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Synopsis 

Dual loop active feedback stabilisation of the position and monochromatic flux of the beam at 

the output of the double crystal monochromator is described. The efficacy of the proposed 

stabilisation system is demonstrated in EXAFS spectroscopy measurements on inhomogeneous 

diluted Ti containing samples. 

Abstract 

We report on the simultaneous and active feedback stabilisation of x-ray beam position and 

monochromatic beam flux during EXAFS scans at the Titanium K-edge as produced by a double 

crystal monochromator beam line. The feedback is generated using two independent feedback 

loops using separate beam flux and position measurements. The flux is stabilized using a fast 

extremum-searching algorithm that is insensitive to changes in the synchrotron ring current and 

energy dependent monochromator output. Corrections of beam height are made using an 

innovative transmissive beam position monitor instrument. We demonstrate the efficacy of the 

feedback stabilisation method by comparing the measurements of EXAFS spectra on 

inhomogeneous diluted Ti containing samples with and without feedback applied. 

 

1. Introduction 
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Non-dispersive double crystal monochromators (DCM) are omnipresent at synchrotron radiation 

beam lines around the globe due to their ease of use, particularly for experiments that require x-

ray beams of varying energy. These devices can be made to sagittally focus the divergent 

monochromatised radiation by bending one of the two crystals (Pascarelli et al., 1996). The 

most common variant uses two independent, highly perfect crystals that are carefully aligned 

such that their crystal planes match up for the highest emergent monochromatic flux in a pseudo 

channel-cut setup.  

A major concern with these designs is to keep the two crystals aligned at all times because the 

angular acceptance range (the misalignment range in angles for which a monochromatic output 

beam can be measured) is very narrow (approx. 70 rad at 5 keV).  Rotating the crystals 

assembly, the so-called crystal cage, about a horizontal axis, changes the energy of the exit 

beam.  

There are two main issues with the use of a DCM for spectroscopic experiments. First, the 

relative alignment of the two crystals must be maintained dynamically and precisely by small 

adjustments to maintain perfect alignment and therefore providing optimal output flux. Precise 

actuators and mechanics are required to keep the two crystals aligned within the small 

acceptance angle for diffraction; this is usually achieved by adjusting the position of the second 

(down-stream) crystal. Such adjustments will inevitably cause vertical excursions of the DCM 

exit beam superimposed on changes due to source movements or motions induced by other 

optical components  

Second, further changes of the exit beam height are induced when the X-ray energy is scanned. 

Although so called fixed-exit designs have been developed (Mills et al., 1986; Ferrer et al., 

1998) that reduce vertical beam movements compared with the older pseudo channel-cut 

designs, beam movements of several tens of micrometres are still present over typical energy 

ranges needed to complete extended x-ray absorption fine structure (EXAFS) spectroscopy 

measurements. The effect of this change in beam height is most severe for lower x-ray energies 

(i.e. below 10 keV) and is typically larger than the vertical beam size (300 microns). If left 

uncorrected the beam would be sampling different parts of the sample as a function of the energy 

setting. Obviously for spatial mapping of samples (Borfecchia et al., 2012) or measurements on 

slightly inhomogeneous samples (Mino et al., 2011) or during time resolved experiments where 
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slight temperature/chemical state gradients might exist (Grunwaldt & Schroer, 2010; Bordiga 

et al., 2013), this is highly undesirable. 

In this paper we describe the results of experiments in which we stabilize both beam height and 

monochromatic beam intensity from a DCM using an extremum seeking active feedback control 

system. This approach is attractive because it does away with normalisation procedures that 

correct for changes in the input intensity as produced by the exponentially decaying synchrotron 

ring current or of the energy dependent output flux of the DCM itself in order to stay at the peak 

intensity of the DCM output. To demonstrate the effectiveness of our approach we have opted to 

conduct spectroscopy at the lowest practical x-ray energy at which an average hard X-ray 

spectroscopy beam line generally can operate. At this low energy (5 keV: Ti K-edge) a 1000 eV 

energy scan requires up to about 4° rotation for a Si(111) monochromator. The corresponding 

vertical swing of the exit beam is significant and large compared to the size of the beam at the 

sample. Energy dependent absorption and changes in monochromator energy resolution across 

the low energy range are more sensitive compared to experiments at higher x-ray energies.  

We report the results of EXAFS measurements carried out on a Titanium containing sample with 

and without the two types of beam stabilisation (intensity stabilisation using extremum seeking 

active feedback control and beam position stabilisation using proportional feedback control) and 

we discuss the performance of the proposed method. The sample investigated is the precursor of 

a Ziegler-Natta catalyst, employed for industrially relevant olefin polymerisation processes 

(Seenivasan et al., 2011, 2013). Ti K-edge EXAFS measurements on this sample were 

particularly critical for two main reasons: i) its inhomogeneous nature and ii) the low Ti loading 

(2 wt%). 

The intensity stabilisation method differs from a MOSTAB device (Krolzig et al., 1984) that 

deliberately aligns the two monochromator crystals to give only about 70% of the achievable 

intensity. A distinct disadvantage of this approach is that a correction has to be made which 

depends on the synchrotron ring current and the energy setting of the DCM. 

2. Experimental setup 

The experiments were conducted at the BM26A DUBBLE group beam line at the European 

Synchrotron Radiation Facility (Borsboom et al., 1998; Nikitenko et al., 2008). The bending 
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magnet (critical energy Ec = 9.6 keV) beam line consists of three optical components, slits to 

define the beam, an in situ beam position and imaging monitor (van Silfhout et al., 2011), a 

sample stage with two ion chambers and a 9-element fluorescence detector. An overview of the 

beam line used in our experiments is given in Fig. 1. 

The diverging beam is collimated in the vertical direction by bending the first mirror into a 

cylinder that approximates the ideal parabolic shape with the source at its centre. Hence, the 

collimated polychromatic or ‘white’ x-ray beam incident on the first (upstream) crystal of the 

DCM has a reduced vertical angular divergence that is essentially determined by the vertical size 

of the source and mirror slope errors. The collimating mirror has a fixed tilt angle of 2 mrad 

allowing it to capture vertically 2.4 mm of the radiation fan when fully using its length of 

1200 mm whilst higher harmonic rejection is achieved by choosing one of the two optical strips 

on the surface (bare Si and Pt coating). These strips can be brought into the direct beam by a 

lateral translation. For beam energies below 15 keV one selects the Si surface, above 15 keV the 

Pt strip is used to achieve higher energy spectral cut-off. At its approximate distance of 24 m 

from the source, the mirror captures the full opening angle of the bending magnet radiation. The 

horizontal extent of the beam is defined by slits just upstream of the DCM. 

The DCM crystal arrangement is that of a pseudo channel-cut crystal variety in which the 

horizontal rotation axis is positioned at the surface of the first crystal. The relative alignment of 

the second crystal with respect to the first (upstream) crystal is changed by a piezo actuator (PI, 

P-140) that creates tiny rotations ( ) of the second crystal about a horizontal axis positioned at 

its surface.  

Fig. 2 shows the calculated acceptance of the Si(111) crystals as a function of photon energy and 

compares it with the vertical divergence of the beam as produced by the bending magnet source. 

The acceptance angle was taken as the Darwin reflection curve width for the (111) and (311) 

Bragg reflections taking absorption into account (Als-Nielsen & McMorrow, 2011). Bending 

magnet divergence was calculated using as the opening angle of the radiation cone as produced 

by the 'soft field'-bending magnet at BM26A installed at the ESRF. From the figure it is clear 

that the collimating mirror fulfils a role in allowing the full beam to 'fit' into the acceptance angle 

of the monochromator. We have also indicated the limiting angular divergence after collimation 

of the beam due to the finite vertical size of the source and mirror slope errors of approx. 4 µrad, 

dJ
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which would be important for monochromators using the recently added Si(311) crystal planes at 

energies above approx. 25 keV. 

In Fig. 3 we show the theoretical energy resolution of the BM26A beam line based on the 

combined resolution of DCM crystals, source type and size and collimating mirror. For the DCM 

crystals the energy resolution is given rom the expression for the differential form of Bragg's 

equation: Dl / l = Dq / tanq . In our calculations of the energy resolution we have used Gaussian 

approximations for both light source and crystal reflection curve. 

The vertical beam displacement D between the white beam and the exiting monochromatic beam 

is a function of the Bragg angle θB and the gap h (on BM26A h = 10 mm) between the two 

crystals: 

  .  (1) 

For low energies (e.g. large Bragg angles), the changes in D during an EXAFS scan (about a 

1 keV wide range) are considerable. For example, with a commonly used DCM gap of 10 mm, a 

scan around the K-edge of Ti results in a change of vertical beam displacement of 0.5 mm. 

Downstream from the DCM is a flat silicon mirror, which can be bent to focus the 

monochromatic beam at the (variable) sample position with a vertical size in the focal plane of 

approximately 300 m. Similarly to the collimating mirror, this focusing mirror has two 30 mm 

wide strips along its length, one coated with a thin layer of Platinum and the other bare Silicon. 

The horizontal extent of the beam at the sample is set by slits. The angle of incidence is fixed at 

approx. 2 mrad. The vertical position of the beam exiting the vertically focusing mirror is 

measured by a beam position and beam shape measurement instrument that is able to record key 

beam parameters during an experiment (Kachatkou et al., 2013). In brief, this instrument records 

the scattered radiation from a thin Kapton™ foil that is placed obliquely with respect to the 

incident beam. By collecting the scattered x-rays through an aperture an (enlarged) image of the 

footprint of the beam is recorded using an x-ray imaging sensor. For BM26A, we used a slit as 

an aperture because we were only interested in the vertical position of the beam (the beam line 

does not have a horizontal focusing capability and the beam width is set by slits just upstream of 

the sample). The resolution of the setup is determined by several parameters (aperture size, beam 

intensity and sensor noise) and is approx. 1 m. 

2 cos BD h 
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Beam intensity was recorded just upstream of the sample position with the use of an ion chamber 

(FMB Oxford IC Spec DIS-0100, I0 in Fig. 1) which was filled with a gas mixture of 5% N2 and 

95% He at a pressure of 1.2 bar. The output current of the ion chamber was amplified with a 

trans-impedance amplifier and fed into the EXAFS control system as a pulse rate using a Voltage 

to Frequency converter. 

3. Feedback control 

From the previous section it is clear that active control is needed to compensate for vertical beam 

movement as induced by scans of the x-ray energy. In principle, one can calculate the beam shift 

as a function of energy and correct accordingly. This method would work if not for the fact that 

there are additional sources for beam shift that make it imperative to apply corrections using a 

feedback control loop. One common cause of additional beam shifts during energy scans are 

mechanical issues to keep the two DCM crystals aligned with respect to each other in terms of 

pitch angle. This alignment error has a significant effect on the monochromatic beam intensity. 

For keeping the feedback control loop, that stabilises the beam position, operating it is, therefore, 

imperative to control the relative alignment of the DCM crystals. By creating a fast feedback 

control loop that maintains DCM crystal alignment, we create a situation in which the second, 

slower, position control feedback loop always operates with a beam of sufficient intensity. 

There are several ways to correct for vertical beam shifts irrespective whether they are due to 

DCM energy or vertical source position changes. Adjusting the gap h between the crystals such 

that the right hand side of equation (1) remains constant is an obvious way. Unfortunately the 

BM26A DCM gap was fixed at 10 mm. We therefore opted to adjust the height of the 

downstream mirror without changing its tilt angle. Adjusting the vertical sample position would 

also be an option but this approach requires also a simultaneous motion of the vertical exit slits 

and is critical in cases of complex experimental set-ups such as cryobeam (Gianolio et al., 2010) 

or heat gun on the samples (Günter et al., 2001). Adjustments of the focusing mirror tilt angle 

are also possible but these cause changes in the cut-off energy of the mirror and necessitate extra 

changes in exit slit settings by amounts that depend on the angular changes. 

There are two different methods of applying feedback control for keeping both crystals of the 

DCM aligned with respect to each other. The first method introduces a slight misalignment 

between the two crystals such that the exiting monochromatic beam is approx. 70% below the 



8 

 

peak value (Krolzig et al., 1984). The DCM beam intensity as a function of the relative 

alignment of the two crystals – the so called rocking curve – has a width that decreases with 

increasing output x-ray beam energy. Therefore, the method of aligning both crystals away from 

the peak reduces the higher harmonic content significantly (Als-Nielsen & McMorrow, 2011). 

At either side of the rocking curve it is relatively simple to create an appropriate feedback control 

signal that indicates in which way and by what amount to move the two monochromator crystals 

with respect to each other in the case of a small deviation from the preferred position. However, 

this method has a distinct disadvantage: the output flux varies as a function of synchrotron ring 

current and as a function of the energy setting (Bragg angle). In order for this approach to be 

effective, the feedback control signals require elaborate normalisation procedures to keep the 

exact position on the rocking curve. One also sacrifices 30% of the available flux and therefore 

requires extra beam time to obtain the required experimental statistics. 

The second method for intensity stabilisation is an extremum seeking control strategy. A paper 

by Krstić (Krstić & Wang, 2000) provides the theory behind the stability of such a control 

scheme. Van Mellaert and Schwuttke (van Mellaert & Schwuttke, 1970) first introduced this 

approach for stabilising x-ray beam intensity. More recent implementations developed 

specifically for DCM feedback control can be found at several synchrotron radiation facilities 

(Mills & Pollock, 1980; Kudo et al., 2007).  

Below we describe in detail the underlying principles of both fast extremum seeking control and 

the slower position control method. 

3.1. Intensity control – extremum seeking 

We have opted for a feedback control system that controls the setting of the piezo actuator to 

keep both crystals aligned at the top - extremum - of the rocking curve. The condition to stay at 

the peak of the rocking curve is not trivial to implement for several reasons. First, the extremum 

changes with time and selected beam energy. Secondly, if there is any slight misalignment, it 

will not be obvious in which direction the correction (e.g. the change in the setting of the piezo 

actuator) should be undertaken. There are many reasons why perfect alignment can't be 

maintained, particularly when the DCM energy setting is changed. For example, a change to 

larger Bragg angles will increase the power density of the incident beam onto the first (upstream) 

crystal causing a change in the thermal distortion. 
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The extremum seeking control method applies a sinusoidal excitation voltage with small 

amplitude to the control signal to the actuator see Fig. 4. For a well-aligned system this dither 

signal will produce a ripple with negligible amplitude superimposed on the DCM output 

intensity. 

The use of a periodic dither signal with small amplitude superimposed on a DC bias moves the 

second crystal smoothly around the set position. In the case of a misalignment, a distinctive 

oscillation of the DCM output intensity (ion chamber reading) will be evident. The phase 

comparison with the dither signal will indicate on which side of the rocking curve we are 

located. Our phase sensitive control scheme is shown schematically in Fig. 4. The measured 

beam intensity signal is amplified but only the time dependent (AC) signal is passed to a narrow 

band filter tuned to the frequency of the dither signal. The amplitude of this AC signal is 

proportional to AR(θ) where R(θ) is the derivative of the rocking curve with respect to θ and A 

the amplitude of the dither signal. The resulting filtered signal is then compared with that of the 

dither signal to give a “+1” or “-1” depending whether there is a positive or negative phase shift 

between them.  The ion chamber signal was read directly at the output of the trans-impedance 

amplifier. The signed amplitude is used as an input signal to a proportional controller whose 

output is summed to that of a manual bias and the dither signal before passed to the piezo 

actuator amplifier. Signal processing is conducted in the digital domain after the (amplified) 

signals have been converted using a 16-bit analogue to digital converter. The procedure for 

extracting the phase difference uses fast Fourier transformations (FFT) on the two measured 

signals. The two phases are obtained from the FFT bins belonging to that of the dominant 

(dither) frequency.  

 Our phase sensitive detection (PSD) approach differs from the traditional phase locked 

loop method (Mills & Pollock, 1980; Kudo et al., 2007) in that the processing chain doesn’t rely 

on using the DC component of the multiplication of the sinusoidal dither signal and the AC 

component of the measured signal. It can be shown that for the phase locked loop (PLL) method 

the DC component is proportional to  (Krstić & Wang, 2000). Particular for 

spectroscopic methods (such as EXAFS) it is important to keep the amplitude A of the dither 

signal small so that the energy changes of the x-ray beam are kept as small as possible. In this 

 
2

2

A
R 
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case, our approach provides higher sensitivity to amplitude variations than the traditional PLL 

method. 

An approach in which the tilt of the second crystal is used to stabilise both position and intensity 

is a compromise that results in varying intensity levels or vertical beam shifts (Kudo et al., 

2007). 

3.2. Beam position control 

For beam position control, a transmissive beam diagnostics instrument that measures beam 

position and beam profiles with high resolution without interfering with delivery of the beam at 

the sample is used. To improve signal to noise ratio of the measured signal, several individual 

beam profiles are added to give a time averaged reading, which is then used to give a 

measurement of vertical beam position by fitting the averaged profile with a Gaussian function. 

This procedure has been described in earlier publications (Kyele et al., 2005; van Silfhout et al., 

2011; Kachatkou & van Silfhout, 2013).  

Any changes in measured beam height are corrected by adjusting the focusing mirror height 

actuators. Using a simple feedback control loop, corrections are made to the focusing mirror 

height in order to keep the beam pointing at the same spot within 2 µm accuracy. Height 

corrections smaller than 2 µm are not made in order not to pass on motor changes that are similar 

to their resolution.  

Due to the relatively large mass the mirror correction loop was updated at relatively low 

frequency of approx. 0.2 Hz. Readings of vertical position were averaged to give a measurement 

at the above rate and these are used to calculate mirror height corrections using a software-based 

proportional controller which is completely separate from the intensity feedback loop shown in 

Fig. 4. 

4. Results 

At a nominal energy setting of 5.8 keV, a rocking curve measurement was performed by moving 

the piezo actuator such that the downstream monochromator crystal was rotated about its optimal 

alignment with the first crystal over a range of approximately 120 µrad. A voltage swing of the 

piezo amplifier control input by 1V creates a rotation (δϑ) of 53 rad of the downstream 

monochromator crystal. The measured response is shown as open circles in Fig. 5. The thin solid 
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line shows the expected shape of the curve based on theory (a convolution of two Si(111) 

reflections - Darwin curves - calculated using dynamical diffraction theory) which were scaled to 

match the measured amplitude. Absorption corrections were included in the calculations. The 

dotted line shows a Gaussian best fit to the data for comparison.  

To investigate the behaviour of the PSD system, we scanned the piezo bias voltage whilst 

recording the amplitude of the time varying (AC) part of the beam intensity monitor signal. The 

oscillation amplitude superimposed on the measured output beam intensity (Fig. 5) is a direct 

indication of the misalignment, provided this misalignment does not extend beyond the half 

width of the rocking curve. The bias voltage is adjusted so that the setting of the actuator creates 

a perfect alignment between the two crystals. 

The frequency of the dithering signal was chosen to be 6 Hz, which is fast compared to the 

measurement steps during the EXAFS experiments but not too fast for the piezo amplifier that 

has to drive a large capacitive load. A PSD system shown in Fig. 4 was used to control the DC 

bias of the piezo control signal. When multiplied by the sign of the phase difference between 

excitation oscillations and measured beam intensity a signal is obtained that is equal to the 

differential of the rocking curve. The result of these measurements is shown in Fig. 5 for three 

amplitudes of the dither signal (25, 35 and 50 mV).  It is clear that the measured signal behaves 

as expected with the measured PSD signal linear proportional to the excitation amplitude.  

This signal has the right characteristics to act as the input for a proportional controller because it 

has the right behaviour. Firstly, it indicates correctly on which side of the peak any misalignment 

is occurring providing a way back to the peak value. Secondly, the signal is linear proportional to 

the misalignment for angles of misalignment that can be as large as approx. half of the width of 

the full rocking curve. Finally, the signal passes through zero for optimal alignment. 

Performing a sinusoidal oscillation of the downstream DCM crystal causes periodic changes in 

the energy of the photon beam. It is important to understand the effects of the intensity 

stabilisation method on the energy resolution and how this affects the measured EXAFS data. 

Typical EXAFS scans use a constant step size (∆𝑘) in the photo-electron wave vector of 0.05 Å
-

1
. This step size is small enough to sample real space distances beyond 20 Å well beyond the 

usually required distance. Using the expression for the conversion between photo-electron wave 

vector k and the x-ray energy ( with k in Å
-1

 and E, E0 in eV), one readily finds 00.51k E E 
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that for energies, E, of 30 eV above the edge the equivalent energy change is similar to the 

induced energy variation due to the monochromator dithering with an amplitude such as used 

during the experiments. With the monochromator at the Ti K-edge energy (E0=5 keV) the 

dithering signal induces energy changes of 0.88, 1.23 and 1.77 eV for amplitudes of 25, 35 and 

50 mV respectively. For higher x-ray energies the 0.05 Å
-1 

step in wave vector quickly grows 

towards 5.5 eV at 5.8 keV. For reference, the inherent energy resolution of the beam line used is 

0.7 eV at 5 keV. 

With the intensity feedback loop running at a 2 Hz update rate we recorded the ion chamber 

reading as a function of energy while a Titanium K-edge EXAFS scan was performed. For 

comparison we also did the same experiment with the feedback switched off. Before this latter 

measurement, the two crystals were manually aligned at a single energy of approximately 

5.2 keV, representing the middle of a typical Ti K-edge EXAFS scan (4.7-5.7 keV). Fig. 6a 

shows the result of the two experiments and compares them with the expected (scaled) output of 

the beam line. The enhanced performance of the intensity feedback control loop is evidenced by 

the provision of a higher beam flux throughout the whole EXAFS experiment.  This will improve 

the signal-to-noise ratio in the spectroscopy data significantly, particularly in the case of spectra 

collected in fluorescence mode on diluted samples. What is surprising, however, is the large 

deviation between theory and measured flux at lower energies. Particularly at energies below the 

Ti-edge a significant drop-off is seen in the ion chamber reading. In the calculations for the 

expected beam intensity using the ESRF's SRW software package, we have accounted for the 

absorption of the Beryllium windows that were taken to be free from impurities and deposits 

(such as carbon). At these low beam energies careful consideration to impurity and air absorption 

is required to predict the measured intensity. The same behaviour was apparent when we 

measured the rocking curves for five energies across the energy range (see Fig. 6b). Any 

impurities in the beam line vacuum windows, reflecting surfaces (of mirrors and monochromator 

crystals) and non-linear behaviour of the detectors can impose experimental problems and hence, 

when working at these low energies, experimental hygiene is of utmost importance. It is likely 

that mirror contamination is the most likely cause for the reduced measured flux at the lower x-

ray energies; this beamline has been in operation for about a decade with high levels of user 

operation. 
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Measurements of vertical beam position during EXAFS scans with (and without) position 

feedback enabled were published elsewhere (Kachatkou et al., 2013) and show that a positional 

stability of 4.1 m (root mean square) is achieved during the scan which corresponds to the 

threshold limit (±2 m) set in software to prevent sending corrections to the actuator system that 

are beyond its positional precision. 

EXAFS measurements were performed on an in-homogeneous sample having a 2 wt% Ti-

loading in fluorescence mode using a 9-element monolithic Ge detector. Four different scans 

were taken under four different feedback scenarios: no feedback, optimised monochromatic 

intensity (I0), feedback to keep beam height constant and feedback on intensity and position. For 

the optimised intensity feedback runs, a 35 mV amplitude of the dither signal was used which 

corresponds to a 1.23 eV change in energy. The raw EXAFS data, shown in Fig. 7a, are 

characterised by a different slope of absorption coefficient μ as a function of energy. The 

difference in the EXAFS oscillations is more evident by looking to the extracted EXAFS signals, 

k
3
(k), as a function of k (Fig. 7b). Below k = 6.5 Å

-1
 the four data collections methods generate 

almost equivalent data, differing only by some 10% in the amplitude, but exhibiting the same 

phase. Starting from 6.5 Å
-1

 the k
3
(k) functions start to be distorted both in phase and in 

amplitude. The important beat around k = 8.5 Å
-1

 is significantly suppressed when the two 

feedbacks are not simultaneously operative. The error in the phase of the k
3
(k) functions in the 

9.0 - 10.5 Å
-1 

is also remarkable. Obviously, problems related to a non-optimal data collection 

are more evident in the high k-region, where the EXAFS signal is less intense. The Fourier 

Transformed k
3
(k) functions (calculated in the Δk = 2.0 - 10.0 Å

-1
 range) are clearly different 

for spectra collected with different feedback configuration, in both modulus (Fig. 7c) and 

imaginary parts of (Fig. 7d). It is thus clear that a quantitative EXAFS data analysis on the 

investigated sample will be affected by severe systematic errors for the data obtained without 

using the feedback and positional control. 

5. Discussion 

The performance of both feedback loops was satisfactory keeping both beam intensity and 

position optimal during the full EXAFS scans even though major corrections in terms of 

monochromator alignment and beam height had to be made. Over the range between 4.7 and 

5.8 keV the beam height was corrected by an amount of 0.66 mm, close to the calculated amount 
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based on a crystal gap of 10 mm. Corrections to the piezo setting amounted to half the width of 

the rocking curve at 5 keV.  

For near edge (XANES) scans, the highest energy resolution is required and dithering of the 

monochromator crystals should be avoided. The reduced scan range for XANES results in 

minimal intensity changes as evidenced by our measurements shown in Fig 6a. The use of the 

dithering of the monochromator crystal is therefore not needed allowing for the highest energy 

resolution for near edge spectroscopy scans. 

Judging from the sharp pre-edge peak, our method does not induce a noticeable energy shift due 

to asymmetrical movements or drifts of the monochromator mechanism. Comparing the pre-edge 

peak width for the runs with and without feedback we do not see a significant broadening of the 

peak due to a reduced energy resolution with the regular steps in energy change of the incident 

beam.  

 The periodic dither signal causes periodic changes in both energy and vertical position of the 

beam, which are taking place at a much higher rate than the typical stepped EXAFS data 

collection strategy that keeps the energy setting constant for at least 1 second, much more for 

fluorescence collections on diluted samples. The feedback loops are implemented in software, 

which gives the system a high level of flexibility allowing quick changes to dither frequency and 

amplitude whilst providing ways to synchronise any actuator changes with the EXAFS 

measurement protocol and timing. 

In conclusion, we have presented a dual feedback approach, which has shown to improve beam 

delivery particularly important for EXAFS scans at low energies such as the Ti K-edge. This 

development is of particular importance to users that are investigating inhomogeneous samples 

or those that want to create spatially resolved measurements of samples. The proposed feedback 

system should be of interest to multiple beam lines not just those that are designed for 

spectroscopy. The phase sensitive feedback scheme presented is relatively simple and requires 

no expensive components such as lock-in amplifiers. Beam position changes and monochromator 

crystal alignment are seen across the spectrum of x-ray beam lines. 

Our work offers uncompromised beam intensity delivered at the same sample location 

irrespective of beam energy or source motion.   
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List of figures 

 

Figure 1 An overview of BM26A showing the main optical elements, beam position monitor (BPM), 

fluorescence detector (Fl) and ion chamber (I0) used in the proposed feedback scheme. Slit systems are 

not shown. The drawing is not to scale. The second ion chamber that records the transmitted beam 

downstream of the sample is not shown. 
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Figure 2 Calculated acceptance angle of monochromator compared to the divergence of the source. 

Using the silicon (111) reflection, the monochromator can not accept the full vertical fan of radiation 

from the source for x-ray energies above 4 keV. For reference we have also given the divergence caused 

by the finite vertical size of the source. 
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Figure 3 Energy resolution calculations for the intrinsic Si(111) crystal monochromator (dashed),  the 

combination of monochromator and divergent bending magnet source (dash-dotted) and that for the 

monochromator with the collimating mirror taking into account the finite size of the source. 
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Figure 4 Diagram of the phase-sensitive detection (PSD) scheme used in the experiments.  A sinusoidal 

varying excitation is added to a bias voltage used to set the piezo actuator. The filtered I0 signal is 

compared in phase with the excitation signal and its amplitude is measured. The output of a PID 

controller adjusts the bias voltage to keep the two monochromator crystals aligned optimally. The input of 

the PID controller is derived from the variation in the monochromator output as measured by an ion 

chamber. 



20 

 

 

Figure 5 Measured rocking DCM curve (open circles). The filled markers denote the output of the phase 

sensitive detection (PSD) system using three different amplitudes of the excitation or dither signal 

(squares: 50 mV; triangles: 35 mV and diamonds: 25 mV). The output of the PSD system is the product 

of the measured signal amplitude and the sign of the phase difference between the dither signal and the 

measured ion chamber AC signal. The thick solid line shows the differentiated theoretical rocking curve 

that was scaled to the result obtained with a dither signal with an amplitude of 50 mV. 
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Figure 6 a) Beam intensity measurement with the ion chamber at the sample position during an EXAFS 

scan. The open circles denote a measurement taken with intensity and position feedback activated 

whereas the triangles indicate the same measurement without feedback. For the measurement without 

feedback the monochromator was manually aligned at a single energy (5.2 keV). Just above 5.2 keV 

beam intensity is lost due to the excitation of another reflection of the silicon crystals. The solid line 

indicates the theoretical behaviour of the beam line. b) Rocking curves of the DCM for five energies 

highlighting the issue of fast degradation of produced beam intensity as a function of low energy. 
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Figure 7 Rough EXAFS spectra (part a) and processed k
3
(k) data (part b) of a inhomogeneous Ti 

containing compound measured in presence of various implementations of the feedback scheme as 

presented in this paper. For clarity, the k
3
(k) curves have been smoothed. The modulus and imaginary 

parts of the corresponding Fourier Transformed k
3
(k) spectra (in the Δk = 2.0-10.0 Å

-1
 range) are shown 

in parts c) and d) respectively. 

 

 


