Pathology of the Adrenal Cortex: a Reappraisal of the Past 25 Years Focusing on Adrenal Cortical Tumors.

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/152584 since

Published version:
DOI:10.1007/s12022-013-9291-6

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
This is an author version of the contribution published on:
Questa è la versione dell’autore dell’opera:
ovvero [Papotti M, Duregon E, Volante M, McNicol AM., 25 (1), Springer, 2014,
pagg.35-48]

The definitive version is available at:
La versione definitiva è disponibile alla URL:
PATHOLOGY OF THE ADRENAL CORTEX: a reappraisal of the past 25 years focusing on adrenal cortical tumors

Mauro Papotti, Eleonora Duregon, Marco Volante, Anne Marie McNicol*

Department of Oncology, University of Turin at San Luigi Hospital, Orbassano (Torino), Italy and
*Molecular and Cellular Pathology, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia.

Corresponding author: Marco Volante, MD

Department of Oncology, University of Turin at San Luigi Hospital,
Regione Gonzole 10, 10043 Orbassano, Torino, Italy

Phone +390116705464; Fax: +390119026753; email: marco.volante@unito.it
ABSTRACT

A reappraisal of the major advances in the diagnostic pathology of adrenal cortical lesions and tumors in the last 25 years is presented, with special reference to the definition of malignancy in primary adrenal cancer and its variants. Slightly more than 25 years ago Weiss proposed his diagnostic scoring system for adrenal cortical carcinoma. This represented a milestone for adrenal pathologists and the starting point for further modifications of the system, either through minor changes in the scoring procedure itself, or concentrating on some particular Weiss criterion such as mitotic index, integrated into alternative scoring schemes or algorithms that are currently under validation. Improvements in diagnostic immunohistochemistry have led to the identification of markers of cortical origin, such as Melan A, alpha-inhibin and SF-1 and of prognostic factors in carcinoma, such as the Ki-67 proliferation index and SF-1 itself. With regard to hyperplastic conditions, genetic investigations have allowed the association of the majority of cases of primary pigmented nodular adrenocortical disease (PPNAD) in Carney complex to mutations in the gene encoding the regulatory subunit 1A of protein kinase A (PRKAR1A). Other hereditary conditions are also associated with adrenal cortical tumors, including the Li-Fraumeni, Beckwith-Wiedemann, Gardner, Multiple Endocrine Neoplasia type 1 and Neurofibromatosis type 1 syndromes. Moreover, several advances have been made in the knowledge of the molecular background of sporadic tumors, and a number of molecules/genes are of particular interest as potential diagnostic and prognostic biomarkers.

KEY WORDS: Adrenal cortex, pathology, adenoma, carcinoma, diagnostic criteria, update
INTRODUCTION: Where we were

Diagnostic pathology of adrenal cortical diseases classically included diffuse lesions and single or multiple nodular conditions. In this respect, the diagnostic approach has not undergone major changes in the past 25 years, but several new tools have become available for the purpose of better identifying different diseases and tumor categories. Light microscopy and immunophenotyping or molecular markers have led to the definition of more accurate and reproducible categories of adrenal cortical disorders, especially in neoplastic diseases.

Twenty-five years ago, pathology reports were based on few terms (mainly hyperplasia, adenoma, carcinoma or metastasis) and a description of the relevant pathological features was attached, according to local practice of different countries and institutions. Electron microscopy was generally not necessary for subtyping adrenal cortical diseases and immunohistochemical diagnostic markers related to adrenal cortex were very limited, and no prognostic or predictive markers were known. However, as for other types of human diseases, pathology of the adrenal cortex has progressed - especially in the most recent years - together with the improvement of the clinical diagnosis and management of patients, and with the technical implementation of ancillary tools.

This overview will summarize the major advances in the diagnosis of adrenal cortical lesions, separately approaching diagnostic, immunophenotypic and molecular data that have emerged in the past 25 years, focusing on adrenal cortical tumors and on novel insights that have improved the diagnostic work-up or are currently being validated. A summary of the most relevant achievements is illustrated in Figure 1.
DIAGNOSTIC CRITERIA OF MALIGNANCY

Twenty-five years ago several parameters of malignancy had been identified, all having a poor sensitivity for adrenal cortical carcinoma diagnosis. As a result, Weiss proposed combining some of them into a scoring system. This proposal (the Weiss Score) was a major advance in adrenal cortical cancer pathology and still represents - in its original proposal [1,2] or after minor modifications [3] - a milestone in this field. However, the effects of a 25 year-long application of the Weiss Score, as also discussed by Weiss himself in a recent reappraisal of his score [4], led to the recognition that the relevance and reproducibility of the individual parameters varies.

As a direct consequence of this situation, alternative diagnostic protocols or algorithms have emerged in the last decades, all having a limited application and a lower popularity compared to the Weiss Score, at least until recent years. As a matter of fact, all systems used for adrenal cortical carcinoma diagnosis largely rely on mitotic figures count, which thus represents the most relevant and accurate parameter to assess malignancy in adrenal cortical tumors, irrespective of the diagnostic protocol applied. In this respect, Diaz-Cano and Blanes proposed a diagnostic algorithm based on the mitotic count, and suggested that a cut-off value of >5 mitotic figures in 50 high power fields was associated per se with malignant behavior [5]. Among other alternative approaches, an algorithm was recently designed to combine architectural features (namely the disruption of the reticulin framework) and the presence of malignancy-related parameters already included in the Weiss Score, such as increased mitotic index and the presence of necrosis and vascular invasion [6] (Figure 2). This algorithm was able to reclassify with a 100% sensitivity and specificity all cases with a “malignant” Weiss Score (>3) and is generally simple and easier to apply.
In addition, in subsequent publications, it proved applicable also in specific adrenal cortical tumor variants, namely the myxoid and the oncocytic subtypes (see also below) [7,8].

On the other hand, it soon became clear that some parameters proposed in the Weiss Score (including sinusoidal invasion, diffuse growth, etc) were difficult to apply and lacked inter-observer reproducibility. These difficulties were eventually addressed in a recent study reported by a French group [9], which definitely demonstrated that not all Weiss criteria are easily applicable and that pathologists’ training is crucial in improving the diagnostic accuracy. Moreover, in a recent study the reproducibility of reticulin staining - which is the key parameter of the algorithm described above - was also tested among observers of different centers that blindly examined over 240 adrenal cortical tumors; the assessment of reticulin disruption was highly reproducible among pathologists, especially after specific training and in cases classified as malignant according to the Weiss Score [10].

SPECIAL TYPES OF ADRENAL CORTICAL TUMORS

Oncocytic adrenal cortical tumors.

Oncocytic adrenal cortical neoplasms represent a subset of tumors with a predominant component of usually large cells with the cytoplasm filled with mitochondria which confer a granular and deeply eosinophilic appearance. Since the first report in 1986 [11], many case reports or small series have been published. In the series collected at our Institution, the prevalence of oncocytic adrenal cortical carcinomas among malignant tumors was approximately 18% [8].

Oncocytic adrenal cortical neoplasms may be classified into “pure” if made of >90% oncocyes,
mixed if oncocyes are present in 50% to 90% of the tumor, and focal if the oncocyctic component accounts for less than 50%. As originally stated by Bisceglia et al. [12], the diagnosis of malignancy in oncocytic tumors is difficult using the classical Weiss Score, since at least three parameters (eosinophilic cytoplasm, high nuclear grade and diffuse architecture) are intrinsically present in this tumor type, irrespective of the biological and clinical behavior. As a consequence, the cut-off values validated for conventional adrenal cortical carcinoma may lead to an over-diagnosis of malignancy in this special group. For this reason, exclusively for purely oncocytic tumors, an alternative diagnostic system was proposed based on criteria specific for this tumor type: any of the three “major criteria” (mitotic rate >5 per 50HPF, atypical mitoses, and venous invasion) defines an oncocytic adrenal cortical carcinoma, whereas one to four “minor criteria” (necrosis, capsular and sinusoidal invasion, size >10 cm or weight >200 g) defines an oncocytic adrenal cortical neoplasm of borderline malignancy [12], A retrospective survival analysis provided by Wong and coworkers [13] showed that this classification correctly predicted the malignant potential of these tumors and demonstrated a generally better prognosis for oncocytic carcinomas in comparison with those of the classical type. A further study claimed that the reticulin algorithm correctly stratifies oncocytic adrenal cortical tumors into benign and malignant, and confirmed the “low grade” malignancy for these tumors, as also supported by low mean mitotic and Ki-67 indexes [8]. Moreover, as for oncocytic neoplasms at other sites [14,15], the mitochondrial DNA “common deletion” (4977 base pairs) was identified in approximately 40% of oncocytic adrenal cortical tumors, more commonly in borderline or benign tumors, but not in control adrenal cortical carcinomas of the classical type [8].

Myxoid adrenal cortical tumors.
Description of myxoid adrenal cortical tumors dates back to 1979 [16] and these neoplasms are characterized by extracellular deposits of myxoid material, highlighted by positive Alcian-Blue staining, which can be predominant in a subset of approximately 10% of ACC [7,17]. Among them, two groups can be identified based on architectural and cytological features, irrespective of the amount of myxoid material: group 1 tumors are characterized by monotonous cells of small to medium size, with mild to moderate nuclear atypia and scant, lightly eosinophilic cytoplasm, growing in a trabecular, pseudoglandular or cribriform pattern; conversely, group 2 tumors are more similar to classical adrenal cortical carcinomas, comprising large pleomorphic cells with a moderate to high nuclear atypia and abundant eosinophilic cytoplasm, growing in a diffuse pattern and usually having focal myxoid areas (< 20% of the total area) within an otherwise conventional adrenal cancer. Although some cases show a certain degree of overlapping features between these two groups, group 2 tumors are probably the result of degenerative myxoid changes in conventional adrenal cortical carcinomas and we suggest that should not be classified into this distinctive variant of adrenal cortical tumors.

Based on the aforementioned pathological features, the myxoid variant is challenging for several reasons. The first is the differential diagnosis, especially in biopsy material, with other myxoid neoplasms, such as extra-skeletal myxoid chondrosarcoma, chordoma, myxoid carcinomas from the kidney or other sites, myxoid lipomatous or nerve sheath tumours. Secondly, the distinction between benign and malignant adrenal cortical myxoid tumors may be difficult. Due to the above-mentioned cyto-architectural characteristics, myxoid tumors often lack two of the Weiss parameters (diffuse growth and nuclear atypia) and the identification of invasive areas might be hard or equivocal in the presence of abundant myxoid background. Therefore, in adrenal tumors with predominant myxoid stroma it is advisable to consider malignancy even in tumors with a low
grade appearance. Moreover, in terms of prognosis, it has also been suggested that myxoid adrenal cortical carcinomas may have a more aggressive clinical behavior [17].

Sarcomatoid variant of adrenal cortical carcinoma.

This is the rarest adrenal cortical carcinoma variant and to our knowledge only 14 cases have been reported in the literature so far. They have been classified as either sarcomatoid carcinomas with spindle cell areas [18,22] or carcinosarcomas in the presence of a specialized mesenchymal component, revealing osteosarcomatous [23,24], chondrosarcomatous [23], rhabdomyosarcomatous [25,28] and primitive neuroectodermal tumor-like [28] differentiation. Sarcomatoid carcinoma is highly aggressive and the recognition of diagnostic features of malignancy is not problematic. For this reason it was suggested a cut-off of 10% of sarcomatous component to diagnose this unusual variant, irrespective of the Weiss Score [21].

Pediatric adrenal cortical tumors.

Pediatric adrenal cortical tumors are rarer than their adult counterparts, with an incidence which varies across geographic regions, being remarkably high in Southern Brazil, compared to the United States and Europe. The diagnosis of malignancy in pediatric adrenal cortical tumors is even more challenging than those of adults, because the Weiss Score criteria often lack sensitivity and specificity in pediatric cases. For this reason in 2003, Wienke and coworkers [29] proposed categorizing pediatric adrenal cortical tumors into three different prognostic groups, “benign”, “indeterminate for malignancy” and “malignant”, according to the evaluation of nine parameters that were found the most statistically significant to predict malignant behavior. In this study,
among the classical criteria considered in the Weiss system, only confluent necrosis, capsular or vascular invasion, presence of atypical mitotic figures and a mitotic count >15 per 20 high power fields were significantly related to poor prognosis. Conversely, some others (eosinophilic cytoplasm, diffuse architecture or sinusoidal invasion) were apparently less relevant. Four additional parameters had also a significant impact on prognosis, including tumor weight >400 g, tumor size >10.5 cm, vena cava invasion and peri-adrenal tissue infiltration. The prognostic relevance of these parameters has recently been validated in the Italian Pediatric Rare Tumor (TREP) Study [30]. Moreover, in this latter series, the authors found that focal myxoid stromal changes, which were not included in the Wieneke system, were also suggestive of malignancy in pediatric tumors.

Mixed cortico-medullary tumors.

Mixed cortico-medullary adrenal tumors are rare, with fewer than 20 well-documented cases of mixed cortico-medullary adenomas. Most cases are benign and show a dual divergent differentiation, as confirmed by the concurrent expression of adrenal cortex and adrenal medulla markers. Moreover, a case showing mixed cortical and medullary histological characteristics, as well as gross and microscopic evidence of malignancy has recently been documented [31].

IMMUNOPHENOTYPIC MARKERS

In adrenal cortical tumor pathology, immunohistochemistry has chronologically become useful for the purpose of differential diagnosis, firstly between adrenal cortical carcinoma and extra-adrenal
neoplasms (renal cell carcinoma, melanoma, poorly differentiated metastatic carcinomas, retroperitoneal sarcomas) \((\text{Figure } 3)\), then between adrenal cortical and other primary adrenal tumors (pheochromocytoma, PEComa), and more recently between adrenal cortical adenoma and carcinoma. In addition, some immunohistochemical markers have been proposed as prognostic tools, although few of them have so far been validated in independent cohorts.

Diagnostic markers of adrenal cortical origin.

Many malignant neoplasms metastasize to the adrenal gland including lung, gastrointestinal, renal and breast cancer, and melanoma \([32]\), and reliable immunohistochemical markers are therefore required to establish the correct diagnosis. Adrenal cortical tumors are usually positive for a variety of markers that are common to several other malignancies, such as vimentin \([33]\), and variably express cytokeratin and neuroendocrine markers, such as synaptophysin and neurofilament. Moreover, adrenal cortex as well as adrenocortical tumors nearly invariably express mesothelioma-related markers calretinin \([34]\) and D2-40 \([35]\), although the specificity for the adrenocortical origin of these markers is limited by their expression at a variable extent also in other neoplasms including abdominal ones (i.e. renal cell carcinoma, ovarian carcinoma).

In 1990, a monoclonal antibody (D11) highly specific for adrenal cortical tissue was described \([36,37]\). However, its immunoreactivity was later observed only in a small subset of adrenal cortical carcinomas, heavily restricting its use as a general marker for adrenal cortical derivation \([38,39]\). Moreover, D11 is no longer commercially available or otherwise accessible.

Since 1998, Melan-A (MART-1) and alpha-inhibin have become the most commonly used markers to prove the adrenal cortical origin of a given lesion \([40-44]\). Alpha-inhibin was also demonstrated to reflect the hormonal secretion of the tumor, being more frequently and intensively expressed
in androgen secreting neoplasms [45]. However, both markers have a limited sensitivity and fail to recognize a significant proportion (28% for Melan A and 31% for alpha-inhibin) of adrenal cortical carcinomas.

Although already described in 1995 by Sasano and coworkers [46], only recently has steroidogenic factor-1 (SF-1; also known as Ad4BP or NR5A1) progressively become the marker of choice to differentiate between tumors of adrenal cortical and non-adrenal cortical origin. Physiologically, it plays a key role in the development of steroidogenic tissues and in the regulation of steroid biosynthesis and was found to be over-expressed in most cases of childhood adrenal cortical tumors [47,48]. In 2010, Sbiera and coworkers [49] demonstrated in a very large series of cases that nuclear SF-1 staining is a highly sensitive and specific marker of adrenal cortical derivation, being restricted to steroidogenic tissues and related tumors. In their study, none of the pheochromocytomas nor of the tumors that usually metastasize to the adrenal gland were reactive to SF-1. The diagnostic accuracy of SF-1 was further validated by different groups [50] [51] [52] and this marker represents the best currently available tool in this diagnostic setting.

Variants of adrenal cortical tumors usually have an immunohistochemical profile similar to the conventional type. SF-1, Melan A and alpha-inhibin are expressed in oncocytic and myxoid cases in proportions comparable to classic adrenal cortical tumors [17,51]; neurofilament, either as diffuse cytoplasmic or small paranuclear dots, are more frequently and extensively expressed in the myxoid variant [7]. It is noteworthy that in the sarcomatoid variant of adrenal cortical carcinoma Melan-A, synaptophysin and calretinin are expressed to a lower extent or lost in the sarcomatous areas.

Diagnostic markers of malignancy.
In the last two decades, several studies have focused on the applicability of immunohistochemical markers as ancillary tools assisting morphology in the diagnosis between benign and malignant lesions. Some of these markers are related to specific genetic alterations occurring more frequently in adrenal cortical carcinomas than in adenomas, whereas others are related to different proliferative profiles within the spectrum of adrenal cortical tumors.

To date, the proliferation marker Ki-67 is the sole immunohistochemical antibody which has steadily been reported useful in the differential diagnosis between adenoma and carcinoma [53-60]. Our group recently proposed phospho-histone H3 immunostaining as an alternative, faster and reliable method to highlight mitotic figures, being specifically useful in cases with low mitotic activity [61]. Moreover, in this study both phospho-histone H3 and Ki-67 immunostainings showed a high inter-observer agreement.

Among the variety of other markers reported in the literature, p53 immunoreactivity was found well correlated with the presence of TP53 gene mutations, which are found in 25-30% of sporadic adrenal cortical carcinomas, but not in adenomas. For this reason, it is of limited interest as a diagnostic tool because of a good specificity, but a very low sensitivity [60,62]. IGF-2 protein overexpression has also been observed in a high proportion of adrenal cortical carcinomas and almost no adenomas [60] but it is not usually included in the diagnostic armamentarium because of the difficult interpretation of the labeling.

Prognostic markers.

As described for diagnostic markers, a variety of proteins have been explored as prognostic factors in adrenal cortical carcinoma, either associated with cell proliferation, adrenal cortical differentiation, genetic defects or specific characteristics of malignant tumors cells.
Ki-67 proliferation index has been investigated as a prognostic marker for several years [63,64]. In a recent study, Ki-67 proved to be superior to mitotic count in terms of prognosis of adrenal cortical carcinoma patients, at least with regard to overall survival, helping to stratify three subgroups of patients based on cut-offs of <20%, 20-50% and >50% [61]. Another promising prognostic marker is SF-1, that, apart from the above mentioned diagnostic role, has also been validated in multiple cohorts as a marker of poor prognosis when expressed at high levels [49] [51]. Possibly providing a molecular explanation for SF-1 protein over-expression in a proportion of adrenal cortical carcinomas, the NR5A1, the SF-1 gene, was found amplified in childhood adrenal cortical cancer [47,48] and chromosomal gains in chromosome 9q (where the SF-1 gene is located) have also been described in adults [65]. Future studies are therefore needed to clarify the prognostic role of NR5A1 gene amplification in adrenal cortical cancer.

β-catenin nuclear staining is associated with deregulation of the Wnt/β-catenin signaling pathway and correlates with CTNNB1 (the β-catenin gene) mutations. Its prognostic role has been validated in two independent cohorts of adrenal cortical carcinomas [66]. More recently, Ronchi and coworkers showed that low protein levels of serum glucocorticoid kinase 1, but not of nuclear β-catenin and phosphorylated AKT, were associated with poor overall survival in adrenal cortical carcinoma patients [67].

Several other molecules have also been reported to influence (at the protein expression level) the outcome of adrenal cortical cancer patients, including Matrix Metalloproteinase type 2 [68] and Glucose Transporter 1 [69], but have not yet been validated in additional studies.
Hyperplasia.

Some thirty years ago a peculiar condition was described by Carney at Mayo Clinic, characterized by multiple pigmented adrenal cortical nodules in association with other lesions (myxomas, psammomatous melanotic schwannomas, spotty pigmentation and blue nevi of the skin or mucosae, together with a variety of endocrine neoplasms) [70]. This seminal description was subsequently confirmed by several additional cases that have led in the past two decades to a better clinical and pathological characterization of this condition as part of the Carney complex. Moreover, different types of mutations of the \textit{PRKAR1A} gene were identified as the genetic causative defect for this syndrome [71].

Adrenal cortical tumors in familial cancer susceptibility syndromes.

Even if the majority of adrenal cortical carcinomas arise in a sporadic setting, a minority of cases are associated with familial cancer syndromes, including the autosomal dominant Li-Fraumeni and Beckwith-Wiedemann syndromes and, more rarely, the Gardner syndrome, Multiple Endocrine Neoplasia type 1, Neurofibromatosis type 1 and the Carney complex [72] (\textit{Table 1}). The association of adrenal cortical carcinoma with both the conditions that will subsequently be coded as the Li-Fraumeni and hereditary colon cancer syndromes had already been established in the eighties of last century [73,74], but little knowledge on the genetic background was available at that time.

Li-Fraumeni syndrome is a rare autosomal dominant cancer predisposition syndrome associated with germline mutations in the tumor suppressor gene \textit{TP53} and subsequent loss of heterozygosity at 17p13.1 locus, which confers an increased susceptibility to sarcomas, breast cancer, brain tumors, leukemia and lymphoma. Adrenal cortical carcinoma however develops in
only 3–4% of patients with Li-Fraumeni syndrome, usually in childhood [72]. Common TP53 mutations include Arg to His substitution at codon 175 (which codes for amino acids of the DNA binding site), and Arg to His at codon 337 (R337H) (coding for the oligomerization domain). The latter is classically observed in children of Southern Brazil [75,76], where the incidence of adrenal cortical carcinoma is 10 to 15 times higher than in the rest of the world. Screening for germline TP53 mutations in patients with apparently sporadic adrenal cortical carcinoma is recommended, especially in pediatric cases but also in adults, as 4% of cases were recently reported to bear a germline mutation [77].

In Beckwith-Wiedemann Syndrome, various developmental abnormalities, such as macrosomia, exomphalos, macroglossia, abdominal wall defects, ear and renal anomalies, and cleft palate, can be associated with pediatric tumors in 5% of cases, including adrenal cortical carcinoma. Although the majority of cases with Beckwith-Wiedemann Syndrome arise de novo, 15% of them are inherited as the result of a defective genomic imprinting of 11p15.5 locus. This chromosomal region is usually subjected to a tissue-specific maternal imprinting, therefore, only the paternal allele is expressed [78]. In Beckwith-Wiedemann Syndrome, there is a loss of the maternal locus and a gain in the paternal locus. As a consequence, IGF-2 which is expressed on the paternal allele is over-represented whereas p57kip2 and H19 which are expressed on the maternal allele are defective [79].

Other inherited cancer syndromes associated with adrenal cortical tumors (indeed, more often adenomas than carcinomas and generally restricted to adult patients) are Multiple Endocrine Neoplasia type 1, Gardner syndrome and Neurofibromatosis type 1. In Multiple Endocrine Neoplasia type 1, inactivating mutations in the MEN1 gene, located in the chromosomal region 11q13, are responsible for the development of pituitary tumors, parathyroid tumors and other neuroendocrine tumors. In addition, patients are also at risk of developing multiple lipomas,
angiomas, and adrenal cortical tumors. The most common adrenal cortical phenotype observed in Multiple Endocrine Neoplasia type 1 is unilateral or bilateral hyperplasia, while adenomas are less common and carcinomas very rare occurrences [80]. Gardner syndrome is an autosomal dominant disorder caused by mutations in the adenomatous polyposis coli (APC) gene. Apart from adrenal cortical carcinoma, which is very rare in this syndrome, patients develop gastrointestinal polyps, osteomas, soft tissue tumors, epidermal cysts, desmoid tumors, and periampullary cancer, as well as other endocrine malignancies such as the cribriform variant of papillary thyroid cancer.

Sporadic adrenal cortical tumors.

Gene mutations. Inactivating mutations in tumor suppressor genes and activating mutations in oncogenes responsible for familial cancer syndromes have also been found as somatic alterations in sporadic adrenal cortical tumors, with special reference to carcinomas [81]. Losses of the MEN1 gene locus at 11q13, but very infrequent gene mutations, have been detected in sporadic adrenal tumors [82,83]. Somatic mutations of TP53 gene, as seen in Li-Fraumeni syndrome, as well as p53 protein accumulation can be detected in sporadic tumors and have been considered as a marker of malignancy, being virtually absent in adenomas. Activation of the Wnt/β-catenin pathway as the result of CTNNB1 mutations has been documented in up to 40% of carcinomas, but also in a relevant proportion of adenomas [84,85], especially non-secreting and/or large size tumors [86]. Moreover, the presence of activating mutations in the CTNNB1 gene is associated with a worse outcome in adrenal cortical cancer patients [66]. Finally, somatic inactivating mutations or allelic losses of the PRKAR1A locus at 17q22–24, involved in the Carney complex, were also seen in sporadic cases of adrenal cortical adenoma and carcinoma [87].
However, a significant proportion of adrenal cortical tumors lacks known genetic defects, and therefore several studies have recently been conducted to clarify molecular mechanisms alternative to gene mutations in the pathogenesis of these tumors. Genomic, transcriptomic, and methylomic profiles have been reported in relatively large series of cases and helped to classify adrenal cortical tumor families with even prognostic implications and to distinguish benign from malignant forms. However, an integrative view able to incorporate all such information is still missing, thus making the huge amount of data available still poorly transferable into clinical practice.

Chromosomal imbalances. A number of studies have shown that chromosomal aberrations are more frequent in malignant than in benign and hyperplastic adrenal cortical lesions. Gains, losses and amplifications can be detected with either comparative genomic hybridisation (CGH) or allelotyping techniques. An aneuploid DNA pattern was often associated with such chromosomal imbalances, although the value of DNA ploidy analysis is limited for both diagnostic and prognostic purposes [88]. In particular, gains in chromosomes 6q, 7q, 12q, and 19p, and losses in chromosomes 3, 8, 10p, 16q, 17q, and 19q, have been associated with a significantly worse survival of adrenal cortical cancer patients, independent of tumor size, tumor weight, and functional status of the tumor [89]. A strong relationship between tumor size and number of chromosomal aberrations was reported, with no gains or losses detectable in adenomas smaller than five cm; conversely, gains on chromosomes 4 and 5 and losses on 2, 11, 17 were apparently restricted to carcinomas having a size of 7-20 cm [90]. Overall, extensive genomic imbalances were encountered in carcinomas by means of CGH, indicating that the molecular pathogenesis of sporadic tumors is complex and that multiple genetic changes drive malignant transformation and tumor progression. A recent study on childhood adrenal cortical tumors, using SNP array profiling, identified recurrent alterations in loci comprising well-known oncogenes (**MYC, MDM2, PDGFRA**, ...
KIT, MCL1, BCL2L1) and tumor suppressors (TP53, RB1, RPH3AL), not yet associated to adrenal cortical carcinoma [91].

Transcriptomic analysis. The last decade has been characterized by the development of high-throughput methods for wide gene expression profiling. Since the first study in 2003 [92] progress has been made in both the understanding of the pathogenesis of adrenal cortical tumors and more recently in the stratification of adrenal cortical carcinomas into prognostic groups.

The early studies aimed at the definition and validation of a malignant signature [93-95]. An initial attempt was made by Slater et al. [95], who classified the tumors into two groups (benign and malignant), according to the Weiss Score and identified 74 genes differentially expressed in the two groups. However, by definition, using such an approach the gene signature of malignancy cannot be a better approach than the Weiss score, which is the reference. To overcome this limitation, other authors used the probability of recurrence as the reference [93]. Among genes of significant impact in this setting, general proliferation markers (cell cycle regulators and cell cycle effectors) common to all cancer types, and some adrenal cortical specific markers were identified. Among these latter, IGF2 gene resulted consistently up-regulated in adrenal cortical carcinomas in different transcriptome analyses, thus depicting a specific IGF2 cluster of cases associated also to up-regulation of other growth factors and growth factor receptor genes [59,93,96-98]. An alternative cluster was characterized by down-regulation of steroidogenic enzyme genes, such as CYP11A, CYP11B and HSD3B1 [93], and this cluster was as efficient as pathological evaluation, using a Weiss score cut-off value of 4. Later, deReynies et al. identified two genes, DGL7 and PINK1, as the best molecular predictors of malignancy [97]. All the above observations were then turned into prognostic stratification. Again, by means of unsupervised hierarchical clustering, different authors observed peculiar transcriptome characteristics capable of dividing adrenal cortical carcinomas into cases with bad or good prognosis [96,97,99]. In the paper by de Reynies
and coworkers [97] the \textit{BUB1B} and \textit{PINK1} genes showed the best prognostic performance.

Integrating transcriptome and mutational profiles, three subgroups of adrenal cortical carcinomas with different biological and clinical behavior may be identified: 1) the p53 group, encompassing all tumors with a \textit{TP53} mutation; 2) the β-catenin group, containing all tumors with deregulation of the Wnt/β-catenin pathway (apparently mutually exclusive with p53 group); 3) the remaining group, with neither p53 nor β-catenin altered pathways but enriched in cell cycle and metabolism genes [100,101].

\textit{MicroRNA profiling}. MicroRNAs (miRNAs) are short noncoding RNAs, 18 to 25 nucleotides in length, which influence gene expression either by post-transcriptional regulation of gene expression leading to target mRNA degradation or by the repression of its translation with consequent decrease in the particular protein levels or even by up-regulation of their targets [102]. Several studies analyzed the miRNA expression profile in adrenal cortical neoplasms. They mainly aimed at finding out those useful in differentiating adenomas from carcinomas and to date, a long list of de-regulated miRNAs is available [103]. Among them, miR-483 (in both 3p and 5p isoforms) and miR-195 are those more consistently found over-expressed and downregulated, respectively, both at the tissue and serum levels. Data concerning the prognostic role of these two miRNAs are controversial, as they were described as defining a subgroup of carcinomas with a poor prognosis by one group only [104,105]. miR-210 is another miRNA which was reported upregulated by different groups. It is the miRNA most consistently induced under hypoxia and high levels were found associated with clinico-pathological parameters of aggressiveness (necrosis and high Ki-67 proliferation index) and a poorer survival (Duregon et al., submitted manuscript).

\textit{DNA methylation profiling}. The role of DNA hypermethylation in adrenal cortical tumorigenesis has been evaluated in some recent studies. Altered DNA methylation of the \textit{H19} promoter had already been shown to be involved in the abnormal expression of both \textit{H19} and \textit{IGF2} genes in
adrenal cortical carcinomas [106]. In contrast, promoter methylation of TP53 has been demonstrated not to be a significant event in the development of adrenal cortical carcinomas [107]. Recently, a significant DNA hypermethylation of the RASSF1A promoter in adrenal cortical carcinoma, but not in adenoma, has been described, suggesting an epigenetic mechanism for RASSF1A silencing in malignant adrenal cortical tumors [108]. However, most DNA methylation studies thus far have focused on individual genes. More recently, comprehensive genome-wide analysis of DNA methylation in benign and malignant adrenal cortical tumors has been performed, sometimes obtaining controversial results, possibly related to the different methodological approaches [109-111]. Moreover, Barreau and coworkers distinguished two clusters of adrenal cortical carcinomas based on CpG island methylation status, the “CIMP” (CpG island methylator phenotype) and “non-CIMP”, the former associated to a poorer prognosis [112].

Adenoma-Carcinoma sequence.

Although there has been much progress in the last 25 years, it is still unclear whether adrenal cortical carcinomas evolve from adenomas following a definite molecular progression pathway. Long-term follow-up of incidentally discovered adrenal cortical neoplasms suggests that adenomas generally maintain a benign phenotype [113]. However the sequence adenoma-carcinoma has been occasionally postulated in single cases showing the morphological co-existence of an aggressive component embedded within an otherwise adenomatous tissue [114-115]. In addition, a recent study described a mouse model in which an induced stabilized β-catenin associated with elevated IGF-2 expression resulted in a temporal progression from increasing adrenal cortical hyperplasia to subsequent adenoma, and occasionally carcinoma, formation [116]. Finally, Ronchi et al recently provided the first genome-wide high resolution overview of chromosomal changes in
large series of adrenal cortical tumors, including adenomas and carcinomas [117]. Among the benign tumors, small isolated copy number gains were the most frequent genetic alterations and almost all of them were also present in several carcinomas, thus supporting the concept of a common early molecular signature. Moreover, the Wnt/β-catenin and Notch signaling pathways were commonly altered in both adenomas and carcinomas, strengthening their previous hypothesis that these pathways are involved in early tumor pathogenesis.

FUTURE PERSPECTIVES: Issues for the next 25 years

As summarized above, the pathological armamentarium for adrenal cortical disease – (and, more specifically for tumor characterization) has undergone a wide evolution in the past 25 years. All these achievements in the diagnostic approach and in the phenotypical characterization have allowed a better definition of the disease on the one hand, but have also raised new questions and opportunities for the next 25 years. An arbitrary list of issues to be covered in the near future includes:

a) the prospective validation and implementation of the accuracy and reproducibility of the available diagnostic schemes;

b) the definition of a grading system for adrenal cortical carcinomas, to further segregate cases associated with “low” and “high” malignant potential;

c) the identification and validation of markers predictive of tumor response and progression;
d) the identification of novel genetic alterations/pathways involved in adrenal cortical
tumorigenesis, with special reference to the subset of cases with no current specific molecular
signature;
e) the integration of molecular, phenotypic, pathological and clinical data to design for adrenal
cortical tumor patients - as has been done for other human malignancies - individualized clinical
management protocols.

Acknowledgments. Work partially supported by grant from the Italian Association for Cancer
Research (AIRC, Milan, grant no. IG/10795/2010 to MP) and University of Turin (ex-60% grants to
MV and MP)
REFERENCES

10.1016/j.humpath.2009.03.010

10.1309/MCGUQ3R4A4WWN3LB

10.1111/j.1365-2559.2009.03423.x

00000478-201208000-00011 [pii]

10.1016/j.humpath.2010.08.010

10.1186/1746-1596-5-51

00000478-201203000-00019 [pii]

S0046-8177(11)00185-7 [pii]

S0046-8177(12)00288-2 [pii]

ERC-08-0237 [pii]

10.1111/j.1365-2559.2006.02505.x

10.1158/1078-0432.CCR-10-2006

10.1210/jc.2012-2669

S1521-690X(08)00139-5 [pii]

10.1158/0008-5472.CAN-05-0593

S0303-7207(11)00543-0 [pii]

7/2/425 [pii]

10.1016/S0002-9440(10)63846-1

10.1210/jc.2004-1075

10.1016/j.surg.2005.09.031

10.1530/eje.1.02116

10.1038/nrm2085

S0303-7207(11)00585-5 [pii]

10.1158/1078-0432.CCR-09-1587

ERC-13-0051 [pii]

10.1016/j.ejso.2005.01.013

1476-4598-12-87 [pii]

jc.2011-3298 [pii]

cj.2012-2993 [pii]

1066896909335155 [pii]

S0002-9440(12)00430-0 [pii]
nucleotide polymorphism array profiling of adrenocortical tumors - evidence for an adenoma

PONE-D-13-23019 [pii]
Table 1. Summary of most relevant adrenal carcinoma-related inherited susceptibility syndromes.

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Li-Fraumeni</th>
<th>Beckwith-Wiedemann</th>
<th>Gardner</th>
<th>MEN1</th>
<th>Carney Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>gene/locus</td>
<td>TP53 (17q13.1)</td>
<td>altered imprinting of 11p15.5</td>
<td>APC (5q21–22)</td>
<td>MEN1 (11q13)</td>
<td>PRKAR1A (17q23–24)</td>
</tr>
<tr>
<td>protein</td>
<td>p53</td>
<td>IGF-II, p57kip2</td>
<td>APC</td>
<td>menin</td>
<td>PRKAR1A</td>
</tr>
</tbody>
</table>

Legend. AC: adrenal carcinoma; AA: adrenal adenoma
FIGURE LEGENDS

Figure 1. Milestones in the pathological and molecular characterization of adrenal diseases in the past 25 years.

Figure 2. Pathological characteristics of a case of adrenal carcinoma (2.5 cm in the largest dimension) showing residual peripheral “adenomatous” features (left part in a, e, f, g; upper left corner in b). Carcinoma component showed reticulin disruption (b), atypical mitotic figures (c), increased mitotic index (as highlighted by phospho-histone H3, d) and increased Ki-67 index (e); adrenocortical markers such as Melan A (f) and SF-1 (g) were positive in both components. (original magnifications: 100x in all figures except c and d, 400x; a, c: H&E; b: silver staining; d: immunoperoxidase with AEC as chromogen; e, f, g: immunoperoxidase with diaminobenzidine as chromogen)

Figure 3. Morphological and immunophenotypical profile of a breast carcinoma metastatic into an adrenal adenoma. Breast cancer cells (a to d, upper left corner) were immunoreactive for pan-cytokeratins (b) and estrogen receptors (d) but negative for Melan A (c). (original magnifications: 200x in all figures; a: H&E; b-c-d: immunoperoxidase with diaminobenzidine as chromogen)