitarian point of view. The

following case is particularly striking:

Proposition 5 If
∑

i ri > 1 and ri = r for all i then x̂mm =
(
1
n , ...,

1
n

)
= argminWut.

Proof. If ri = r for all i then claimants are perfectly symmetric and the only

feasible and Pareto effi cient allocation that equalizes their utility is the egalitarian

one. It follows that x̂mm =
(
1
n , ...,

1
n

)
. Symmetry also implies that this is the unique

allocation for which the FOCs of maxWut are satisfied and
∑

i xi = 1 holds. But

given that xi < ri for all i the functions ui are convex and so is Wut. Therefore,

x̂mm coincides with the minimum of the utilitarian SWF.

When claimants are perfectly symmetric, the maxmin SWF supports the egal-

itarian allocation. Indeed, possibly also because of its ethical appeal (in line with

Aristotle’s celebrated prescription that “equals should be treated equally”), this is

certainly the most common solution implemented in reality. Still, Proposition 5

shows that such a choice implies a high effi ciency cost. In fact, the egalitarian allo-

cation happens to be the worst possible outcome from a utilitarian point of view.
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5 Conclusion

We proposed a framework that allows to explicitly model the self-serving bias. In

particular, we introduced self-serving bias within the family of reference dependent

preferences by claiming that the bias systematically inflates agents’reference points.

This consideration provides a simple rule to assess the existence of the bias at the

aggregate level as well as a procedure to set a lower bound on the number of biased

agents. We applied the model to two standard situations: a litigation between a

plaintiff and a defendant and a bankruptcy problem. In the first case, the proposed

model essentially confirms the detrimental role that the self-serving bias has on the

probability of solving a dispute through a settlement rather then through a trial.

In the second situation, the model of self-serving biased reference points amplifies

instead the trade-off between the effi ciency and the equity of the final allocation.

Despite some obvious limitations, we feel that the proposed formulation provides

a simple but fruitful way to formally analyze the consequences of the self-serving bias,

captures the main ingredients of many real-life problems and, generally, contributes

to the recent literature regarding public policy implications of research in behavioral

economics.
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