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Abstract 6 

Flavonoids are a class of bioactive compounds largely represented in grapevine and 7 

wine. They also affect the sensory quality of fruits and vegetables, and derived products. 8 

Methods available for flavonoid measurement are time-consuming, thus a rapid and 9 

cost-effective determination of these compounds is an important research objective. 10 

This work tests if applying machine learning techniques to texture analysis data allows 11 

to reach good performances for flavonoid estimation in grape berries. 12 

Whole berry and skin texture analysis was applied to berries from 22 red wine grape 13 

cultivars and linked to the total flavonoid content. Three machine-learning techniques 14 

(regression tree, random forest and gradient boosting machine) were then applied. 15 

Models reached a high accuracy both in the external and internal validation. The R² 16 

ranged from 0.75 to 0.85 for the external validation and from 0.65 to 0.75 for the 17 

internal validation, while RMSE (Root Mean Square Error) went from 0.95 mg g
-1

 to 18 

0.7 mg g
-1

 in the external validation and from 1.3 mg g
-1

 to 1.1 mg g
-1

 in the internal 19 

validation. 20 

 21 

Key-words: random forest; gradient boosting machine (GBM); wine-grape; flavonoids; 22 

texture analysis 23 

 24 

1. Introduction 25 

Flavonoids are a group of secondary metabolites widely distributed in plants, which 26 

greatly affect the sensory and nutritional quality of fruits and vegetables (Harnly et al., 27 

2006). They represent a huge portion of soluble phenols present in grapevine (Braidot et 28 

al., 2008). Flavonoids are among the most important compounds for the quality of red 29 
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wine grapes because of their effect on wine sensory attributes (Ristic et al., 2010 is an 30 

example) and aging. The concentration of these compounds in wine depends, among 31 

other factors, on the quantity originally present in grapes (Gonzàlez-Neves et al., 2004). 32 

In the last ten years, flavonoids have received a very great attention from both 33 

researchers and the general audience because of their beneficial effect on human health  34 

(Yao et al., 2004). They have shown antioxidant (Lourenço et al., 2008), 35 

hypocholesterolemic (Gonzalez et al., 2014) and anti-inflammatory effects (Noll et al., 36 

2009). Their nutraceutical properties are exploited in fresh table grapes, in 37 

pharmaceutical and cosmetic products derived from grape, and are a very appealing 38 

argument for wine marketing purposes. 39 

Red grapes are richer in flavonoids than white ones, but their biosynthesis and 40 

concentration greatly depend on cultivar, vineyard practices, soil and climate 41 

(Kondouras et al., 2006). Grape maturity, and therefore the harvest date, is also another 42 

very important parameter because quantitative and qualitative modifications of tannins 43 

and anthocyanins (the two most represented flavonoid families in grape) happen during 44 

ripening (Kuhn et al., 2013). 45 

Different methods based on spectrophotometry, chromatography, and mass spectrometry 46 

are usually used for the determination of flavonoids in fruits and vegetables (see Ignat et 47 

al., 2011 for a generic review and Lorrain et al., 2013 for the case of grapes and wine). 48 

Regarding grape analysis, these methods are all very accurate but they often require 49 

sample preparation and long analysis times. The problem is especially the time required 50 

for the extract preparation and purification, which has to be made by hand and can 51 

require berry peeling, solvent extractions, and other manipulations that strongly increase 52 

costs and limit the number of acquirable data. Industry and research will greatly benefit 53 

from a rapid and cost effective method to obtain a faster screening of flavonoids in 54 
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grapes. Such a method is at today lacking, although recently great advances have been 55 

made in this field by the use of Near InfraRed (NIR) spectroscopy coupled to 56 

chemometrics, in particular using partial least squares (PLS) regression models (Ferrer-57 

Gallego et al., 2011, Rolle et al., 2012a, Cozzolino 2015). 58 

During grape ripening, berries change not only their chemical composition, but also 59 

their mechanical properties: they soften, become less resilient, and the skin generally 60 

harden (Rolle et al., 2012b). In industry, these textural modifications are currently 61 

evaluated by sensory panels to help in the choice of the harvest date. Texture Analysis 62 

(TA) has shown to be an effective instrumental technique for an accurate evaluation of 63 

physical-mechanical characteristics of grapes (Letaief et al., 2008, Giordano et al., 64 

2013, Battista et al., 2015). It is cost-effective as it does not require long times and 65 

reagents for sample preparation and analysis. 66 

Although flavonoids and texture parameters belong to different grape properties, their 67 

values are both influenced by the berry ripening process. The phenolic ripeness of grape 68 

skin was found to be well assessed when the TA values were used (Río Segade et al., 69 

2008), but the possibility of a predictive model has been never investigated, and neither 70 

an evaluation of possible chemometrics approaches to these parameters exists. A model 71 

linking the differences in berry mechanical properties and chemical composition 72 

induced by the grape ripeness could be an alternative to NIR methods for rapidly 73 

assessing the flavonoid contents at the berry level. 74 

TA data are different from those obtained with NIR. In the first method, the number of 75 

measured parameters available as predictors is limited, and it is generally lower than the 76 

number of observations, i. e. the dataset is in a long format. Conversely, NIR datasets 77 

are wider, the number of wavelengths available as predictors is large and therefore PLS, 78 

a regression algorithm well suited to these situations, has been extensively applied
 

79 
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(Cozzolino 2015). With the reduced number of predictors present in TA, other learning 80 

algorithms could be effectively applied as an effort to better exploit the available 81 

information. 82 

In this work, we will evaluate the use of regression trees and of two ways of combining 83 

them in order to achieve greater performances in predictions: Random Forest, RF 84 

(Breiman 2001), and gradient boosting machine, GBM (Friedman 2001). RF has shown 85 

to be a state-of-the art method, allowing the highest accuracy, but it is still not 86 

widespread to date. According to a recent review by Scott et al., 2013 for chemometric 87 

classification problems (286 reviewed papers), RF is used in only 4.5% of the articles 88 

where machine-learning algorithms are applied. The same source evidences that 89 

boosting algorithm is even less used (1%). 90 

The aim of the work was to evaluate different chemometric approaches in the evaluation 91 

of data obtained from parameters influenced by the grape ripening process, such as 92 

berry mechanical properties data and flavonoid content in berry skins. For this, the 93 

performances of RF and GBM algorithms were compared on a large dataset composed 94 

of approx. 800 berries belonging to 22 grapevine cultivars, their suitability for flavonoid 95 

content prediction in grape berries was evaluated on the basis of mechanical properties, 96 

and an informal explanation of the underlying algorithms was suggested. Furthermore, a 97 

predictive model was also developed. This approach could be used as an example for 98 

other compounds and fruits. 99 

 100 

2. Materials and Methods 101 

2.1 Grape sampling 102 

Grapes from 22 red grapevine cultivars (Vitis vinifera L.) were sampled in the CRA-VIT 103 



6 

experimental collection (1.2 ha) located in Susegana (TV), Veneto Region (North-East 104 

Italy), in 2010 and 2011. Vines were 15 years old, grafted on SO4 rootstock 105 

(interspecific cross between Vitis riparia Michx. and Vitis berlandieri Planch.), and 106 

planted at 3.0 m between rows and 1.5 m between vines. They were Sylvoz pruned and 107 

trained with a vertical shoot position system. For each cultivar, samples were composed 108 

of approx. 3 kg of grape berries, which were picked up randomly from ten vines. In 109 

order to successfully compare berries at ripeness with adequate sugar content, the 110 

berries were calibrated using a densimetric method by berry flotation in different saline 111 

solutions (Rolle et al., 2011). This study was carried out only on the berries with sugar 112 

contents comprised between 183±8 g L
-1

 and 217±8 g L
-1 

corresponding to 11.0±0.5% 113 

(v/v) and 13.0±0.5% (v/v) potential alcohol, respectively. 114 

The sorted berries were visually inspected before analysis; those with damaged skins 115 

were discarded. For each variety studied, a sub-sample of 36 sorted berries (therefore a 116 

total of 792 berries for all cultivars together) was randomly selected for the 117 

determination of the physical-mechanical properties and then for the flavonoid content. 118 

As described in the successive section, single berries measurements were then averaged 119 

by three to compose a single sample for predictive modeling.  120 

 121 

2.2 Physical and mechanical properties 122 

Grape berries were singularly weighed, with an analytical laboratory balance Radwag 123 

AS 220/X (Radwag, Radom, Poland), and then a Texture Profile Analysis (TPA) non 124 

destructive mechanical test was performed for each of them as described by Letaief et 125 

al., 2008. It allowed the measurement of berry hardness (N, as H), cohesiveness 126 

(adimensional, as Co), gumminess (N, as G), springiness (mm, as S), chewiness (mJ, as 127 

Ch) and resilience (adimensional, as R). A puncture test (Letaief et al., 2008) was then 128 
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carried out on the same berries taken singularly to measure skin break force (N, as Fsk), 129 

skin break energy (mJ, as Wsk) and skin resistance to axial deformation (N mm
-1

, as 130 

Esk). All these measurements were performed on the equatorial position of whole berry, 131 

while skin thickness (μm, as Spsk) was measured in the skin after manual removal from 132 

the pulp with a razor blade (Letaief et al. 2008, Río Segade et al. 2011a). Analyses were 133 

made with a Universal Testing Machine (UTM) TAxT2i texture analyzer (SMS-Stable 134 

Micro Systems, Godalming, Surrey, UK) equipped with a 5 kg load cell and a HDP/90 135 

platform. A SMS P/35 flat probe under 25% deformation, with a waiting period of 2s 136 

between the two compressions and a speed of 1 mm s
-1

, was used for the TPA test. A 137 

SMS P/2N needle probe, with a test speed of 1 mm s
-1

 and a penetration depth of 3 mm, 138 

was used for the puncture test. A SMS P/2 flat probe, with a test speed of 0.2 mm s
-1

 139 

was used to measure Spsk. All data were acquired at 400 Hz and evaluated using the 140 

Texture Expert Exceed software, version 2.54. 141 

 142 

2.3 Skin flavonoid content 143 

After the skin thickness test, each berry skin was individually immersed for 4 hours in 144 

5 mL of a buffer solution containing 12% v/v ethanol, 2 g L
−1

 of Na2S2O5, 5 g L
-1

 of 145 

tartaric acid and adjusted to pH 3.20 with NaOH (Di Stefano et al., 1991). Each skin 146 

was then homogenized at 8000 rpm for 1 min with an Ultraturrax T18 (IKA 147 

Labortechnik, Staufen, Germany), and the extract was centrifuged for 10 min at 3500 × 148 

g and 20 °C. The supernatant was then used for analysis after dilution with an ethanolic 149 

solution of HCl (70:30:1, ethanol:water:HCl, v/v) (Di Stefano et al., 1991). Total 150 

flavonoid index (TF) was determined by a spectrophotometric method, reading the 151 

absorbance at 280 nm, using an Uvmini-1240 PC spectrophotometer (Shimadzu 152 

Scientific Instruments, Columbia, MD, USA) and expressed as mg g
-1

 berry of (+)-153 
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catechin (Rolle et al., 2011, Di Stefano et al., 1991). 154 

2.4 Predictive modelling 155 

2.4.1 Description of the used machine-learning techniques 156 

The relationship between predictors and the outcome was modeled using Regression 157 

Trees, RT (Breiman et al., 1984) and two derived techniques: RF (Breiman, 2001) and 158 

stochastic gradient boosting with trees as base learners; the latter will be here called 159 

Gradient Boosting Machine (GBM) in reference to the work where this technique first 160 

appeared (Friedman, 2001). A comprehensive description of these techniques cannot be 161 

given in few words, nevertheless the following paragraphs will try to briefly and lightly 162 

introduce the subject. Readers interested in more technical details can find worthwhile 163 

information in (Hastie, 2009) and in the help and vignettes of the cited R packages. 164 

Regression trees are rule based models that split the whole dataset in groups where data 165 

tend to be homogeneous with respect to the response. In the technique used in this work, 166 

which is known as Classification And Regression Tree, CART (Breiman et al., 1984), 167 

data in the terminal nodes (the final groups that are no further partitioned) are simply 168 

averaged to predict the outcome. At the beginning, the entire dataset is split in two 169 

groups to minimize the overall sum of squares, by searching every value of every 170 

predictor. The technique is then recursive, these two groups are split again in two parts 171 

each to further reduce the prediction error, according to the available predictor values. 172 

This technique is also known as recursive partitioning because of its iterative nature. 173 

The number of groups duplicates at each split until the terminal nodes are so small that 174 

they cannot be further partitioned. However, these ―full grown‖ trees generally overfit, 175 

in the sense that they tend to fit the noise other than the structure in the training data. 176 

Therefore, they achieve poor performances on the validation data despite having great 177 

performances on the training data. Their growth must therefore be controlled, and this 178 
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can be obtained by cross-validation procedures. Cross-validation is a form of internal 179 

validation, which is based on the use of a fraction only of the whole training data to 180 

develop the model, while using the remaining part for the validation. In k-fold cross 181 

validation, the training dataset is divided in k parts; k-1 parts are used to fit the model 182 

and the k
th

 part is used to evaluate the structure of the model on simulated new data. The 183 

procedure is then iterative, and all k parts serve as validation once at a time. This allows 184 

determining the size of the trees enabling the best results on future unseen data.  185 

A characteristic of regression trees is their instability, their structure can greatly vary 186 

with the data available for modeling. This property can appear at a first sight a 187 

deficiency of the method, instead it has become to be really useful and extremely well 188 

exploited by two state-of-the-art techniques in statistical learning such as bagging and 189 

boosting. These techniques are based on the ―perturb and combine‖ strategies (Breiman, 190 

1996a) and on the idea that combined learners can outperform single ones. For this 191 

combination to be effective, single learners must be able to capture a part of the 192 

structure in the data that is not modeled by other learners. The plasticity of trees can be 193 

exploited for this purpose: by artificially varying the available data through re-sampling 194 

techniques, they can be induced to learn different aspects of the dataset. Partial 195 

predictions from ensemble of trees are then combined to obtain the final predictions. 196 

Bagging (Breiman, 1996b) and boosting (Freund & Schapire 1997) are two ways of 197 

combining learners. In bagging, trees are grown in parallel on a part of the available 198 

data, and predictions are then averaged across all trees. However, in boosting, trees are 199 

grown sequentially, and each successive tree models the residuals of the previous tree 200 

predictions. Bagging and boosting are the two techniques that, further optimized by 201 

increasing randomization, are respectively used in RF and GBM. In RF, trees are grown 202 

on re-sampled subsets of the training data by using only some of the available 203 
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predictors, randomly chosen at each split. Final predictions for each tree are then 204 

averaged. This parameter is called mtry and has to be set by the user, as well as the 205 

number and depth of trees in the forest. In GBM, trees are sequentially built to reduce 206 

the errors of the previous trees, but residuals are resampled and just a fraction is 207 

available for modeling at each iteration. Furthermore, learning is regularized through 208 

shrinkage, i.e. learning rate is slowed by allowing the use of just a fraction of the whole 209 

value for each residual. As occurred in RF, even in GBM, the number and depth of trees 210 

have to be selected by the user. Parameter selection, also called parameter tuning, is 211 

generally made using cross-validation or bootstrap techniques in order to minimize the 212 

performances of the algorithm on simulated new data, being not the error on the training 213 

set a robust choice because of overfitting. 214 

 215 

2.4.2 Details about the used procedure 216 

A predictive model was built to predict the flavonoid content in berry skin using 217 

physical and mechanical properties of the whole berry and skin as inputs. The 792 218 

berries data (36 berries x 22 cultivars) were averaged by three, randomly selected inside 219 

the same cultivar, to obtain 264 averaged samples (12 samples composed by 3 berries 220 

for 22 cultivars). Prior to model fitting, data were partitioned and a random approx. 20% 221 

of data (53 samples) were left out from the training set for later use as test set. Data 222 

were then centered and scaled. In this work, models were tuned using 10 repetitions of 5 223 

folds cross-validation in order to optimize the Root Mean Square Error (RMSE) on the 224 

resampled data (more than 10 000 possible combinations were evaluated). Performances 225 

of the models were then compared on the same set of 100 bootstrap re-samples always 226 

using RMSE as a metric. 227 

Data were analyzed with the R statistical software 3.1.2 (R Core Team, 2014) using the 228 
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packages rpart (Therneau et al., 2015), randomForest (Liaw & Wiener, 2002), gbm 229 

(Ridgeway, 2013), caret (Kuhn, et al., 2014).  230 

3. Results and Discussion 231 

3.1 Descriptive analysis 232 

Fig. 1 shows the TF content for the 22 cultivars used in the experiment. Raboso, 233 

Ancellotta and Teroldego had the highest amount of TF in the skin of fresh berries (with 234 

a median of 8.72, 6.52 and 5.35 mg g
-1 

berry, respectively) but also had the highest 235 

variance (1.52, 4.20 and 0.71 mg g
-1 

berry, respectively). Gamay, Schiava gentile and 236 

Aleatico had the lowest concentration in these compounds (with a median of 0.97, 0.91 237 

and 0.98 mg g
-1 

berry, respectively) and the lowest variance (0.01, 0.01 and 0.01, 238 

respectively). In the global dataset (Table 1), TF had a mean of 2.60 mg g
-1 

berry, a 239 

median of 2.07 mg g
-1 

berry and a variance of 4.16 mg g
-1 

berry. The registered 240 

minimum was 0.69 mg g
-1 

berry (Aleatico), while the maximum was 12.87 mg g
-1 

berry 241 

(Ancellotta). Descriptive statistics for the physical-mechanical characteristics in the 242 

global dataset is shown in Table 1. Data were in agreement with those reported in 243 

scientific literature in several works (Zouid et al., 2013, Letaief et al., 2008, Río Segade 244 

et al., 2011a). 245 

Table 2 shows Pearson correlations in the global dataset. Being TF the outcome of the 246 

developing model, good correlations with the available predictors would be welcomed, 247 

but r values for this variable were moderate. BW and S showed the highest correlations 248 

with TF (r values of -0.59 and -0.53, respectively, p-value < 0.001), followed by Esk and 249 

Spsk (r values of 0.34 and 0.34, respectively, p-value < 0.001). The less related 250 

predictors were Wsk, H and G, which did not show significant correlations. It should be 251 

noticed that the last two variables were well related to the anthocyanin extractability in 252 

the study published by (Zouid et al., 2013). In the present work, the number of cultivars 253 
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taken in account is greatly higher compared to the cited work, where only Cabernet-254 

Franc was measured. Given the lack of significance, it could be hypothesized that the 255 

relation is not uniform but depends on the cultivar. The Spearman's method, used to 256 

highlight possible monotonic, but non-linear relations with TF, did not give association 257 

values higher than those already observed (data not shown). 258 

The strongest correlations observed in the dataset (r values higher than 0.75, p-value < 259 

0.001) were those among the physical-mechanical predictors (H with G and Ch; Fsk with 260 

Wsk and Esk; BW with S and SW), which is a consequence of the way they were 261 

measured or calculated (Letaief et al., 2008). H, G and Ch were strongly positive-related 262 

because G and Ch were calculated from H. Therefore, harder berries were also more 263 

gummy and chewy. Considering skin related mechanical properties, Fsk corresponds to 264 

the skin resistance to the needle probe penetration, while Wsk is represented by the area 265 

under the force/time curve. Esk is defined as the slope of the stress–strain curve in the 266 

linear section. Wsk and Esk were strongly positive-related to Fsk, so stiffer skins were 267 

also more resistant to the penetration and therefore harder. Furthermore, heavier berries, 268 

which are also bigger ones, had higher value of S and had, obviously, higher amount of 269 

skin. BW was retained instead of S because the relationship of BW with TF is well 270 

known in the literature. 271 

It is important to highlight that the sugar content of berry showed some significant 272 

relations (alpha risk < 0.1) with other variables in the dataset, table 2, but the correlation 273 

was strong with none of them. The effect of stage of ripening on mechanical properties 274 

values was in general less determining in comparison to variety effect (Rio Segade et 275 

al., 2008). Cultivar variability of these properties across the 22 cultivars studied clearly 276 

dominated. Before continuing, it should be cleared that even if the correlations in Table 277 

2 let to make an idea of the main relationships in the dataset, possible multidimensional 278 
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relations were not taken into account. As an example, it seems logical that total skin 279 

weight could be the result of a linear combination between the berry size and the skin 280 

thickness for each berry. SW was highly related to a combination of BW and Spsk with a 281 

r value of 0.87. This value was clearly higher than those of the single relations, being 282 

probably redundant the information of SW if used in a model also containing BW and 283 

Spsk.  284 

 285 

3.2 Predictor filtering 286 

Sensibility to correlated predictors depends on the used statistical learning technique, 287 

but it is generally not welcomed because redundant and non informative inputs reduce 288 

model performances. When inference is the objective, the negative effect of correlated 289 

variables is even worse than for predictions alone. Furthermore, the measurement of a 290 

greater number of variables in order to apply a model would increase costs and time, 291 

and therefore a justification is required. Any of the three used learning techniques (RT, 292 

RF, GBM) completely fail when correlated predictors are present, the less sensitive 293 

technique probably being GBM because it shrinks effect estimates (Maloney et al., 294 

2012), and the most sensitive one being RF (Strobl et al., 2007). In general, tree based 295 

techniques implicitly run feature selection because, if a predictor does not permit to 296 

reduce the residual sum of squares at any tree split, its contribution to the model is zero. 297 

However, if highly correlated predictors are present, the choice between them is 298 

somewhat random because they similarly reduce the sum of squares, and have a similar 299 

probability to be chosen for a given split. In RF, where an mtry number of predictors is 300 

sampled at each split (see section 2.4), the presence of correlated predictors increases 301 

the chance to sample similar information. It reduces randomization and therefore 302 

independence across trees; important assumption to optimize performances. In addition, 303 
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it dilutes the importance of key predictors and increases the importance of weak 304 

variables correlated to important ones (Strobl et al., 2007). 305 

To account for these problems and to optimize model performances, predictors were 306 

first filtered to avoid correlation levels higher than 0.7 (according to Pearson correlation 307 

coefficients, Table 2) and therefore to reduce redundancy. The relationships of the 308 

predictors with the outcome were not considered for selecting predictors in this first 309 

phase. Feature selection was indeed performed successively using Recursive Feature 310 

Elimination (RFE). Four predictors were eliminated by this filtering step, which were 311 

Fsk, Wsk, H, and G. Fsk and Wsk were highly related (r = 0.92, p < 0.001). Wsk was not 312 

related to TF, contrarily to Fsk, but this last was also strongly related to Esk (r = 0.81, p < 313 

0.001). A previous study has reported that Esk is related to cellular maturity index 314 

(EA%) as predictors of anthocyanin extractability (Río Segade, et al., 2011b). Among 315 

H, G and Ch (r = 0.91-0.97, p < 0.001), this last was retained because it was also well 316 

related to anthocyanin extractability (Zouid et al., 2013). The information provided by 317 

SW in a model can be well approximated by a combined use of BW and Spsk, as 318 

previously explained. Furthermore, Spsk is considered as main texture parameter to 319 

predict anthocyanin extractability in winegrapes (Río Segade et al., 2011c). The final set 320 

of filtered predictors included BW, Esk, Co, Spsk, Ch, Wsk, and R. 321 

3.3 Recursive feature elimination and model tuning 322 

Recursive feature elimination (RFE) (Guyon et al., 2002), a backward selection 323 

algorithm, was used in the way optimized by Ambroise & McLachlan 2002, and 324 

therefore including feature selection in the model building process. Predictors 325 

elimination was evaluated on the basis of the performances achieved on re-sampled sets 326 

obtained by k-fold cross validation (k = 5). The process was run for RT, RF, and GBM, 327 

and models were also tuned to optimize performances during the process (see section 328 
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2.4). RT, RF, and GBM were all tuned using the same set of re-samples therefore 329 

ensuring consistency in the evaluation and allowing comparison across model 330 

performances.  331 

In all three cases (RT, RF, and GBM), RFE suggested the use of all seven available 332 

predictors (BW, Esk, Co, Spsk, Ch, Wsk, and R), and therefore all of them had some 333 

influence on the techniques evaluated. The relative predictor importance in all models is 334 

shown in Table 3. In this table, the influence was scaled between 0 and 100 to allow an 335 

easier comparison between models, but as already stated some of the selected predictors 336 

had zero influence. The 0 and 100 are relative values obtained by subtracting the 337 

minimum registered influence (across all predictors) from the individual influence for 338 

each predictor, and then by dividing for the difference between the maximum and the 339 

minimum registered influence. The influence of each predictor in the model varied 340 

according to the model. Considering a single tree (RT), the overall relative influence of 341 

each predictor was higher, because all predictors were used once or few times, and this 342 

avoided the predominance of very strong predictors such as BW. In RT, Spsk was the 343 

predictor that allowed the greatest error reduction. In ensembles, and with the 344 

perturbation of data imposed in RF and GBM methods, the influence of some strong 345 

predictors popped up and seems to take advantage over the others. This was more 346 

evident in GBM than in RF, which had an intermediate behavior. These comments are 347 

valid only for this study. 348 

Model tuning suggested the use of 7 splits for RT, 1000 trees and mtry = 4 for RF, 5000 349 

trees having 4 splits each and a shrinkage of 0.005 for GBM. Fig. 2 shows the tuned RT 350 

with the aim of illustrating the basic element also composing RF and GBM ensembles. 351 

Single trees are very easy to interpret and to allow making an idea of the relationships in 352 

the dataset. It is important to remember that they are fairly unstable, and small 353 
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perturbations in the dataset can completely change their structure. Therefore, trees just 354 

describe relationships relative to the data observed, and interpretations are difficultly 355 

generalizable. This is especially true for the lower splits. However, it is worthwhile to 356 

note that Spsk, which was the variable with the largest influence for RT (Table 3), acts in 357 

a controversial fashion. For the smallest berries, which were also the richest in 358 

flavonoids, a higher Spsk indicated a lower content of TF, while for the biggest berries, 359 

the inverse was true. It is also important to note the role of BW, which was negatively 360 

related to the amount in phenolic compounds as widely discussed in the literature 361 

(Barbagallo et al., 2011). Also Esk seems to be an important parameter because elastic 362 

skins were associated to higher content in TF. BW, Esk, and Spsk were the predictors 363 

with the highest influence in all models (Table 3). 364 

 365 

3.4 Model comparison 366 

Results of the tuned models are shown in Table 4 for both training and test data and for 367 

the cross-validated re-samples. It appears that all algorithms, starting from RT, tended to 368 

overfit the training set, which is probably a consequence of a training set too small 369 

when compared to the complexity of the relationships among predictors and between 370 

these and the outcome, as suggested by the weak correlations observed in Table 2. 371 

Despite this, the model accurately predicted the test set used as external validation. 372 

Predictions for the test set exceeded those obtained with 5-fold cross-validation, which 373 

can be considered an internal validation. Test sets are considered the ultimate proof of 374 

model performances, often neglecting cross-validation and bootstrap assessment 375 

methods. However, observations like the present one make us think about the method to 376 

prefer in model assessment. The performances observed over a test set could also be 377 

attributed to random select observations easier to predict than those contained in the 378 
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training set used in cross-validation. Resampling methods are more robust from this 379 

point of view, but they can be upward (i. e. pessimistic) biased, especially the bootstrap, 380 

even if an alternative to avoid such bias is available, but only for classification problems 381 

(Efron & Tibshirani 1997). 382 

Fig. 3 shows the predictions on the train and test sets for all methods. Figs. 3a and 3b 383 

shows the blocky structure used in prediction by RT, where similar data were just 384 

predicted by the mean of the group they belong according to the rules in Fig. 2, and are 385 

therefore grouped also in predictions. In GBM and RF ensembles, the predictions are 386 

averaged from many trees and allow the methods to be more adaptable to the form of 387 

data and to also model non-linearity (and interactions). In Figs. 3c/d and 3e/f, 388 

predictions were no longer grouped for the same values of predictions. Comparing 389 

Figs 3c/d with 3e/f, it appears that both RF and GBM methods well predict the test set, 390 

but predictions, as shown by the location of points in the scatterplots, although similar 391 

were not exactly identical. Predictions obtained on the same re-sampled data by GBM 392 

and RF were highly correlated (0.82), however looking at Table 3 it appears that they 393 

did not make use of the same predictors in the same way. It will be possible that 394 

combining both methods in a single ensemble will boost the overall accuracy a little bit. 395 

These algorithms were combined by weighted average of their predictions, using a 396 

greedy optimization method as described in (Caruana et al., 2006). Combining methods 397 

in a single ensemble of models has the highest efficacy when algorithms are different, 398 

and therefore predictions uncorrelated. It is not the case here, where these assumptions 399 

are not really respected. However, the combination of RF and GBM brings to a nice 400 

improvement in model predictions. GBM and RF predictions were weighted 0.51 and 401 

0.49, respectively, for averaging, and the resulting RMSE of their ensemble was 1.05 402 

mg g
-1

, which was
 
slightly lower than that obtained by single methods (Table 4). The 403 
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result on the test set for the RMSE was 0.701 mg g
-1

 and for R² was 0.85. The 404 

corresponding predictions on the train set are in Fig. 3g and in the test set are shown in 405 

Fig. 3h.  406 

To compare the results of this work with others found in the literature is somewhat 407 

difficult, because the use of texture analysis to predict flavonoid content in grape berries 408 

is novelty, and also a so varied dataset, containing 22 cultivars, is rare to be found. 409 

Texture analysis was already used to develop rapid method for the evaluation of total 410 

phenolic content and phenol extractability in grape seeds with a good accuracy (Rolle et 411 

al., 2013), and in skins but limited to the anthocyanin content (Rolle et al., 2012b, Rio 412 

Segade 2011c). In grape berries, however, a rapid evaluation of the phenolic content has 413 

generally been made using NIR spectroscopy, and several works have reached very 414 

good performances (Ferrer-Gallego et al., 2011). This work was performed on a single 415 

cultivar (Graciano), and data were expressed in mg g
-1

 of berry skins. In the present 416 

work, data were expressed in mg g
-1

 of whole berry, which from an industrial point of 417 

view could be more practical. The results of the last two studies are therefore not 418 

directly comparable. 419 

The results obtained showed that RF and GBM, and even their average can reach a very 420 

high accuracy for TF prediction from physical-mechanical data obtained for many 421 

different cultivars. RF is simpler to perform and accurately tune than GBM. 422 

Furthermore, its use of features in the dataset less overfitted BW influence.  423 

However, even if the performances of those algorithms were very high, it is also true 424 

that for real world application, model performances were still too low to be practically 425 

used in a generalized way. Results obtained with prediction could be useful for the 426 

comparison of the phenolic maturity of different vineyards, but at this time they were 427 

hardly suitable for the monitoring of TF during ripening for cultivars with low amounts 428 
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of flavonoids. Conversely, they could be used for those cultivars with very high 429 

amounts of flavonoids (such as Raboso, Ancellotta and Teroldego), because a reduced 430 

relative error in prediction.  431 

It is possible that, being the physical-mechanical characteristics linked to total 432 

flavonoids in a way that depends on the cultivar and is not universal, cultivar-specific 433 

calibration will be necessary to improve model performances. This will probably allow 434 

the use of TA to monitor grape ripening even for cultivars with low amount in 435 

flavonoids. Cultivar- specific calibration or the inclusion of the cultivar as a categorical 436 

term in the developed models was not possible in this work because the number of 437 

observations by cultivar was too low.  438 

To further increase model accuracy, it will also be interesting to test the average of more 439 

than three berries for a single sample in order to improve the accuracy in the TA 440 

predictors. It could also be interesting to normalize the results using other properties or 441 

evaluated parameters. Finally, it will be important to acquire more data and to develop 442 

cultivar-specific calibrations. Indeed, except BW, which had a homogeneous behavior 443 

for all 22 cultivars in the dataset, other physical-mechanical parameters greatly varied 444 

by the cultivar, and general patterns were weak. 445 

 446 

4. Conclusions 447 

This work collected and assessed a large and varied dataset of texture analysis data and 448 

flavonoid content from the analysis of every single berry. It tried to evaluate different 449 

machine-learning algorithms to assess their suitability to model the relationships 450 

between physical-mechanical characteristics of grape and the concentration of skin 451 

flavonoids. The reason for modeling such a relation is that grape berries show changes 452 

in their physical-mechanical properties during ripening, which are variety dependent. 453 
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The approaches evaluated here (RF and GBM) are state-of-the art techniques, but have 454 

still rarely been used in chemometrics. This work brings an interesting case-study while 455 

also trying to simply and informally explain the way these methods work, starting from 456 

their basic element, RT. It will serve as an introduction and will offer some valuable 457 

insights for food scientists interested in learning more about these techniques or 458 

searching for domain-specific examples of application. 459 

Presented models are able to capture a huge portion of the variability in the dataset, as 460 

shown by the reached R
2
 and accuracy (given by the RMSE), and they can be useful for 461 

a fast screening of many cultivars, because it does not ask for sample preparation and 462 

extraction, but not yet for fine measurements. It should also be considered that, even if 463 

the number of cultivars in this study was high, universal considerations cannot be 464 

inferred because, as already reported in the discussion, the evolution of physical-465 

mechanical parameters with ripening could be different across cultivars. Therefore it is 466 

probable that conclusions obtained from this study could be different when developing 467 

models for a single cultivar, especially in the role and importance of the used physical 468 

predictors. It is also highly probable that machine-learning techniques, once applied on 469 

single cultivars or on groups of cultivars presenting a similar evolution of physical-470 

mechanical properties with the ripening, will reach outstanding performances and could 471 

allow a rapid and accurate estimation of ripening-influenced parameters like TF in grape 472 

berries. 473 

Abbreviations 474 

BW Berry Weight 475 

CART Classification And Regression Tree 476 

Co Cohesiveness 477 

Ch Chewiness 478 

Esk Skin Young's modulus 479 
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Fsk Skin break force 480 

G Gumminess 481 

GBM Gradient Boosting Machine 482 

H Hardness 483 

R Resilience 484 

RF Random Forest 485 

RFE Recursive Feature Elimination 486 

RT Regression Tree 487 

S Springiness 488 

Spsk Skin thickness 489 

SW Skin Weight 490 

Wsk Skin break energy 491 

TA Texture Analysis 492 

TF Total Flavonoids Index 493 

 494 
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Table 1. Descriptive statistics for the global dataset of physical-mechanical properties 

and total flavonoid content composed of 792 berries from 22 red wine grape 

cultivars. 

  Min. Max. Mean Median Var. 

BW (g) 1.31 4.13 2.57 2.54 0.331 

Fsk (N) 0.18 1.01 0.65 0.66 0.024 

Wsk (mJ) 0.11 1.47 0.64 0.64 0.040 

Esk (N mm
-1

) 0.15 0.47 0.29 0.29 0.004 

Spsk (µm) 122.33 315.00 209.69 201.00 1599.699 

SW (g) 0.12 0.45 0.26 0.25 0.005 

H (N) 1.36 5.68 3.19 3.05 0.655 

Co (adimens.) 0.60 0.89 0.79 0.80 0.003 

G (N) 1.13 4.45 2.51 2.43 0.377 

S (mm) 1.62 3.00 2.43 2.48 0.069 

Ch (mJ) 1.86 11.89 6.21 6.01 3.193 

R (adimens.) 0.31 0.51 0.45 0.41 0.001 

TF (mg g
-1

) 0.69 12.87 2.60 2.07 4.164 
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Table 2. Pearson correlations for the global dataset of physical-mechanical properties, 

total flavonoid and total soluble solids content obtained from 792 berries from 22 red 

wine grape cultivars 

  BW Fsk Wsk Esk Spsk SW H Co G S Ch R TSS 

BW              

Fsk 
-0.13 

* 
            

Wsk 
0.04 

*** 

0.92 

*** 
           

Esk 
-0.29 

*** 

0.81 

*** 

0.54 

*** 
          

Spsk 0.06 -0.07 -0.12 0.03          

SW 
0.76 

*** 

-0.21 

*** 

-0.11 

. 

-0.25 

*** 

0.46 

*** 
        

H 
0.17 

** 

0.54 

*** 

0.30 

*** 

0.75 

*** 

0.06 

 

0.14 

* 
       

Co 
0.03 

 

-0.11 

 

-0.06 

 

-0.17 

** 

-0.01 

 

0.08 

 

-0.22 

*** 
      

G 
0.19 

** 

0.53 

*** 

0.31 

*** 

0.73 

*** 

0.05 

 

0.16 

** 

0.97 

*** 
0.01      

S 
0.88 

*** 

-0.06 

 

0.02 

 

-0.10 

 

-0.06 

 

0.62 

*** 

0.31 

*** 

0.15 

* 

0.36 

*** 
    

Ch 
0.44 

*** 

0.42 

*** 

0.26 

*** 

0.57 

*** 

0.04 

 

0.35 

*** 

0.91 

*** 

0.05 

 

0.95 

*** 

0.61 

*** 
   

R 
0.06 

 

-0.23 

*** 

-0.15 

* 

-0.29 

*** 

-0.20 

** 

0.01 

 

-0.38 

*** 

0.58 

*** 

-0.24 

*** 

0.25 

*** 

-0.14 

* 
  

TSS 
-0.11 

. 

-0.01 

 

-0.02 

 

0.01 

 

-0.02 

 

0.00 

 

-0.05 

 

0.04 

 

-0.05 

 

-0.11 

. 

-0.07 

 

0.04 

 
 

TF 
-0.59 

*** 

0.13 

* 

-0.03 

 

0.34 

*** 

0.34 

*** 

-0.18 

** 

0.00 

 

-0.13 

* 

-0.03 

 

-0.53 

*** 

-0.20 

** 

-0.19 

** 

0.03 

 

*** = p-value < 0.001, ** = p-value < 0.01, *= p-value < 0.05, . = p-value < 0.1 
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Table 3. Relative influence of each predictor in all tested algorithms. Influence was 

scaled between 0 and 100 to allow an easier comparison. 

  RT GBM RF 

C 0.00 6.20 4.23 

R 17.00 0.00 0.00 

Wsk 51.25 1.31 0.98 

Ch 35.41 2.79 15.80 

Spsk 56.41 3.49 3.03 

Esk 100.00 4.77 26.77 

BW 42.07 100.00 100.00 
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Table 4. Results (R² and Root Mean Squared Error, RMSE) of the tested algorithm on 

the training set, the external validation (test set) and the internal validation (10 

repetitions of 5-fold Cross-Validation, CV). For cross-validation estimations of the 

standard deviation for both metrics are also shown. RMSE results are expressed in mg 

g
-1 

berry, lower the error better the performances of the model.  

  Train  

RMSE 

Train  

R2 

Test 

 RMSE 

Test  

R2 

CV  

RMSE 

CV  

R2 

CV  

RMSE SD 

CV  

R2 SD 

RT 0.817 0.849 0.951 0.752 1.286 0.650 0.198 0.101 

RF 0.419 0.965 0.729 0.836 1.071 0.754 0.148 0.063 

GBM 0.364 0.971 0.745 0.836 1.074 0.753 0.147 0.058 
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Figure Captions: 

Fig. 1. Flavonoid content for all cultivars in the experiment. Flavonoid content (mg g
-1

berry) for the 22 

red wine grape cultivars used in the experiment. 

Fig. 2. Best regression tree model to predict total flavonoids from texture analysis data Figure 

representing the tuned RT on the training dataset. The whole training dataset is recursively splitted in two 

parts, according to the predictor that allows the greatest reduction in the residual sum of squares. The 

selected predictor at each split is shown inside the ellipse, while just under there is the rule used for 

splitting which is a corresponding predictor value. Here numbers are expressed in the original measure 

unit of each predictor, readers are kindly referred to table 1 for the complete list. The optimal number of 

splits according to the results of the cross-validation procedure was equal to 7.  

Fig. 3. Results of the machine-learning techniques on train and test data-sets. Relationships between 

observed and predicted TF data (mg g
-1

) over the train test and the test set used as external validation for 

all algorithms. Solid black line is the identity line, while the dashed gray line is a linear regression (OLS) 

applied to the data and the filled gray region is its 95% confidence interval. 
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