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Abstract 

In Italy, fermented sausages (called “salami”) are consumed in large quantities. Salami 

samples from a local meat factory in the area of Torino were analysed at 0, 3, 7, 30 and 45 

days of ripening. Swab samples from the production environment were collected as well at 

the beginning of the experiment. The diversity of metabolically active microbiota occurring 

during the natural fermentation of salami was evaluated by using RT-PCR-DGGE coupled 

with RNA-based pyrosequencing of the 16S rRNA gene. A culture-dependent approach was 

also applied to identify and characterize isolated Staphylococcaceae and LAB populations. 

Staphylococcus succinus, S. xylosus and Lactobacillus sakei were the species more frequently 

isolated during the maturation time. Rep-PCR analysis showed that S. succinus and S. xylosus 

isolated from swabs and salami samples clustered together suggesting a possible 

contamination during the production process. RT-PCR-DGGE and rRNA based 

pyrosequencing showed that the metabolically active populations were dominated by S. 

succinus, Lb. sakei and Leuconostoc carnosum. In this specific case study, only few species 

belonging to Staphylococcaceae, Lactobacillaceae and Leuconostocaceae may be 

metabolically active and contribute to determine the final characteristics of the products.  

 

Keywords: RT-PCR-DGGE, pyrosequencing, fermented meat, molecular methods 

 

1. Introduction 

In Italy there is a big variety of fermented sausages (called “salami”), consumed in 

large quantities. They are produced using the same main ingredients (pork meat, pork fat, 

sugars and salts) but with important differences in the type and quantities of spices (Cocolin 

et al., 2009). Microbiota development during ripening of these products has been largely 
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studied (Aquilanti et al., 2007; Cocolin et al., 2009; Połka et al., 2015; Villani et al., 2007). 

Lactic acid bacteria (LAB) and coagulase-negative Staphylococcaceae (CNS) are the two 

main groups of bacteria that are considered technologically important during fermentation 

and ripening of fermented meat products. An evident and strong connection is valid between 

the microbiota that develop during fermented sausages ripening and the sensory 

characteristics of the final product (Rantsiou and Cocolin, 2006). 

In the last decades, a great improvement in the detection and identification of microorganisms 

has been achieved by the introduction of molecular biology-based methods and mostly by 

culture-independent approaches. When RNA is analyzed, the microbial populations that are 

metabolically active can be potentially highlighted. Those are the populations that contribute 

the most to the fermentation process (Cocolin et al. 2013). Reverse transcription RT-PCR-

DGGE has been applied in dairy products to investigate their microbiota (Dolci et al., 2013; 

Masoud et al., 2012; Rantsiou et al., 2008). High-throughput sequencing (HTS) allows an in-

depth study of the microbial diversity in food. Workflow, limits and perspectives in applying 

culture-independent HTS to study food microbiota have been reviewed by Ercolini (2013). In 

general, HTS applications include metagenome sequencing approaches, studying the 

microbiome i.e. the distribution of genes and functions in food, or studying the structure of 

food microbiota by high-throughput sequencing of amplicons of taxonomic interest (Ercolini, 

2013). The culture-independent, sequencing-based approach has been successfully applied for 

the identification of microorganisms in meat products (De Filippis et al., 2013; Ercolini et al., 

2011) and is expected to improve the sensitivity and efficiency in the evaluation of microbial 

diversity.  

The aim of this study was to evaluate the diversity of metabolically active microbiota 

occurring during the natural fermentation of a traditional Piedmontese fermented sausage by 

using RT-PCR-DGGE coupled with RNA-based pyrosequencing of 16S rRNA gene. In 

addition, in order to have a better picture of the microbiota, a culture-dependent approach was 



 5

used to identify and characterize Staphylococcaceae and LAB population isolated during 

fermentation and from the meat processing plant. 

 

2. Material and methods 

 

2.1. Salami manufacturing and samples collection  

Salami samples were manufactured in a local meat factory in the area of Torino, by 

traditional techniques. Two batches were prepared in different moments (A and B). The 

formulation used in the manufacture included pork meat, lard, salt, pepper, coriander, nutmeg, 

cinnamon, sugar (0.1% w/w sucrose), nitrate salt (E252). Meat batter was stuffed into bovine 

casings resulting in sausages of about 36 mm of diameter. Ripening was carried out in a 

climatic chamber: for the first week at 19 °C and 80-83 % relative humidity (RU), while from 

the second week till end it was carried out at 14°C, 87% RU. Three samples of the meat 

mixture prior to filling (0) and three salami samples obtained after 3, 7, 30, and 45 days of 

ripening were analyzed. In addition, swab sampling was performed in the meat processing 

environment inside the local factory prior to manufacturing. The sample sites chosen were: I) 

cutting table, II) wall of the room where the batter is prepared, III) filling tube of the stuffing 

machine, IV) feeding compartment of the stuffing machine. At each sampling site, a 

moistened (0.1% buffered peptone water plus 0.85% sodium chloride solution) sponge 

(Biogenetics, Milan, Italy) was rubbed vertically, horizontally, and diagonally across the 

sampling site (100 cm2) delineated by a template. Samples were cooled at 4 °C and analyzed 

within 3 hours. 

 

2.2. Microbiological analysis 
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About 10 g from each of the three salami at every sampling time were taken from the 

internal part and homogenized with 90 mL of Ringer’s solution (Oxoid, Milano, Italy) for 2 

min in a stomacher (LAB Blender 400, PBI, Italy; stomacher bags: Sto-circul-bag, PBI, Italy) 

at room temperature. One milliliter of the sponge buffer was also used. Decimal dilutions in 

quarter-strength Ringer’s solution were prepared, and aliquots of 0.1 ml of the appropriate 

dilutions were spread in triplicate on the following media: (i) Gelatin Peptone Agar (GPA, 

Oxoid) for total aerobic bacteria incubated for 48 to 72 h at 30°C; (ii) De Man Rogosa and 

Sharpe agar (MRS, Oxoid) for LAB, incubated at 30 °C for 48 h; (iii) Mannitol Salt Agar 

(MSA, Oxoid) for Staphylococcaceae incubated at 30°C for 48 h; (iv) Violet Red Bile Agar 

(VRBA, Oxoid) for the Enterobacteriaceae, incubated at 30 °C for 24–48 h; (v) Malt Extract 

Agar (AMT, Oxoid) plus tetracycline (0.05 g/L, Sigma, Milan, Italy) for yeasts and moulds 

incubated at 25 °C for five days. Results were calculated as the means of Log colony forming 

units (CFU) for three independent determinations. Results from the swabs were calculated as 

Log CFU/cm2.  

The pH of each sample was measured in triplicate by using a digital pH meter 

(Waterproof pH Tester, Thermo Scientific, Nijkerk, The Netherlands). For each sampling 

time, mean and standard deviation were calculated. 

Data obtained from viable counts of the two batches were analyzed using one-way analysis of 

variance (ANOVA) with time being the main factor. ANOVA analyses were performed with 

the SPSS 18.0 statistical software package (SPSS Inc., Cary, NC, USA). The Tukey HSD test 

was applied when ANOVA revealed significant differences (P < 0.05). 

In parallel, for each sample point the presence of Listeria monocytogenes and 

Salmonella spp. was checked. Isolation of presumptive L. monocytogenes was conducted 

according to the ISO 11290-1 method while isolation presumptive of Salmonella spp. was 

carried out according to ISO 6579 methodology. 
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After measurement of the viable counts from each sample point (0, 3, 7, 30 and 45 days) 15 

colonies from MRS and MSA agars were randomly isolated and purified. The purified 

isolates were preliminary characterized by microscopic observations and Gram, catalase and 

oxidase reactions. Working cultures were maintained in Brain Heart Infusion (BHI, Oxoid) or 

MRS broth (Oxoid) with 25% glycerol at −20 °C.  

 

2.3. DNA extraction from pure cultures and identification by PCR-DGGE  

DNA was extracted from 1 ml of an overnight culture of BHI and MRS centrifuged at 

14,000 ×g for 10 min at 4 °C. The pellet was subjected to DNA extraction according to 

Cocolin et al. (2001). DNA was quantified by using the Nanodrop Instrument 

(Spectrophotometer ND-1000, Thermo Fisher Scientific, Milan, Italy) and it was standardized 

at 100 ng/µL. 

For LAB isolates, the primers 518R and 338F were used (Muyzer et al. 2003) 

amplifying the variable V3 region of the 16S rRNA gene, giving PCR products of about 250 

bp. To the forward primers, a GC clamp was added according to Muyzer et al. (1993). PCR 

products were analyzed by denaturing gradient gel electrophoresis (DGGE) using Bio-Rad 

Dcode apparatus as reported (Cocolin et al. 2001) 

For Staphylococcus spp. the primer pair P1V1F and P2V1R (Klijn et al. 1991) was used, 

amplifying the variable V1 region of the 16S rRNA gene. Primer P1V1F was modified by the 

addition of a GC clamp as described above. PCR products were analyzed by denaturing 

gradient gel electrophoresis (DGGE) using Bio-Rad Dcode apparatus as previously described 

(Cocolin et al. 2001). PCR products (for both CNS and LAB) that migrated at the same 

position in the gels were grouped together. 

Randomly for each group, isolates were chosen and the partial 16S ribosomal DNA gene was 

amplified with primers P1V1/P4V3 (Kliji et al. 1991). PCR products were then purified with 



 8

a PCR Extract Mini Kit (5PRIME, Milan, Italy) according to the manufacturer’s instructions 

and sequenced. Sequencing was performed with a Deoxy terminator cycle sequencing kit 

(Perkin–Elmer Applied Biosystems) using the primer P1V1F. To determine the closest known 

relatives of the partial 16S rRNA gene sequences obtained, searches were performed in public 

data libraries (GenBank) with the Blast search program (http://www.ncbi.nlm.nih.gov/blast/) 

(Altschul et al., 1997).  

 

2.4. Molecular typing by rep-PCR and cluster analysis 

For the most abundant CNS and LAB species fingerprintings were obtained by using 

repetitive extragenic palindromic PCR (rep- PCR) with the primer (GTG)5 according to 

Iacumin et al. (2006). Reactions were carried out in a final volume of 25 µL containing: 1X 

PCR Buffer, 1.5 mM MgCl2, 0.2 mM of each of dNTP, 2 µM primer (GTG)5 and 2.5 U/µL 

Taq DNA polymerase (Sigma, Milan, Italy). The PCR reaction consisted of 30 cycles of 

denaturation at 90°C for 30s, annealing at 40°C for 60 s and extension at 65°C for 8 min. The 

initial denaturation was at 95°C for 5 min and the final extension at 65°C for 16 min. The 

amplified products were resolved by electrophoresis on 2% agarose-TBE at 120 V for 2h and 

the 1 kb DNA ladder was used as molecular weight marker (Promega). The rep-PCR profiles 

were normalised and cluster analysis were performed using Bionumerics software (version 

6.1, Applied Maths, Sint-Martens-Latem, Belgium). The dendrograms were calculated on the 

basis of the Pearson's Coefficient of similarity with the Unweighted Pair Group Method using 

Arithmetic Averages (UPGMA) clustering algorithm (Vauterin and Vauterin, 1992). 

 

2.5. Total RNA extraction from salami matrix and RT-PCR-DGGE analysis 

For RNA extraction, at each time point, 1 ml of the first decimal dilution prepared for 

the viable counts was collected and centrifuged at maximum speed for 30 s, the supernatant 
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was removed and 200 µl of RNA-later (Ambion, Applied Biosystems, Milan, Italy) was 

immediately added to the pellet and stored a -80°C. The RNA was extracted from the pellet 

using a MasterPureTM Complete DNA and RNA Purification kit (Epicentre, Madison, WI, 

USA) following the supplier's instructions. Three microliters of TURBO-DNase (Ambion) 

was added to digest the DNA in the RNA samples, with an incubation of 3 h at 37 °C. RNA 

was quantified by using the Nanodrop Instrument (Spectrophotometer ND-1000, Thermo 

Fisher Scientific, Italy) and standardized at 300 ng/µL. Reverse Transcriptase (RT) was 

performed by using the universal primer 518R as described by Rantsiou et al. (2008). One µL 

of cDNA was amplified with primers 338F-GC and 518R. PCR products of approximately 

250 bp were analyzed by DGGE (Bio-Rad Dcode apparatus). Samples were applied to 8% 

(w/v) polyacrylamide gels in 1 X TAE buffer. Parallel electrophoresis experiments were 

performed at 60 °C using gels containing a 30–60% urea–formamide denaturing gradient 

(100% corresponded to 7 M urea and 40% [wt/vol] formamide). The gels were run for 240 

min at 200 V, stained with SYBR® Gold Nucleic Acid Gel Stain (Life Technologies, 

Milano), visualized under UV-transillumination and photographed by using UVIpro Platinum 

1.1 Gel Software (Eppendorf). A database of fingerprints was created by using the software 

Bionumerics version 4.6 (Applied Maths, Sint Marten Latem, Belgium). A dendrogram of 

similarity was retrieved by using the Dice coefficient and Unweighted Pair Group Method 

using Arithmetic average (UPGMA) clustering algorithm (Vauterin and Vauterin, 1992). 

Selected DGGE bands were excised from the gel with sterile pipette tips and purified 

in water. One µL of the eluted DNA was used for the re-amplification by using the primers 

and the conditions described above, and the PCR products were checked by DGGE. The 

original PCR product was run on the gel as the control. Products that migrated as a single 

band and at the same position as the control were purified by using PCR Extract Mini Kit 

(5PRIME, Hilden, Germany) according to the manufacturer’s instructions and then were 

sequenced as describe above.  
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2.6. RNA analysis by pyrosequencing 

The cDNA was used to study the microbial diversity of the metabolically active 

populations by pyrosequencing of the amplified V1–V3 region of the 16S rRNA gene by 

using primers and PCR condition previously reported (Ercolini et al., 2012). PCR products 

were purified by Agencourt AMPure kit (Beckman Coulter, Milano, Italy), quantified using 

the QuantiFluor™ (Promega, Milano, Italy) and an equimolar pool was obtained prior to 

further processing. The amplicon pool was used for pyrosequencing by using Titanium 

chemistry on a GS Junior platform (454 Life Sciences, Roche, Monza, Italy) according to the 

manufacturer's instructions. 

 

2.7. Bioinformatics analysis 

Raw reads were first filtered according to the 454 processing pipeline. Sequences 

were then analyzed and further filtered by using QIIME 1.8.0 software (Caporaso et al., 

2010), using split_library.py and denoiser.py script  (Reeder and Knight, 2010). 99% OTUs 

were picked against the Greengenes database 16S rRNA gene database (McDonald et al., 

2012). Alpha and beta diversity were evaluated through QIIME (De Filippis et al., 2013). 

Beta diversity was evaluated by weighted UniFrac analysis (Lozupone and Knight, 2005) and 

Principal Coordinates Analysis (PCoA) was performed to show the diversity between the 

samples according to their specific microbiota. Weighted UniFrac distance matrices and OTU 

tables were used to perform Adonis, Anosim, g_test, ANOVA and distance comparison 

statistical tests through compare_category.py, make_distance_comparison_plots.py and 

group_significance.py scripts of QIIME, in order to verify the difference between the 

samples. A filtered OTUs table at 0.5% abundance in at least two samples was generated 

through QIIME.  

All the sequencing data were deposited at the Sequence Read Archive of the National Center 

for Biotechnology Information (SRP049161). 
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3. Results 

 

3.1. Enumeration of the microorganisms  

The results of the pH and viable counts during salami ripening are shown in Table 1. 

pH values increased from 5.75 ± 0.05 to 6.75 ± 0.08, while LAB and staphylococci grew 

significantly (P<0.05) after 45 days of ripening, as well as the total bacterial counts. Moulds, 

yeasts and enterobacteria did not show a significant development in all the sampling points 

(P>0.05) remaining constant at about 2 to 3 Log CFU/g. Listeria sp. and Salmonella sp. were 

never detected. 

Concerning the environmental swabs (Tab. 2), LAB and staphylococci counts were 

around 3 Log CFU/cm2 and only in the filling tube of the stuffing machine (III) LAB reached 

5.64 Log CFU/cm2. The other populations were found to be present only in some sampling 

locations (Tab. 2).  

 

3.2. Identification and grouping of isolates from media plate 

A total of 208 isolates from MSA and 169 isolates from MRS plates were identified 

by PCR-DGGE coupled with the 16S rRNA gene sequencing. The results are shown in Table 

3 and Table 4, respectively. The majority of CNS isolates were identified as Staphylococcus 

succinus and S. xylosus both from the salami (42% and 46%, respectively) and from the 

environmental swabs (61% and 30%, respectively). Isolates identified as S. equorum were 

also found in both salami and swabs, while S. saprophyticus and S. cohnii were only isolated 

from the salami samples. Few isolates of Leuconostoc carnosum, Enterococcus gilvus and Lb. 

pentosus were found in both the salami and in the environmental samples. 
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Lactobacillus sakei was the species mainly isolated from the salami samples (83%), 

but no isolates belonging to this species were found in the environment and the same was 

observed for Lc. mesenteroides. E. gilvus and Lb. pentosus were found only in raw meat at 

time 0 and on swabs from the table. Enterococcus faecium was detected only on the stuffing 

tank. Leuconostoc carnosum was found in raw meat at time 0 and from the wall and 

Aereococcus viridans was only found on the wall. Carnobacterium divergens (two isolates) 

were found only in raw meat at time 0 and after 45 days of ripening. 

For the most abundant CNS and LAB species, namely S. succinus (163 isolates), S. 

xylosus (188 isolates) and Lb. sakei (125 isolates) rep-PCR was carried out and the cluster 

analysis is presented in Figure 1 (panels A, B and C, respectively). At 70% of similarity, 12 

clusters resulted from Lb. sakei isolates (Fig. 1A), while 3 clusters were identified for the 

isolates of both Staphylococcus species (Fig. 1B and 1C). In the case of S. succinus (Fig. 1B), 

all the isolates from the environmental swabs clustered together and in the same cluster as the 

majority of the isolates from the salami fermentation. A similar case was observed for S. 

xylosus, where 2 different strains from the environment clustered with those isolated during 

fermentation. On the other hand, no Lb. sakei isolates where found in the environment swabs, 

but several different strains of Lb. sakei were found in the salami samples.  

 

3.3. RT-PCR-DGGE analysis 

Representative RT-PCR-DGGE fingerprints obtained from RNA directly extracted 

from salami during the ripening are presented in Figure 2, while the results of the band 

sequencing are shown in Table 5. DGGE profiles of the two production resulted to be very 

similar with no differences in the fingerprints (data not shown). Fragments arising from 

different profiles and migrating with the same distance in DGGE gels were repeatedly 

sequenced giving the same results in terms of closest relative species and percentage of 

identity. Main bands were sequenced and Lb. curvatus (band A) and S. succinus (band D) 
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were present in all the fingerprints. Lb. sakei (band F) was only identified after 3 and 30 days 

of maturing. Occurrence of other taxa belonging to Photobacterium sp., Pseudomonas fragi, 

Lb. algidus, Lc. gelidum and Lc. carnosum were observed (Fig. 2, Tab. 5). A large fingerprint 

cluster (>70%) grouping salami isolates from days 7 to 45 was seen (Fig. 3).  

 

3.4. Pyrosequencing results 

A total of 161,275 raw reads were obtained after the 454 processing. 157,476 reads 

passed the filters applied through QIIME, with an average value of 4,699 reads/sample and an 

average length of 469 bp. The rarefaction analysis and the estimated sample coverage (Tab. 6) 

indicated that there was satisfactory coverage for all the samples (ESC > 99%). Also the 

richness of the samples varied across samples from a minimum of 65 to 131 OTUs. In Figure 

4 an overview of the relevant OTUs is shown. Rare taxa were grouped as “other”. Lb. sakei 

was the major OTU in A and B samples, its abundance during the fermentation time was 

never lower than 50%. Lb. curvatus occurred in most of the samples although it was never 

abundant. Many samples contained a low abundance of Lactobacillus sp., which was not 

possible to identify at species level. Lc. carnosum was always present, its abundance being 

never lower that 20% (during time 3, 7 and 30 days) and about 10% at time 0 and 45. Many 

samples contained Leuconostoc sp. and Lc. mesenteroides, but at very low level. S. succinus 

was present (15%) in sample A at 45 days, while in all other samples it was found at very low 

percentage (1-3%). P. fragi, Photobacterium sp. and Brochothrix thermosphacta were found 

in meat batter at day zero, and sporadically at low level in the other samples. 

Through principal-coordinate analysis with a weighted UniFrac distance matrices it 

was possible to show that meat samples at time 0 separated well all salami samples on the 

basis of the microbiota (Fig. 5). Adonis and Anosim statistical tests run through 

compare_categories.py script of QIIME, showed no significant difference between batches A 
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and B (P>0.05). However, according to statistical tests the samples were significantly 

different during the ripening time (P < 0.001). 

Results from make_distance_comparison_plots.py script of QIIME showed that 

samples at 3 and 7 days versus meat batter were significant as the Bonferroni corrected p-

value was 0.001, and the same observation was made for samples at 7 and 45 days (data not 

shown). ANOVA and g_test run through group_significance.py script of QIIME showed that 

Lb. sakei, S. succinus, Lc. carnosum, P. fragi and Photobacterium sp. abundance was 

significantly different during time.  

 

4. Discussion 

The aim of this study was to investigate the microbiota involved in the production of 

a Piedmontese traditional salami by RNA based approaches, complemented with culture-

dependent analysis for LAB and CNS. 

Concerning the pH, it was found to be relatively high, with an increase at the end of ripening. 

This is a typical characteristic of Mediterranean salami that have a pH of 5.3–6.2, compared 

to Northern products that have a pH below 5 (Talon et al., 2007). Normally, Italian salami are 

not smoked, produced at low temperatures, with a slower curing process and nitrate used 

instead of nitrite. Mould growth is often observed on their surface and starter cultures are not 

added in most traditional product (Blaiotta et al., 2004). 

The results of the viable counts revealed a dominance of the LAB population from 

the beginning till the end of the ripening time in agreement with previous studies (Aquilanti et 

al., 2007; Cocolin et al., 2009). The LAB population reached the highest count from the third 

day till the end (above 8 Log CFU/g). Concerning CNS, they were of about 3 Log CFU/g at 

the beginning of the process and they increased to 7 Log CFU/g after 45 days. The increased 
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loads in both LAB and CNS population from 3 to 30 days of ripening confirmed that these are 

the bacteria that are likely to play a major role in the maturing of the salami.  

The results of the identification of the isolates by PCR-DGGE approach showed that 

the CNS populations were formed by S. xylosus (46 %) and S. succinus (42%). S. xylosus is a 

frequent species isolated from salami samples, however other species of staphylococci, such 

as S. succinus, S. equorum and S. saprophyticus, can play a role in sausages naturally 

fermented  (Iacumin et al., 2006; Janssens et al., 2014; Mauriello et al., 2004) . Interestingly, 

strains involved in the fermentation process were isolated from the environment, highlighting 

a possible link between between processing plant and sausage microbiota as previously 

indicated (Coton et al., 2010; Leroy et al., 2010). Identification of LAB isolates showed the 

predominance of Lb. sakei, however this species was never detected from the environment.  

The metabolically active species diversity developing during ripening of salami was 

assessed in this study by RT-PCR-DGGE and RNA based pyrosequencing analysis. DGGE 

has been for a long time the most frequently applied technique for microbial ecology studies, 

as it provides a complete picture of the microbiota in the food matrix with a low cost and in a 

short time. In our study we found that the distribution of the salami samples were similar by 

using the DGGE and the pyrosequencing technique. UPGMA cluster analysis of DGGE 

fingerprints confirms the beta diversity results. Meat at time 0 had a different microbiota 

composition in terms of bands and OTUs richness. Photobacterium sp. were found in both 

DGGE and HTS analysis; members of this genus are not often isolated from food 

environments, but they have been recently associated to the spoilage of atlantic cod stored in 

modified atmosphere packaging (Hovda et al., 2007) and in vacuum packed meat (Ercolini et 

al., 2010). On the other hand in our samples we found several meat spoilage bacteria, namely 

C. divergens, B. thermosphacta and P. fragi. These are recognized as meat spoilage factors 

producing off-odour and off-flavour (Casaburi et al., 2014). B. thermosphacta and P. fragi 

were present at very high percentage in raw meat samples at time 0, while they were 

outcompeted by LAB during ripening.  
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Microbial identification by DGGE showed the presence of bands identified as Lb. 

gelidum, Lactococcus piscium and Lb. algidus that were not found in the HTS analyses. On 

the contrary Lb. sakei was found to be the dominant OTU from the beginning and was not 

found in the DGGE profile at time 0 and 30 days. Unexpectedly, the band identified as Lb. 

sakei was absent in the direct DGGE analysis at time 0, 7 and 45 days despite their presence 

according to the pyrosequencing data. This could be due to PCR-bias in the food matrix 

where different species are present at high levels and interfering with the specific binding of 

the primers applied. Such results indicate the need for the simultaneous use of both 

techniques for studying populations in traditional fermented products. 

In a recent study (Połka et al., 2015) on typical Italian dry fermented sausages reported the 

presence of 32 different Staphylococcaceae and 33 Lactobacillaceae identified by using DNA 

based HTS coupled with DGGE technique. Our evidence showed that only few species 

belonging to those genera may be metabolically active and can really contribute to determine 

the final characteristics of the products.  

In conclusion, RNA-based analysis can significantly increase the ability to identify the impact 

of the microbial population on organoleptic characteristics of typical food products.  
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Tables 

 

Table 1. pH value and Log CFU/g of LAB, CNS, Enterobacteriaceae, moulds, yeasts and 

total aerobic bacteria of sausages samples at 0, 3, 7, 30 and 45 days of maturation. Different 

letters in the same row indicate significant differences for each media among times (P< 0.05). 

n.d. not detected.  

Salami   Fermentation days        

  0 3 7 30 45 

pH   6.02 ± 0.08 5.75 ± 0.05 5.85 ± 0.06 6.20 ± 0.06 6.75 ± 0.08 

Log10 CFU/g       

 LAB (MRS) 4.29 ± 0.90 a 8.07 ± 0.22 b 8.04 ± 0.19 b 8.28 ± 0.39 b 7.84 ± 0.30 b 

 Staphylococcaceae (MSA) 3.79 ± 0.34 a 4.42 ± 0.37 ab 5.01 ± 0.11 b 5.43 ± 1.60 b 7.01 ± 0.55 c 

 Enterobacteriaceae (VRBGA) 2.19 ± 0.93 a 2.06 ± 0.58 a 1.59 ± 0.30 a 1.98 ± 0.92 a 1.74 ± 0.57 a 

 MOULDS (AMT) 2.08 ± 0.40 a 2.03 ± 0.33 a 2.42 ± 1.01 a 2.02 ± 0.31 a 3.19 ± 1.22 a 

 YEASTS (AMT) 3.16 ± 0.22 ab 2.98 0.03 ab 3.29 ± 0.42 ab 2.62 ± 0.54 a 4.18 ± 1.67 b 

  TOTAL BACTERIA (GPA) 5.21 ± 0.41 a 6.93± 0.94 b 7.67 ± 0.09 ab 6.91 ± 0.19 b 7.90 ± 0.26 b 

 Listeria monocytogenes (OXFORD) n.d. n.d. n.d. n.d. n.d. 

 Salmonella sp. (XLD) n.d. n.d. n.d. n.d. n.d. 

 

Table 2. Viable counts in the environmental swabs: I (table), II (wall), III (filling tube of the 

stuffing machine), IV (feeding compartment of the stuffing machine).  

  Log10 CFU/cm2    

  LAB CNS Enterobacteria Total bacteria Moulds Yeasts 
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I 2.99 3.42 2.11 5.60 0.70 1.20 

II 3.84 2.34 < 1 3.90 1.18 1.28 

III 5.64 3.50 < 1 5.78 < 1 2.30 

IV 2.63 2.56 < 1 4.00 < 1 1.18 
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Table 3. Identification of the CNS isolates. The number of isolates for each species and at 

every sampling point is shown. I, II, III, VI are the environmental swabs. Underlined species 

were subjected to rep-PCR. 

CNS isolates                                 

Species 
Fermentation time (days)   Environmental swabs   

0 3 7 30 45  Tot  I II III VI  Tot  Tot 

Staphylococcus succinus 16 18 11 11 7   63   10 8 7 12   37   100 

Staphylococcus xylosus 9 9 14 18 20  70  5 5 8 0  18  88 

Staphylococcus equorum 4 1 3 1 0  9  0 0 0 3  3  12 

Staphylococcus saprophyticus 1 0 2 0 0  3  0 0 0 0  0  3 

Staphylococcus cohnii 0 2 0 0 3  5  0 0 0 0  0  5 

Tot 30 30 30 30 30  150  15 15 13 15  58  208 

 

Table 4. Identification of the LAB isolates. The number of isolates for each species and at 

every sampling point is shown. I, II, III, VI are the environmental swabs. Underlined species 

were subjected to rep-PCR. 

 

LAB isolates                                 

Species 
Fermentation time (days)   Environmental swabs   

0 3 7 30 45   Tot   I II III VI   Tot   Tot 

Lactobacillus sakei 15 28 29 29 24  125  0 0 0 0  0  125 

Leuconostoc mesenteroides 6 2 0 0 2  10  0 0 0 0  0  10 

Leuconostoc carnosum 3 0 0 0 2  5  0 1 0 0  1  6 

Enterococcus gilvus 3 0 0 0 0  3  12 0 0 0  12  15 

Lactobacillus curvatus 1 0 1 1 0  3  0 0 0 0  0  3 

Lactobacillus pentosus 1 0 0 0 0  1  3 0 0 0  3  4 

Aerococcus viridans 0 0 0 0 0  0  0 0 1 0  1  1 

Enterococcus faecium 0 0 0 0 0  0  0 0 0 2  2  2 
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Carnobacterium divergens 1 0 0 0 2   3   0 0 0 0   0   3 

Tot. 30 30 30 30 30  150  15 1 1 2  19  169 
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Table 5. Microbial species identification after sequencing of the variable V3 region of the 16S 

rRNA gene purified from RT-PCR-DGGE profiles obtained from RNA directly extracted 

from salami samples. 

 

Banda Closest relative Closest relative 
Accession No. 

Identity (%) 

A Lactobacillus curvatus KJ921832 100 

B Leuconostoc carnosum NR102781 99 

C Pseudomonas fragi KJ589477 99 

D Staphylococcus succinus KJ524461 100 

E Leuconostoc gelidum KF577567 99 

F Lactobacillus sakei KJ812206 100 

G Lactococcus piscium JN226415 99 

H Lactobacillus algidus NR028617 100 

I Photobacterium sp. KJ718943 100 

    a bands from letters A to I are indicated in Figure 2. 

 

 

Table 6. Number of sequences analyzed, observed diversity and estimated sample coverage 

(Good’s coverage) for 16S rRNA amplicons analyzed. 

Sample_ID Reads OTUs goods_coverage chao1 Shannon index 
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A_0 4785 95,67 99,49 113,17 3,29 

B_0 3920 65,33 99,34 101,92 2,63 

A_3 4076 82,33 99,37 111,90 3,15 

B_3 4806 79,33 99,40 97,31 2,97 

A_7 4610 82,33 99,53 102,81 3,31 

B_7 4421 88,00 99,42 111,34 2,93 

A_30 4911 84,67 99,44 104,92 3,37 

B_30 5227 94,00 99,56 114,90 3,19 

A_45 5498 131,00 99,74 144,35 3,90 

B_45 4738 118,33 99,56 136,56 3,44 
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Figures 

 

Figure 1. Cluster analysis of the rep-PCR fingerprints at 70% of similarity. A, Lactobacillus 

sakei isolates; B, Staphylococcus succinus isolates; C, Staphylococcus xylosus isolates. 

Isolates from the environmental swabs are included in squares.  
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Figure 2. Representative RT-PCR–DGGE fingerprints of the 16S V3 amplicons from microbial rRNA 

directly extracted from salami samples, numbers indicate the days of ripening, while letters placed at the left 

of each band indicate the sequenced fragments reported in Table 5. 

 

  

 

 

 

Figure 3. Dendrogram of similarity generated by the digitized RT-PCR-DGGE fingerprints. A combined data 

matrix of all the fingerprints (three replicates for each time point) was obtained and the dendrogram of 
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similarity was obtained by using the unweighted pair group method using arithmetic average (UPGMA) 

clustering algorithm (Vauterin and Vauterin, 1992). Sampling time (days) is reported in the first column, 

while replicate number and batch are indicated in the second and third column, respectively. 
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Figure 4. Incidence of the major taxonomic groups detected by pyrosequencing. Only OTUs with an 

incidence above 0.5% in at least two samples are shown. Samples are labeled according to the time (0, 7, 30, 

45 days) and batch (A and B). 
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Figure 5. Principal Coordinates Analysis of Weighted UniFrac distances for 16S rRNA gene sequence data. 

Samples are color-coded by time. 

 

 


