Enabling technologies for cyclodextrins complexation, functionalization and material grafting

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1526407 since 2015-11-03T07:51:36Z

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Synthetic chemists are increasingly paying attention to combinations of enabling technologies with an eye to achieving the double goal of obtaining high efficiency and meeting the green criteria of energy savings and the absence of dangerous or harsh reagents. Microwave (MW)\(^1\) power ultrasound (US)\(^2\), hydrodynamic cavitation\(^3\) ball milling\(^4\) and hybrid flow-reactors\(^5\) are a valid and versatile alternative for process intensification in organic synthesis.\(^6\) Herein we present few applications of these technologies for the treatment of cyclodextrins (CDs) to obtain interesting compounds in very different fields. \(\beta\)-CDs are natural cyclic oligosaccharides, formed by (R-1,4)-linked R-D-glucopyranose units, and possess a basket-shaped topology with an inner cavity which exhibits a relatively non-polar behavior. Thanks to these features \(\beta\)-CDs are able to form reversible, non-covalent inclusion complexes with guest molecules (G) that dimensionally fit inside the cavity and are less polar than water.

\(\beta\)-CDs are able to form reversible, non-covalent inclusion complexes with guest molecules with apolar behaviour. Various kinds of dye moiety appended CD derivatives were proposed to be used like “turn on” or “turn off” fluorescent chemical sensors, in which fluorescence intensity is enhanced or decreased by complexation with guest molecules. Due the well-known limitation of the CD derivatization reactions, MW and US irradiation were exploited for the mono-functionalization of the N\(_2\)-\(\beta\)-CDs catalyzed by metallic copper (Cu). The use of US favors mechanical depassivation, enhances both mass transfer and electron transfer from the metal to the organic acceptor and avoid the formation of \(\beta\)-CDs complexes with copper ions. Two new cyanine- \(\beta\)-CDs derivatives have been synthesized through azide-alkyne cycloadditions efficiently catalyzed by metallic copper under simultaneous MW/US irradiation.

REFERENCES:

2. Microwave-assisted extraction for bioactive compounds. Theory and practice. (2013), Springer Science, New York, USA.

MW-US

MW-5RC

Ball-Mill

SynthWave

MW/US combined multimode oven

Planetary ball mill PM100

BALL-MILL

\(\beta\)-CD, which is widely used to increase the stability, solubility, and bioavailability of guests, can form host–guest inclusion complexes with a wide variety of organic molecules. Ball-milling technique was employed for the formation of CD inclusion with steroid molecules of synthetic and pharmaceutical interest without the use of any solvent. In only 40 minutes at 200 rpm it has been possible to obtain a complexation efficiency around 90% with a CD/steroid structure molecular ratio of 2:1. The method has been set up with \(\beta\)-sitosterol as target compound and applied also to cholesterol and cholic acid with successful results.