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Abstract 

An integrated power system of a PEM fuel cell and hydride tanks designed for stationary 

applications is described. The work was focused on different aspects related to the development of 

the metal hydride tank and to its integration with the fuel cell, using water as thermal fluid. A 

commercially available LaNi4.8Al0.2 intermetallic compound was chosen as hydrogen storage 

material, having sorption characteristics adequate to the working conditions of the system (i.e. 60 

°C and 1 atm). Tanks were constituted by stainless steel, together with copper fins for improving 

heat exchanges between the thermal fluid and the tank.  The performances of the integrated system 

were tested in different working conditions, in order to evaluate its reliability and efficiency. The 

system can operate for about 6 hours, at an average power of 0.76 kW and delivering a total energy 

of 4.8 kWh, consuming about 3120 Nl of H2. 
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1. Introduction 

Renewable energies such as wind and solar power are considered nowadays promising alternative 

energy sources due to the decreasing availability of fossil fuels and to a reduced production of 

pollutants during energy exploitation. A disadvantage of these sources is the non constant 

production of energy during the day or the year due, for example, to changes in weather conditions 

or to the night and day cycle. Therefore, it is of interest to explore new methods of storage of the 

excess of energy in order to use it when a decreased production is acting. Moreover, there are areas 

in which there is a lack in the energy power supply such as mountain huts or remote islands. In 
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these cases, it is of interest to design new energy storage units alternative and more sustainable with 

respect to conventional diesel electric generators [1, 2]. 

Hydrogen is considered as an energy carrier and its chemical energy can be converted into 

electricity through a chemical reaction with oxygen from a fuel cell. Therefore, coupling energy 

storage systems with renewable energy sources through an electrolyser, that can transform electric 

energy into hydrogen chemical energy, is considered as an high sustainable process of production 

and exploitation of renewable energies [3]. In literature, examples are reported of integrated 

systems constituted by a metal hydride tank and a PEM fuel cell, in which the waste heat generated 

in the fuel cell is used to supply the necessary heat required for desorption of hydrogen from the 

tank [4, 5, 6, 7]. In other systems, the hydrogen storage unit is not thermally integrated with the fuel 

cell, as reported by Bossi et al. where a PEM fuel cell, a battery bank, a metal hydride hydrogen 

storage unit and an electronic load was integrated [8].  

This work describes the development of an integrated power system designed for stationary 

applications, constituted by a commercial Proton Exchange Membrane (PEM) Fuel Cell and a metal 

hydride tank. The field of application of the integrated power system is in combination with 

renewable sources: the hydrogen can be produced by electrolysis of water using the energy from a 

renewable source (e.g. photovoltaic); it is then stored and converted into electric energy by the 

proposed integrated power system, that allows to store energy in the form of hydrogen and then to 

reuse it when the renewable source is not available, for example at night if solar power is exploited. 

The developed power system could replace batteries and could be applied in case of a production 

plant not connected to the power grid, such as in remote areas. In this work, the design of the tank 

will be described in details, together with the description of the P&I of the integrated power system 

and corresponding tests, showing a total energy production of 4.8 kWh, over more then 6 h of 

working activity.  

 

2. Experimental 

As storage material, LaNi4.8Al0.2 intermetallic compound produced  by Palcan Energy Corporation, 

China was selected. Pressure-Composition-Isotherm (PCI) measurements were performed at 

different temperatures, from 25°C to 100°C on different batches of the same intermetallic 

compound. PCIs have been performed over the 0 – 100 bar pressure range using about 1 g of 

sample in a volumetric apparatus by Advanced Materials Corporation, Pittsburgh PA. This 

instrument is equipped with a sample cell of 2 ml volume and a temperature controller that provides 

corrections for ∆T between hydrogen reservoir and specimen holder. Hydrogen absorbed amounts 

are calculated using modified Benedict-Webb-Rubin equation for real gases. Prior to performing 



PCI measurements, the alloy was coarse grinded and then activated following this general 

procedure for two times: i) in-vacuum heating to 100 °C; ii) soak in 100 bar hydrogen pressure at 

100°C for one hour; iii) cooling down to room temperature.  

Desorption tests were performed on one of the six metal hydride tanks constituting the integrated 

system. Tests were performed at 60°C with a laboratory test bench. When the equilibrium 

temperature was reached, the valve was opened in order to let the hydrogen to be released and to 

flow outside the tank at a pressure of 1.5 bar. The flow of hydrogen was controlled and regulated 

using a mass flow controller set at 2.67 Nl/min for each tank, corresponding to 1/6 of the H2 flow 

necessary to operate the fuel cell at its maximum power. The mass flowmeter was also used to 

measure the amount of hydrogen released from the tank. The pressure inside the cylinder was 

monitored by a pressure sensor. 

The PEM fuel cell used for the power integrated system is a BALLARD FC-GEN1030V3 with 

water cooled stacks, designed for domestic applications with the following characteristics: 

maximum power of 1.246 kW; current of 0 - 40 A; tension of 31,1 – 46 V; hydrogen flow necessary 

to operate the fuel cell at the maximum power of 16 Nl/min; hydrogen pressure of 240 mbar; air 

flow of 50 l/min; air pressure of 150 mbar; water inlet temperature of 57 °C; water outlet 

temperature of 67 °C. 

 

3. Results and discussion 

3.1 Metal hydride characterisation 

In order to design the integrated power system, it is first of all necessary to evaluate the quantity of 

energy that has to be stored, being needed by the final application. In our case, a small system is 

designed with a commercial PEM fuel cell with power of 1.246 kW, water cooling stack and 

operating temperature of about 60 - 70 °C. In order to simplify the heating/cooling circuit and the 

absorption/desorption processes, the cooling water of the PEM FC was used for increasing the 

temperature of the tank and driving the hydrogen desorption. Therefore, the choice of the storage 

material was strictly connected to the requested desorption temperature, defined to be around 60°C. 

AB5 type materials already available on the market were chosen for this application [9, 10, 11]. 

Different producers were contacted in order to determine prices, performances and reproducibility 

characteristics of the intermetallics. The intermetallic compound LaNi4.8Al0.2 was selected as 

storage material and characterised in order to assess its operating performances in real conditions. 

Moreover, a control on the reproducibility of its absorption/desorption characteristics was carried 

out in order to determine the reproducibility of the H2 release, in view of a possible 

commercialization of the power integrated system. Therefore, PCI measurements were performed 



for different production batches. A comparison of PCIs collected at 60°C is reported in Fig. 1. They 

show reproducible behaviour, with a maximum gravimetric density of about 1.4 wt% H2. Values of 

ΔH and ΔS for absorption and desorption were obtained by a Van't Hoff plot and the results are 

reported in Tab. 1 for the different batches measured.  

In order to determine the amount of hydride powder necessary for the construction of the integrated 

system, it was first of all necessary to calculate the amount of H2 necessary to guaranty the 

operation of the PEM fuel cell at its maximum power for at least 4 h, knowing that an H2 flow of 

16Nl/min is required by the PEM fuel cell. The needed volume of H2 results to be 3840 l and the 

corresponding amount of intermetallic powder  is about 25 kg, being the maximum gravimetric 

density of LaNi4.8Al0.2 of about 1.4 wt%. The quantity of the metallic hydride was increased to 29 

Kg in order to have spare H2 to guaranty the operation of the fuel cell for at least the time required 

by the application. To size the tanks of the integrated system, it is necessary to determine the total 

volume occupied by the intermetallic, from the alloy density, that is about 5.8 l when the alloy is in 

powder form. Moreover, an empty volume necessary for the expansion of the powder while forming 

the hydride have to be considered. Therefore, the volume of the tank was increased of the 20% with 

respect to the volume of the powder, obtaining a total storage volume of about 7.0 l that was divided 

into six tanks. 

 

3.2 Design of the metal hydride tank and of the storage system.  

The design of the metal hydride tank was defined after a survey on the literature, patent and 

commercial available hydride tanks [12, 13, 14]. The materials used for the tank are essentially 

aluminium and stainless steel. They are mostly cylindrical in shape and sometimes equipped with 

heat exchanger in order to improve the efficiency of the change in temperature of the powder during 

heating and cooling, i.e. H2 release and absorption. A major problem in the tank construction is in 

fact the poor thermal conductivity of the storage material, that is reported in literature to be in the 

range of 0.1-0.6 W/m K for non compacted powders [15, 16]. The cylindrical shape for the tank, in 

fact, is the simplest and involves low volumes and low weight, but also a low surface for the heat 

exchange, that has to be increased by adding heat exchangers in the tank. 

In order to determine the better design for the tank, a simulation was made by finite element 

analysis, using the COMSOL Multiphysics approach, on the absorbtion and desorption of hydrogen, 

taking mainly into account the heat exchange of the powder and of the tank [17]. The optimized 

geometry is reported in Fig. 2. The tank is cylindrical in shape, it is filled with the hydrogen storage 

powder and a sintered steel tube is inserted along the tank. The hydrogen flow inlet is in the upper 

part of the tank, and H2 flows trough the sintered tube, enabling a large contact surface between H2 



and LaNi4.8Al0.2 powder and a homogeneous distribution of the gas in the powder volume. A heat 

exchanger, made on polypropylene, is positioned on the external part of the tank, enabling a 

homogeneous cooling and heating of the powder, during sorption and desorption.  

The entire storage system is composed by six tanks of equal size and geometry. The units are 

independent and ensure 1/6 of the flow rate needed to operate the fuel cell at its maximum power. 

In the design and materials selection of the storage system, the following parameters were 

evaluated: i) the material compatibility mainly with respect to the hydrogen embrittlement, 

permeability and mechanical strength; ii) thermal exchanges and sizing of the heat exchangers. The 

whole system was designed according to the existing European and Italian standards (EN, VSR and 

Ispesl norms) [18]. The design phase has been concluded with a detailed drawings ready for the 

manufacturing of the storage system. 

 

3.3 Metal hydride tank desorption tests 

In order to complete the storage system design, tests were performed on one of the six tanks with 

the aim to check the charging time and the H2 flow during discharging.  

During the test, performed maintaining the heating water at 60°C, the H2 flow rate was set at 2.67 

Nl/min for 220 min, with the release of 61% of the H2 stored in the tank. Afterward, the flow rate 

decreased. The PCI desorption of H2 at 60°C compared with the desorption of hydrogen from the 

tank during the test is reported in Fig. 3 (star symbols and triangles respectively). The pressure in 

the tank during the desorption test appears lower with respect to the PCI equilibrium pressure. This 

result is due to a non efficient thermal exchange between the thermal fluid and the hydride powder, 

which temperature was determined to be 55°C. Therefore, a metallic spiral was added around the 

tank, in order to increase the water flow and allow a more homogeneous heat exchange from the 

fluid to the surface of the tank. Moreover, copper fins were inserted in the sintered tube in contact 

with the intermetallic powder in order to increase the heat exchange in the whole mass of the 

powder. After adding these parts, the desorption test was repeated and the result is shown in Fig. 3 

(square symbols). A significant increment in the pressure was registered, confirming the increase of 

the heat exchange in the tank that guarantees a more efficient thermal management during the 

hydrogen desorption. 

 

3.4 P&I 

The system is composed by two separate sections: the fuel cell circuit with its components that 

constitutes the power generation part and the hydrogen storage part, mainly constituted by the six 

metal hydride tanks.   



The P&I of the whole system is reported in Fig 4. The fuel cell circuit is composed by the 

circulation pump (M1), the heat exchanger (heat 4) necessary to remove the power in excess and to 

heat the fuel cell during the start-up, the air compressor (M3), the humidifier for air (HY1) and 

hydrogen (HY2). The hydrogen circuit is composed by the circulation pump (M4), the hydrogen 

storage cylinders (B1...B6), the heating/cooling flow controls device (FL1.6), the heat exchanger 

(heat1) necessary to remove the heat generated during the charging of hydrogen, the safety valve 

(PSV1), the pressure reducer (reg1) and the monitoring of the pressure and temperature. The two 

circuits are joined by a plate heat exchanger (heat3). All the components are driven and monitored 

by a PLC  with a software interface developed for the application. 

 

3.5 Tests on the power integrated system 

The integrated power system was tested in laboratory, by dissipating the current produced during 

the test with an electronic power. The system worked for more then 6 h, at an average power of 0.76 

kW. For 2 h the system provided a power of 1 kW (Fig. 5). The total energy provided by the PEM 

fuel cell was 4.8 kWh and the net power available was 3.06 kW, considering a loss of about 290W 

consumed by the system equipments for 6 h, i.e. 1.74 kWh. The total amount of  H2 consumed was 

of 3120 Nl. The H2 was delivered to the mass flow controller with a pressure of 1.5 bar and the H2 

flow (Fig. 5) increases in the first 100 min for remaining then stable for more then 2 h, while the 

stack voltage remains almost stable during the whole test.  

 

4. Conclusions 

An integrated power system was constructed, mainly constituted by a commercial fuel cell and a 

storage system with six tanks. The tanks were designed for the integration with the PEM fuel cell 

and the cooling water of the PEM fuel cell was used for increasing the temperature of the storage 

powder in the tank and starting the hydrogen desorption. The storage material used was LaNi4.8Al0.2 

and the reproducibility of the sorption/desorption characteristics of various batches was determined 

by PCI measurements. During desorption tests, almost all the hydrogen stored in the tank was 

desorbed. The integrated power system can work for more than 6 h providing an average power of 

0.76 kW. 

 

Acknowledgments 

This work was performed in the framework of the Piedmont regional project "H2FC", financed by 

FINPIEMONTE, POR FESR 07/13, Misura I.1.3, Polo "Arch. Sost. e Idrogeno". 



 

References 

[1] M.J.Lavorante, L.G.Messina, J.I.Franco, P.Bonelli, Int. J. Hydrogen Energ., 39 (2014) 8631 - 

8634 

[2] M.J.Khan, M.T.Iqbal, Appl Energy, 86 (2009) 2429 - 2442. 

[3] FCH-JU programs. http://www.fch-ju.eu/ 

[4] S.K.Khaitan, M.Raju, Int. J. Hydrogen Energ. 37 (2012) 2344 - 2352 

[5] T.Førde, J.Eriksen, A.G.Pettersen, P.J.S.Vie, Ø.Ulleberg, Int. J. Hydrogen Energ., 34 (2009) 

6730- 6739 

[6] C.Song, L.E.Klebanoff, T.AJohnson, B.S.Chao, A.F.Socha , J.M.Oros, C.J.Radley, S.Wingert, 

J.S.Breit, Int. J. Hydrogen Energ., 39 (2014) 14896 - 14911 

[7] P.R.Wilson, J.R.C.Bowman, J.L.Mora, J.W.Reiter,  J Alloys Compd., 446-447 (2007) 676 - 680 

[8] C.Bossi, A.Del Corno, M.Scagliotti, C.Valli, J Power Sources 171 (2007) 122 - 129 

[9] G.Sandrock, Journal of alloys and compounds, 293 - 295 (1999) 877-888 

[10] L. Schlapbach, A. Zuttel, Nature, 414 (2001) 353 

[11]  J.Huot in "Handbook of hydrogen storage", Ed. Michael Hirscher(2010), p. 100 

[12] A. Souahlia, H. Dhaou, S. Mellouli, F. Askri, A. Jemni, S. Ben Nasrallah, Int. J. Hydrogen 

Energ., 39 (2014) 7365 - 7372 

[13] G. Mohan, M. Prakash Maiya, S. Srinivasa Murthy, Int. J. Hydrogen Energ., 32 (2007) 4978 – 

4987 

[14] Tim M. Brown, Jacob Brouwer, G. Scott Samuelsen, Franklin H. Holcomb, Joel King, Int. J. 

Hydrogen Energ., 33 (2008) 5596–5605 

[15] M.Lee, K.J.Kim, R.R.Hopkins, K.Gawlik, Int. J. Hydrogen Energ., 34 (2009) 3185–3190 

[16] K.J.Kim, B.Montoya, A.Razani, H.K.Lee, Int. J. Hydrogen Energ., 26 (2001) 609–13 

[17] D. Baldissin, D. Lombardo, " Thermofluidynamic Modelling of Hydrogen Absorption and 

Desorption in a LaNi4.8Al0.2 Hydride Bed" Proceedings of the COMSOL Conference 2009 Milan 

[18] European and Italian norms: PED 97/23/EC; EN 13445; VSR ed 95; ISO 9809-1:1999(E); ISO 

9809-3; ISO/TS16111; ISPESL Raccolta M rev.95 – ed.99; UNI EN 764-5; EN 10204; ISO 11114-

4; EN 287; EN 288. 

 

 

 

 

 

 

 

 



 

 

 

Figure captions 

Fig. 1: PCI measurements on different batches of LaNi4.8Al0.2. Open symbol are due to hydrogen 

desorption while full symbols are due to hydrogen absorption 

Fig. 2: Schematic representation of the hydride tank 

Fig. 3: PCI desorption (star symbols) in comparison with hydrogen desorbed from the first designed 

tank (triangles) and the second designed tank (square symbols) 

Fig. 4: P&I of the power integrated system 

Fig. 5: Power (square symbols) produced from the integrated system during a test together with H2 

flow (triangle symbols) and stack voltage (star symbols) is reported versus time.   

Tab. 1 Values of  ΔH and ΔS for absorption and desorption obtained by a Van't Hoff plot. The 

different batches are reported. 

 



Integrated power system with a commercial fuel cell and a hydrogen storage system 

Tanks were designed for the integration with the PEM FC 

During desorption tests, almost all the hydrogen stored in the tank could be desorbed 

The integrated power system can work for 6 h providing an average power of 0.76 kW 

*Highlights (for review)



 Absorption Desorption 

  ΔH (kJ/mol) ΔS (J/mol*K) ΔH (kJ/mol) ΔS (J/mol*K) 

Batch 1 -34.0 111.4 38.2 121.4 

122.9 Batch 2 -30.7 102.0 38.7 

Batch 3 -31.9 105.3 35.0 111.5 

Batch 4 -31.5 104.3 38.8 122.7 

Average -32.1 ± 1.4 105.7 ± 4.0 37.7 ± 1.8 119.6 ± 5.4 

 

Tab. 1 Values for the different batches of  ΔH and ΔS for absorption and desorption obatined by a Van't Hoff 

plot 

Table 1
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