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Effective Bounds on the Podelski-Rybalchenko
Termination Theorem

September 30, 2014

1 Introduction
We report here on current work towards an effective proof (with explicit
bounds) of Podelski and Rybalchenko Termination Theorem [7]. Our long-
term project is to obtain a priori-bounds for the termination of computer
programs, and compare these with bounds obtained via other intuitionistic
proofs of the Termination Theorem.

Theorem 1.1 (Termination Theorem). A program P is terminating iff there
exists a well-founded transition invariant for P .

The authors proved this result by using Ramsey Theorem, which is a
purely classical results [1]. In [9] and [2] two proofs of an intuitionistic
versions of this theorem have been proposed, where the notion of a program
being terminating is replaced by intuitionistically weaker (but classically
equivalent) notion. Let us call this “inductively terminating”.

Theorem 1.2. A program P is (inductively) terminating iff there exists a
(inductively) well-founded transition invariant for P .

In this result both the hypothesis and the thesis are intuitionistically
weaker than the ones in Theorem 1.1, since, intuitionistically, classical well-
foundedness is strictly stronger than intuitionistic well-foundedness. Co-
quand’s proof is based on almost-full relations (see also [4]), while the second
one is based on H-well-founded relations.

In this work we want to intuitionistically prove Podelski and Rybalchenko
Termination Theorem considering the classical definition of well-foundness.
In the result by Podelski they define a program to be terminating iff

R ∩ (Acc×Acc) is well-founded,
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where R is the transition relation of P and Acc is the set of accessible states.
In this work instead we consider the following definition, which is classically
equivalent to the Podelski’s one. Assume I is any set, R is a binary relation
over I, and S (the set of initial states) is included in Acc which is included in
I (the set of states). We call a computation over I any sequence α : N→ I,
and for all n ∈ N we write αn for α(n) in I.

Definition 1.3. P is terminating iff ∀α(α0 ∈ S =⇒ ∃n¬(αnRαn+1)).

Lemma 1.4. Classically, P is termimating by Podelski definition iff P is
terminating by Definition 1.3.

Proof. ⇒ Assume that R∩ (Acc×Acc) is well founded. Then each chain
in the relation R ∩ (Acc×Acc) is finite. Moreover every chain which
starts with some initial state is finite.

⇐ Assume that
∀α(α0 ∈ S =⇒ ∃n¬(αnRαn+1)),

we need to prove that each R ∩ (Acc×Acc)-chain is finite. Let c be
a chain in R ∩ (Acc×Acc), then in particular the first element of c is
in Acc. Hence we may extend c to a chain c∗ which start from some
initial state. By applying the hypothesis we are done.

Remark 1.5. Note that α0 ∈ S is a decidable formula, whereas α0 ∈ Acc
is potentially Σ1 when I is infinite. Hence, P being terminating is a Π2
formula, which would not be the case had we used the definition ∀α(α0 ∈
Acc =⇒ ∃n¬(αnRαn+1)).

From now on we will say “P is terminating” meaning it is terminating
as in Definition 1.3. We will prove the following result:

Theorem 1.6. Given a program P , with transition relation R, if

∃n ∃T1, . . . , Tn ∃ω1, . . . , ωn (T1 ∪ · · · ∪ Tn ⊇ R+ ∩ (Acc×Acc)
∧ ∀i ∈ [1, n] (∀α ∃j < ωi(α) ¬(αjTiαj+1)))

then there exists Φ such that

∀α (α0 ∈ S =⇒ ∃m < Φ(T̄ , ω̄) ¬(αmRαm+1)).
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The functional Φ is definable in T + Bar recursion. Thanks to the results
of Schwitchtenberg [8] and Kohlenbach [5] that give some closure properties
for bar recursion, we can study the complexity of the bound Φ relative to
the complexity of the relations Ti and the functions ωi.

The basic ideas behind the proof are those presented in [6] for the clas-
sical Ramsey theorem. Our proof of Theorem 1.6 requires the Transitive
Ramsey Theorem for pairs, a corollary of the Ramsey Theorem for pairs
which can be stated as follows:

Theorem 1.7 (Transitive Ramsey Theorem for Pairs). For any c : N2 → n
there exists an infinite homogeneous chain.

The structure of the proof is the following. Given a computation α, we
consider all initial finite subsequences of α. We associate to each initial
finite subsequence of α a finite tree which follows the idea of the Blackwell
proof of Erdős-Szerkeres Theorem (see [3]). Then from each of these trees
we obtain a set of monochromatic sequences whose length is bounded by
the ωi. Therefore if α is infinite by applying bar recursion we obtain a
contradiction, which gives us the bound we use to define Φ.

2 Proof for 2 colors
The goal of this section is to prove Theorem 1.6 for two colors. We first
generalize Blackwell proof of Erdős-Szerkeres Theorem in [3] for Transitive
Ramsey Theorem. If the coloring is not transitive then we adapt this proof
and we build either an infinite homogeneous chain in color 0 or an infinite
homogeneous set in color 1 (instead of infinite homogeneous set in both the
cases).

Theorem 2.1 (Transitive Ramsey Theorem). Let c : N2 → 2, then there
exists an infinite chain in color 0 or an infinite homogeneous set in color 1.

Proof. Given a well ordered set X we say that s is a leftmost sequence of X
iff all si ∈ X and

• s0 = minX;

• si+1 > si

• c({si, si+1}) = 0

• ∀xX(si < x < si+1 =⇒ c(si, x) = 1)
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Then we construct a set of sequences, as Blackwell does, as follows.
• w0 is the leftmost sequence of N.

• wi is the leftmost sequence of N \
⋃
{wj : j < i}.

Since N is infinite we have either an infinite sequence wi or infinitely many
finite non-empty sequences wi. In the first case we will have an infinite
0-chain. In the second case let {li : i ∈ N} be the set of the last element
of each such sequence. Since it is an infinite sequence of natural numbers,
it should contain an infinite increasing subsequence. This is an infinite 1-
homogeneous set by construction, since we only ever stop a sequence wi
if there are no more 0-edges from the last element of wi. In fact the last
element li of each sequence wi is by construction related by a color 1 edge to
each element of {x ∈ N | x > y ∧ x /∈

⋃
{wj | j ≤ i}}. In particular, for all

j > i if lj > li, then they are related by one color 1 edge.

Now we can prove Theorem 1.6 for two colors. Let P be a program with
its transition relation R. Assume α is such that α0 ∈ S, where S is the
set of the initial states of P and that there exists T0, T1, ω0, ω1 as in the
hypothesis of Theorem 1.6. We have to prove that there exists Φ such that

∃m < Φ(α) ¬(αmRαm+1).

The idea is to consider finite approximations of the tree given by the leftmost
sequences of the Blackwell proof, and work with these approximations.

In order to do this we need to define the following functions. The first
one which we call β is the function which gives us the successor (in the sense
of the leftmost sequences) of a node with respect to a finite sequence. If a
successor does not exists in the given finite sequence β returns the empty
set.
Definition 2.2. Let x ∈ N and let x1 < · · · < xn ∈ N.

β(x, 〈x1, . . . , xn〉) =



xi if for some i ∈ [1, n]
xi > x ∧
c({x, xi}) = 0 ∧
∀j < i(c({x, xj}) = 1 ∨ xj < x)

∅ otherwise.

Observe that β is primitive recursive. Given a non-empty list l, we
define hd(l) as the first element of l, tl(l) as the tail of l and last(l) as the
last element of l. Now we define a function ϕ which provides the finite
approximation of the tree of leftmost sequences.
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Definition 2.3. Let s be a finite list of natural numbers, 〈wi〉i∈N be a list of
finite non-empty lists of natural numbers and let k ∈ N. Define the function
ϕ as

ϕ(∅, s) =
{
∅ if s = ∅
ϕ(〈hd(s)〉, tl(s)) otherwise

ϕ(〈wi〉i≤k, s) =


〈wi〉i≤k if s = ∅;
ϕ(〈wi〉i<k ∗ (wk ∗ 〈x〉), s \ x) if β(last(wk), s) = x

ϕ(〈wi〉i≤k ∗ 〈hd(s)〉, tl(s)) if β(last(wk), s) = ∅

Define x <i y iff x < y and c({x, y}) = i. Observe that the following are
invariants for ϕ:

• for all i ≤ k, wi is finite, not empty and is a chain for <0.

• for all i < k and y ∈ s, last(wi) < y implies last(wi) <1 y.

• for all i < j ≤ k, last(wi) < last(wj) implies last(wi) <1 last(wj).

The proof that the first and the second ones are invariant follows from the
construction, while the third one holds since if x > last(wj) ∧ x >0 last(wj)
then we should have added it in a previous step of the construction, at the
end of the j-line. So x does not belong to s. Moreover, since s is a finite list
and its length decreases during the computation of ϕ, ϕ terminates.

The last definition we need is the definition of σ. Given a sequence of
natural numbers b, the map σ produces an increasing subsequence.

Definition 2.4. Let b = 〈x1, . . . , xn〉 be a list of natural numbers, define
σ(b) as

σ(〈x1, . . . , xn〉) =
{
∅ if n = 0
〈x1〉 ∗ σ(〈xj , . . . , xn〉) if (xj > x1) ∧ ∀h < j(xh < x1)

Given a list of non-empty finite lists of natural number 〈wi〉i≤k, let us
denote by b the list of the last elements of these lists, i.e.

b = 〈last(wi) | i ≤ k〉.

Recall that we are assuming we are giving “moduli of termination" ωi
for each of the relations Ti. The main property of the modulus is

∀α∃j < ωi(α)¬(αjTiαj+1),
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i.e. for any given infinite sequence the modulus of termination gives us an
upper bound on the point where termination is guaranteed to have hap-
pened. Therefore, we must consider a large enough approximation of the
Blackwell tree, so as to make sure that we obtain a counter-example on one
of the two colours. The following function ξ will check whether it is enough
to consider the first n elements of a given sequence α, but notice that this
function as defined is not primitive recursively. It is essentially perform-
ing an unbounded search on n. We claim that this can be defined using
Spector’s bar recursion.

Definition 2.5. Given α and n let ϕ(∅, 〈0, . . . , n〉) = 〈wi〉i≤k. Define

ξ(α, n) =
{
n if ∃i ≤ k(ω0(wi) < |wi|) ∨ ω1(σ(b)) < |σ(b)|
ξ(α, n+ 1) otherwise

Φ(α) = ξ(α, 0).

Observe that it depends from α since the coloring (fixed from now on)
is defined as follows: c(i, j) = d iff i < j and αiTdαj , for each d ∈ {0, 1}.

3 Φ is in T
In this section we prove that Φ(α) is in T for any computation α. Observe
that Φ(α) builds what we call a finite structure M which corresponds to a
sequence 〈wi〉i≤k, an approximation of the Blackwell’s tree. Firstly we prove
that given a sequence γ satisfying certain conditions, we can compute the
structure M by primitive recursion. Then we will approximate γ via bar
recursion, and we will prove that such γ is in T . Therefore also Φ(α) is.

3.1 The construction of the structure M given an oracle γ

Let A(i, k,X) abbreviate the formula k > i ∧ c(i, k) = 0 ∧ k /∈ X. First,
let us assume that we have a sequence γ(X)(i) such that for all i

∃kA(i, k,X) ⇔ A(i, γ(X)(i), X) ∧ ∀j < γ(X)(i)¬A(i, j,X)

where X is a finite set of integers. The sequence γ(X) is obviously non-
computable as it finds a least witness for ∃kA(i, k,X) whenever such witness
exists.

Nevertheless, we now show that given such sequence the construction of
the structure Φ(α) is effective. We will then find an effective approximation
to γ which will be good enough for ours purposes.
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Let us denote by µSp(ω)(α) the primitive recursive functional that finds
the first point n such that ω(α, n) < n. Also, let γk(X)(i) be defined as

γ0(X)(i) = i;

γk+1(X)(i) = γ(X ∪
⋃
h≤k

{
γh(X)(i)

}
)(γk(X)(i)).

Definition 3.1. Define by simultaneous primitive recursion the following
sequences:

α0 = λk.γk(∅)(0) αi+1 = λk.γk(Xi)(0)

n0 = µSp(ω0)(α0) ni+1 = µSp(ω0)(αi+1)

w0 = maximal 0-prefix of α0 wi+1 = maximal 0-prefix of αi+1

X0 = {w0(k)}k<|w0| Xi+1 = Xi ∪ {wi+1(k)}k<|wi+1|

a0 = µk(k 6∈ X0) ai+1 = µk(k 6∈ Xi+1)

j0 = max{α0(k)}k≤n0 ji+1 = max{αi+1(k)}k≤ni+1

We explain these as follows: αi is the chain generated by γ starting with
the smallest number not yet used, i.e. ai−1, while avoiding all numbers
already used, i.e. Xi−1. The point ni is the first such that ω0(αi, ni) < ni.
By the assumption on ω0, we know that before point ni we will find a 1-link
in the sequence αi, i.e a point k such that c(αi(k), αi(k + 1)) = 1. We then
take wi to be the maximal 0-chain, and ni is clearly a bound on the length
of wi. The finite sequences wi will form the rows of the Blackwell matrix.
We also keep a record in ji of the largest index used in building wi. We will
see how this is important later.
Definition 3.2. Recall that σ is a functional that computes an increas-
ing subsequence of a given sequence together with the indices filtered out.
Hence, given the above define the sequences

b(i) = last(wi)

〈ρ0, ρ1〉 = σ(b)

m = µSp(ω1)(ρ1)

t = maximal 1-prefix of ρ1 (note that |t| ≤ m)
Hence, we see that the following finite Blackwell matrix (parametrised

by γ) is sufficient to obtain a contradiction:
M(γ)(i) = wi

where |M(γ)| = ρ0(|t|).
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3.2 Approximating γ via bar recursion

Recall that A(i, k,X) ≡ k > i ∧ c(i, k) = 0 ∧ k /∈ X. Let q, ω : NN → N
be such that q(γ) = ω(γ) is the greatest element in the finite matrix M(γ).
Observe that ji, as define in the previous section, is needed to define the
greatest element of M(γ):

q(γ) = ω(γ) = max {ji : i ≤ ρ0(|t|)} .

Our goal is to build a finite approximation to γ, in the sense that it will
only satisfy

∃k ≤ qγA(i, k,X) ⇐⇒ A(i, γ(X)(i), X) ∧ ∀j < γ(X)(i)¬A(i, j,X)

for all i ≤ ωγ. But this approximation is clearly enough to give us a proper
bound, since we only ever use γ up to the point ωγ when building the
structure M(γ). Let us define the following sequence of selection functions:

εi(X)(p) =
{
k ∃k ∈ (i, p(i+ 1)] \X(c(i, k) = 0)
i+ 1 ∀k ∈ (i, p(i+ 1)] \X(c(i, k) 6= 0).

where k in the first case is taken to be the least one witnessing the formula
∃k ∈ (i, p(i+ 1)] \X(c(i, k) = 0).

Lemma 3.3. εi(X) satisfies, for all p

∃k ≤ p(a)A(i, k,X) =⇒ A(i, a,X) ∧ ∀j < a¬A(i, j,X).

where a = εi(X)(p).

Proof. Assume that ∃k ∈ (i, p(εi(X)(p))](c(i, k) = 0 ∧ k /∈ X), then we
cannot have εi(X)(p) = i+ 1, then ∃k ∈ (i, p(i+ 1)](c(i, k) = 0 ∧ k /∈ X),
therefore c(i, εi(X)(p)) = 0.

Then we define

γ = EPSω〈〉(ε)(q);

ps(x) = EPSωs∗x(ε)(qs∗x);

hence thanks to the main theorem for any n < ω(γ)

γ(X)(n) = ε[γ](n)(X)(p[γ](n));
qγ(X) = ε[γ](n)(X)(p[γ](n)) = p[γ](n)(ε[γ](n)(X)(p[γ](n)));
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Since the set (εi)i∈N is indexed in the natural we have that for all n ∈ N:

ε[γ](X)(n) = εn.

Therefore γ satisfies

∀i < ωγ (∃k ∈ (i, qγ] (c(i, k) = 0 ∧ k /∈ X) ⇐⇒
(γ(X)(i) > i ∧ γ(X)(i) /∈ X ∧ c(i, γ(X)(i)) = 0)).

In fact let i < ω(γ); if ∃k ∈ (i, qγ ](c(i, k) = 0 ∧ k /∈ X) holds, then we
have

∃k ∈ (i, p[γ](i)(εi(X)(p[γ](i))](c(i, k) = 0 ∧ k /∈ X)

and this implies (by construction of the selection functions)

εi(X)(p[γ](i)) > i ∧ εi(X)(p[γ](i)) /∈ X ∧ c(i, εi(X)(p[γ](i))) = 0.

and so
γ(X)(i) > i ∧ γ(X)(i) /∈ X ∧ c(i, γ(X)(i)) = 0.

To conclude observe that EPSω〈〉(ε)(q) is defined by Bar Recursion of type
1 (since q : NN → N and s ∈ N∗) then, thanks to Schwichtenberg’s result [8]
and by assuming that ω0 and ω1 are in T , we can conclude that γ is in T
and so also Φ(α) is.

4 Proof for n colors
In this section we prove Theorem 1.6 for n colors, following the argument
we use in the case with two colors. Firstly we want to generalize Blackwell
proof Theorem 2.1 for n-many colors. We may observe that it can be done
easily by induction.

Theorem 4.1 (Transitive Ramsey Theorem). Let c : N2 → n, then there
exists an infinite homogeneous chain.

Proof. Proof by induction on n. Assume it holds for n, then consider a
coloring c : N2 → n + 1. Given a well ordered set X we say that s is a
leftmost sequence of X iff all si ∈ X and

• s0 = minX;

• si+1 > si

• c({si, si+1}) = 0
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• ∀xX(si < x < si+1 =⇒ c(si, x) 6= 0)

Then we construct a set of sequences, as Blackwell does, as follows.

• w0 is the leftmost sequence of N.

• wi is the leftmost sequence of N \
⋃
{wj : j < i}.

Since N is infinite we have either an infinite sequence or infinitely many
finite sequences. In the first case we will have an infinite 0-chain and we
are done. In the second case let {li : i ∈ N} be the set of the last element
of each such sequence. Since it is an infinite sequence of natural numbers,
it should contain an infinite increasing subsequence. This is an infinite set
in n colors, by construction. Then by induction hypothesis there exists an
infinite homogeneous chain.

The idea now is to prove Theorem 1.6 for n, by using the induction on
n and the schema of the proof for two colors. Assume that the Theorem 1.6
holds for n, we will prove it for n+ 1.

Let P be a program with its transition relation R. Assume α is such
that α0 ∈ S, where S is the set of the initial states of P and that there exist
T0, . . . , Tn, ω0, . . . , ωn as in the hypothesis of Theorem 1.6.

We have to prove that there exists Φn such that

∃m < Φn(α) (¬(αmRαm+1)).
In order to do this we need to define the following functions as we did

in the case for 2 colors.

Definition 4.2. Let x ∈ N, x1 < · · · < xm ∈ N.

βn(x, 〈x1, . . . , xm〉) =



xi if for some i ∈ [1,m]
xi > x ∧
c({x, xi}) = 0 ∧
∀j < i(c({x, xj}) 6= 0 ∨ xj < x)

∅ otherwise.

Now we define a function ϕn (as ϕ for the case with 2 colors) which
provides the finite approximation of the tree of leftmost sequences.

Definition 4.3. Let s be a list of natural numbers, 〈wi〉i<N be a list of
lists of finite non-empty lists of natural numbers and let k ∈ N. Define the
function ϕn as
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ϕn(∅, s) =
{
∅ if s = ∅;
ϕn(〈hd(s)〉, tl(s)) otherwise.

ϕn(〈wi〉i≤k, s) =


〈wi〉i≤k if s = ∅;
ϕn(〈wi〉i<k ∗ (wk ∗ 〈x〉), s \ x)if βn(last(wk), s) = x;
ϕn(〈wi〉i≤k ∗ 〈hd(s)〉, tl(s)) if βn(last(wk), s) = ∅.

While the σ is exactly the function defined for the case 2. As in the case
for two colors, given a sequence of natural numbers b, the map σ produces
an increasing subsequence.

Definition 4.4. Given α and n let ϕ(∅, 〈0, . . . ,m〉) = 〈wi〉i≤k. Define

ξn(α,m) =


m if ∃i ≤ k(ω0(wi) < |wi|)

∨ Φn−1(σ(b)) < |σ(b)|
ξn(α,m+ 1) otherwise

Φn(α) = ξn(α, 0).

In order to justify the previous definition, observe that in this construc-
tion the sequence σ(b) is an homogeneous set in n colors, then we are in the
following case:

T1 ∪ · · · ∪ Tn ⊇ (R � σ(b))+ ∩ (Acc×Acc) ∧ T1, . . . , Tn well founded

Then R � σ(b) = σ(b) is well founded (with modulus Φn−1).
Observe that again the definition of Φn is not primitive recursive. But

we can prove it is in T, by using the same argument we used in the case
with two relations.

Proposition 4.5. Φn is in T.

Proof. Again by induction. For n = 2 we proved it in the previous section.
Assume that Φn−1 is in T. Then, by applying the same procedure we used
for the case n = 2 providing to put ω1 = Φn−1, we obtain that also Φn is in
T .
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