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ABSTRACT 

Two soluble cyanine/β-cyclodextrin derivatives have been synthesized under simultaneous 

ultrasound/microwave irradiation. UV-Vis, steady-state, time-resolved fluorescence and circular 

dichroism spectroscopies were used to evaluate their photophysical properties, as well as to study 

their complexation with the anticancer drug doxorubicin. Titration experiments were performed by 

monitoring corrected emission intensity. The analysis of fluorescence data provided stability 

constants for doxorubicin complexes with cyanine/β-cyclodextrins which are 4 orders of magnitude 

greater than those reported for its complexation with native β-cyclodextrin and one order greater than 

its association with DNA. The complexation has also been studied using Molecular Mechanics and 

Molecular Dynamics simulations. Both electrostatic and van de Waals binding energy contributions 

are important to system stabilization. The potential use of these systems as carriers has been evaluated 

via in vitro experiments on HeLa cells and by monitoring cell entrance via confocal laser scanning 

microscopy.  
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1. Introduction 

Cyanine dyes are well-known compounds which display colorimetric and fluorescent properties 

and whose structure is based on two aromatic or heterocyclic rings linked via a polymethine chain 

with conjugated carbon-carbon double bonds.[1, 2] These dyes are able to cover all the wavelengths 

in the visible spectrum and show narrow absorption bands and high molar absorptivity, meaning that 

low concentrations can be used for detection purposes.[3] Nowadays, one of the most promising 

applications of cyanine dyes is their use as fluorescence probes in the field of optical imaging.[4, 5] 

Their water solubility can be dramatically increased by introducing highly polar functionalities, such 

as the sulfonic group, to their structure, thus making their biomedical applications much easier.[6] 

β-cyclodextrins (βCyDs) are natural cyclic oligosaccharides, formed of (R-1,4)-linked R-D-

glucopyranose units, and possess a basket-shaped topology with an inner cavity which exhibits 

relatively non-polar behavior. Thanks to these features, βCyDs are able to form reversible, non-

covalent inclusion complexes with mainly apolar guest molecules (G) with dimensions that fit inside 

the cavity. [7]  Various kinds of dye moiety appended CyD derivatives have been proposed as “turn 

on” or “turn off” fluorescent chemical sensors, in which fluorescence intensity is enhanced or 

decreased upon complexation with guest molecules.[8] The combination of CyD and cyanine in the 

same structure endows systems with great multi-functionality. Not only would they act as carrier 

systems but they would also allow the monitoring of cell uptake. To our knowledge only a few 

publications have reported the synthesis of cyanine/CyD hybrids. Reddington et al. in 1997 

synthesized the first cyanine-βCyD derivatives to enhance dye photostability and create a photostable 

fluorescent labeling reagent.[9] The successful use of these compounds as spectroscopic probes which 

recognize colorless guest molecules, such as 1-adamantanol and vitamin B6, has recently been 

described.[10] Efficient selective CyD derivation is still a difficult task.[11] However, so-called 

“enabling techniques” such as microwave (MW) and ultrasound (US) have been successfully used to 

promote specific reactions on CyDs.[12, 13] The microwave (MW)-promoted Cu-catalyzed 1,3-
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dipolar cycloaddition (CuAAC) between CyD monoazides and monoacetylene moieties, which 

results in the formation of a triazole bridge, is the most efficient way to modify the CyD surface. It is 

known that metallic copper efficiently catalyzes the reaction under ultrasounds (US), or simultaneous 

US/MW irradiation, and halts the formation of copper ion--CyD complexes. [14-16]  

Doxorubicin (Dox) is one of the first anthracyclines. It was isolated more than 40 years ago and 

is extensively used for the treatment of leukemia and various solid tumors.[17, 18] Dox exhibits 

cytostatic but also cytotoxic side effects. Toxicity is related to the formation of reactive oxygen 

species in the redox reaction where a quinone group is involved.[19] To reduce the undesirable action 

of oxygen species, this group can be entrapped via complexation with different nanocarriers, [20] 

such as micelles and liposomes, [21] polymeric architectures [22, 23] and nanoparticles. [24-27] This 

complexation also improves the solubility, stability and bioavailabitily of anthracycline drugs and 

prevents drug self-aggregation processes that compete with DNA-drug association. In fact, it has been 

demonstrated that Dox has no antitumor activity in its dimeric form. [28] The stabilization of 

anthracycline drugs can also be achieved via their complexation with CyD carriers. [29-33] However, 

one of the main restrictions on the use of CyD as an anthracycline carrier is the fact that the complexes 

formed show lower stability constants than the drug−DNA complex. [34] CyD chemical 

modification, by covalently attaching the appropriate moieties, can substantially increase the stability 

of the CyD-drug complex and such measures have been taken as a means for making complex-

controlled target drug carriers. [34-38] Additionally, the appended group contains cyanine dyes, with 

long wavelength colorimetric and fluorometric photoactivities, as cyanine-CyD carriers can also be 

useful for optical and near-infrared fluorescence imaging in living cells or biological tissues.  

In this work, two new cyanine-CyD derivatives have been efficiently synthesized using CuAAC 

under simultaneous US/MW irradiation.[39] The reaction was repeated with a sulfonate cyanine in 

order to increase the poor water solubility of the first cyanine/CyD hybrid obtained. The spectral 

properties of both derivatives were investigated using UV-Vis, steady-state and time resolved 
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fluorescence and circular dichroism spectroscopies. Their complexation with Dox was also studied 

and the processes rationalized by Molecular Mechanics and Molecular Dynamics simulations. 

Furthermore, potential cyanine βCyD derivative:Dox complex carrier properties were investigated in 

HeLa cells using confocal laser scanning microscopy (CLSM). 

<Figure 1> 

2. Materials and Methods 

2.1 Synthesis of cyanine-CyD derivatives 1 and 2 

Structures for cyanine derivatives 1 and 2 are depicted in Figure 1. Commercially available 

reagents and solvents were used without further purification for this synthesis. βCyD was kindly 

provided by Wacker Chemie. IRIS3 and IRIS5 cyanine derivatives were kindly provided by Cyanine 

Technologies  Spa. Reactions were monitored using TLC on Merck 60 F254 (0.25 mm) plates. Spot 

detection was carried out via staining with 5% H2SO4 in ethanol. NMR spectra were recorded on a 

Bruker 300 Avance (300 MHz and 75 MHz for 1H and 13C, respectively) at 25 °C. Chemical shifts 

were calibrated to the residual proton and carbon resonances of the solvent; DMSO-d6 (δH = 2.54, 

δC = 39.5), D2O (δH = 4.79). Chemical shifts (δ) are given in ppm and coupling constants (J) in Hz. 

ESI-mass spectra were recorded on a Waters Micromass ZQ equipped with an ESI source. 

Microwave/ultrasound-promoted reactions (MW/US)  were carried out in a MicroSYNTH 

professional oven. High-resolution mass spectrometry (HRMS) was determined using MALDI-TOF 

mass spectra (Bruker Ultraflex TOF mass spectrometer). 

2.1.1. Preparation of 1. Mono-6-azido-β-CyD (100mg, 1 mmol) and then cyanine IRIS3 (564,54 

mg, 4 mmol) were dissolved in DMF (10 mL) in a 100 mL two-necked round-bottomed flask 

equipped with an optical-fiber thermometer for reactions under combined MW/US. 50 mg Cu powder 

(50% w/w) was added after the reagents were completely dissolved. The reaction was heated for 2 h 
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at 100°C (15W MW and 20W US). The catalyst was filtered off and washed with methanol and the 

filtrate was evaporated, dissolved in water and precipitated with acetone. The crude product was 

collected by filtration on a Hirsch funnel. The product was purified via reverse phase column 

chromatography (H2O–CH3OH gradient from 95:5 to methanol 100%). The desired product was 

recovered in a 23% yield as a purple powder. 1H-NMR (300 MHz, DMSO-d6) δ = 8.05 (s,1H, H-4 

triazole), 7.8-7.1 (m, 9H, H-Ar, H-b), 6.61-6.54 (m, 1H, H-a), 5.83-5.51(m, O(2)H, O(3)H), 4.76 (br 

s, 7H, H-1), 4.43 (O(6)H), 3.72-3.51 (m, overlapped with water, H-d, H-2, H-3, H-4, H-5, H-6), 2.91 

(m, 2H, H-g), 1.61-1.16 (m, 16H, CH3, H-f, H-e); 13C NMR (75 MHz, DMSO-d6). (ESI): m/z calcd 

for C73H106N5O34
+ [M + 2H]2+ 799,33 found 799.34. m/z (MALDI-TOF MS): calcd for C73H106N5O34

+ 

[M]+: 1596.6719, found: 1596.6717. 

2.1.2. Preparation of 2. Mono-6-azido-β-CyD (114 mg, 1 mmol) and then cyanine IRIS5 (242 mg, 4 

mmol) were dissolved in H2O (10 mL) in a 100 mL two-necked round-bottomed flask equipped with 

an optical-fiber thermometer for reactions under combined MW/US. 60 mg Cu powder (10% w/w) 

was added after the reagents were completely dissolved. The reaction was carried out for 2 h at 75°C 

(15W MW and 20W US). The catalyst was filtered off and washed with methanol and the filtrate was 

evaporated. The product was purified via reverse phase column chromatography (H2O–CH3OH 

gradient from 98:2 to methanol 100%). The desired product was recovered in a 33% yield as a blue 

powder. 1H-NMR (300 MHz, D2O) δ = 8.05 (s, 1H, H-4 triazole), 7.9-7.2 (m, 8H, H-Ar, H-b, H-d), 

6.45-6.10 (m, 2H, H-a, H-e), 5.3-4.95 (br s, 7H, H-1), 4.3-4.05 (m, H-f, CH2-CH3, H-2, H-3, H-4, H-

5, H-6), 2.75-2.55 (m, 2H, H-i), 1.96-1.51 (m, 14H, CH3, H-h), 1.54-1.27 (m, 5H, H-g, CH2-CH3); 

13C NMR (75 MHz, D2O) δ = 174.24, 155, 151, 145-142, 126.78, 120.21, 111.20, 104.24, 103-100.91, 

81.71, 73.81-70.18, 61.12-59.11, 49.16, 27.87, 27.60-26.58, 26.4-25.2, 12.07. (ESI): m/z calcd for 

C75H106N5O40S
- [M + 2H]- 890,30 found 890,35. m/z (MALDI-TOF MS): calcd for C73H104KN5O40S2 

[M + H]+: 1794.5336, found: 1794.5337. 

<SCHEME 1> 
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2.2 Solvents and solutions  

The buffers used were either a 0.05 M Tris-HCl buffer (tris(hydroxymethyl)aminomethane 

hydrochloride, Trizma ® hydrochloride, for luminescence 99.0, Sigma-Aldrich) whose pH=7.4 was 

adjusted using a NaOH solution, or a 0.01 M phosphate buffered saline solution (PBS) of  pH=7.4 

(NaCl 0.138 M; KCl - 0.0027 M,  Sigma-Aldrich). The latter was used for cell imaging experiments. 

Deionized water (Milli-Q) was used to prepare buffer solutions. Buffers were checked for impurities 

by fluorescence. Cyanine/β-CyD derivative solutions were prepared in Tris buffer via dilution from 

1 and 2 stock 8.8710-5 M and 9.9910-5 M solutions, respectively. Doxorubicin hydrochloride, Dox 

(98.0-102.0 %, Sigma-Aldrich) was used as received. Its concentration in the Tris buffer for titration 

was 510-7 M. Rhodamine 101 (for fluorescence, Sigma-Aldrich) in methanol (spectrophotometric 

degree, Aldrich) was used as standard for fluorescence quantum yield measurements. [40]  

2.3 Spectroscopic methods  

Absorption spectra were recorded on a UV-Vis Perkin-Elmer Lambda 35 Spectrophotometer in 

the 200-750 nm range. Steady-state fluorescence measurements were carried out using a PTI Quanta 

Master spectrofluorimeter equipped with a single monochromator in the excitation and emission 

paths. A slit width of 6 nm was selected for both excitation and emission paths and polarizers were 

fixed at the “magic angle” condition. Detection was enabled by a photomultiplier which was cooled 

by a Peltier system. Fluorescence decay measurements were performed on a time-correlated single-

photon-counting FL900 Edinburgh Instruments Spectrometer. Either a H2 filled thyratron-gated lamp 

(nF900) or a monochromatic NanoLed (Horiba), which emits at 332 nm, were used as excitation 

sources. Concave grating monochromators were employed at both the excitation and emission paths. 

Photons were detected using a red sensitive cooled photomultiplier (Peltier system). Data acquisition 

was carried out using 1024 channels of a multichannel analyzer with a time window width of 200 ns. 

A total of 10,000 counts were taken at the maximum peak channel for each measurement. 
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Instrumental response functions were regularly achieved by measuring the scattering of a Ludox 

solution. Intensity fluorescence profiles were fitted to multi-exponential decay functions using the 

iterative deconvolution method [41]. The weighted average lifetime of a multiple-exponential decay 

function was then defined as: 

2
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The fluorescence anisotropy, r, obtained from the fluorescence polarization measurements by 

using the L-format method, [43] was defined as: 

                       (2) 

where all magnitudes are well-known. 

The fluorescence intensity correction (Icorr) for the large absorbance of the samples and for the 

cell optical path length was calculated using:  

                      (3) 

where Aex and Aem are the absorption at the wavelength of excitation and emission respectively and 

Iobs was directly obtained at em from the emission spectrum. [44] Fluorescence quantum yields were 

calculated using Rhodamine 101 in methanol (=1) (=0.38) as a standard [40, 45] at the excitation 
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wavelengths of 515 and 550 nm for 1 and 2, respectively. Right angle geometry and rectangular 1.0 

cm path cells were used for all fluorescence measurements. 

Circular Dichroism spectra were obtained on a JASCO J-715 spectropolarimeter.  Recorded 

spectra were the average of three scans taken at a speed of 50 nm min-1 with a time response of 0.125 

s. Measurements were performed at 25 °C. Sensitivity and resolution were set at 20 mdeg and 5 nm 

respectively. Quartz cells with different paths were used to maintain the optimum absorbance value 

(0.8 to 1.2). Solutions were prepared in 0.05 M Tris-HCl Buffer (pH=7.4). 

2.4 Cell growth and imaging experiments 

HeLa cells (ATCC CCL-2) were kindly provided by the Cell Culture Unit of the Universidad de 

Alcalá de Henares (UAH). Cells were cultured with a RPMI1640 medium containing 10% fetal 

bovine serum (FBS, Sigma Ref. F7524) and 10% antibiotic antymicotic solution (Sigma, Ref. A5955) 

at 37ºC under a 5% CO2, 95% air-humidified atmosphere. The culture media was changed every 2 

days. HeLa cells were seeded into a 60μ-Dish 35mm with a glass bottom (Ibidi, Ref. 81158) at an 

initial cell density of 2×104 cells/dish. After 48h, 100 μL of a PBS solution containing 2 (710-4 M) 

and Dox (610-4 M) were added and the cells were incubated for 24 hours. The cells were then imaged 

using a laser scanning confocal microscope (LSCM) (Leica TCS-SP5) equipped with a continuous 

Ar ion laser emitting at 405, 488, 514, 561 and 633 nm. Experiments were performed by the Confocal 

Microscopy Service and the Biomedical Networking Center (CIBER-BBN), located at the facilities 

of the Cell Culture Unit (www.uah.es/enlaces/investigacion.shtm). 

2.5 Association constants for the Dox-CyD Complexes 

For the 1:1 stoichiometry of the Dox:CyD complexation process which is described by the following 

equilibrium:  

http://www.uah.es/enlaces/investigacion.shtm
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 Dox CyD Dox : CyD   (4) 

the association constant K can be expressed as: 

 
[Dox : CyD]

    
[Dox][CyD]

K    (5) 

If we assume that two fluorescent species are present at equilibrium, both the free Dox guest and 

the complexed form, Dox:CyD, then the binding constants can be determined from the non-linear 

dependence of fluorescence intensity with the total initial CyD concentration, [CyD]0, according to 

the following expression: [46, 47] 

   
2

0 0 0 0 0 0

0

2

0 0

1+ [Dox] [CyD] ± 1+ [Dox] [CyD] - 4 [Dox] [CyD]
I = I I I )

2 [Dox]

+ +
+ ( -

K K K K K

K
        (6) 

where, I, I0 and I are the corrected fluorescence intensities at each [CyD]0, for free Dox (measured 

in absence of CyD) and for the complex (at [CyD]0→∞), respectively. [Dox]0 and [CyD]0 are the 

initial concentrations of the drug guest and the CyD cyanine derivative. Equation 6 assumes that Dox 

fluorescence intensity is quenched upon CyD addition, as actually occurs. 

 

2.6 Molecular Modeling Protocols 

Molecular Mechanics (MM) and Molecular Dynamics (MD) calculations were performed using 

Sybyl-X 2.0[48]  and the Tripos Force Field [49] to study the 1:Dox and 2:Dox (1:1) complexes in 

water solution. Charges for the 1 and 2 cyanine derivatives, as well as for Dox itself, were obtained 

on the non-distorted macroring and most extended 1 and 2 cyanine appended group conformations 

and on the optimized structure for Dox, which is depicted in Figure 5S of the supplemental material. 

The internally stored 6-31G(d) basis set was used within the Gaussian 03 program. [50] A relative 
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permitivity of 1.0 was used for electrostatic interactions in the presence of water. Cut-off distances 

for van der Waals and electrostatic interactions were set at 12 Å. The MAXIMIN2 algorithm and the 

conjugate gradient termination method (3.0 kcal·mol-1·Å-1) were used for energy optimization [51] 

in MM calculations. Systems were solvated with water using the Molecular Silverware algorithm 

(MS). [52] Periodic boundary conditions (PBC) were also employed.   

The strategies used for performing the Dox complexation processes by MM were similar to the 

ones used previously for CyD complexation with various other guests [53-57].  The centre of mass 

of 1 and 2 CyD macroring bridging oxygen atoms were located at the origin of a coordinate system 

(a scheme of the coordinate system used in the calculation is shown in the Supporting Information, 

Figure 5S). Dox was forced to approach and pass through the cavity with the best orientation along 

the x coordinate. The 1:1 complexation was emulated by making Dox approach the 1 and 2 CyD 

macrorings from x=60 (Å) to -6 (Å) at 1 Å steps. Each structure created was solvated (PBC, MS), 

optimized (3.0 kcal·mol-1·Å-1) and saved for further analysis. Minima binding energy (MBE) 

host:guest structures from the MM analysis were again optimized (0.5 kcal·mol-1·Å-1) and used as 

starting conformations for 2 ns MD simulations at 300K in the presence of water (PBS). Simulation 

characteristics were similar to those used in other complexation or association processes. [58, 59] 

Bonds involving H atoms were kept from vibrating, but the other conformational parameters were 

variable. In brief, the MD trajectories of the systems were performed from a starting point of 1 K 

which was increased by 20 K intervals and the whole system equilibrated at each intermediate 

temperature for 500 fs up to the temperature of interest. Once at this temperature, an additional 

equilibration period of up to 25 ps was used. The whole heating/equilibration period was discharged 

from the analysis. From this point, the rest of the 2 ns trajectory was simulated at 2 fs integration time 

steps. The momenta were reset every 10 fs. A bath temperature coupling factor of 50 was considered 

and velocities rescaled at 100 fs intervals. Structures obtained from the analysis of MD trajectories 

were saved every 250 fs, yielding 8,000 images for subsequent analysis. 
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<Figure 2> 

 

3. Results and Discussion 

3.1 Synthesis of Cyanine/β-CyD derivatives 

The synthesis of Cyanine/β-CyD derivatives was carried out employing a Cu(I)-catalyzed 

Huisgen 1,3-dipolar cycloaddition by which monoazidoCyD derivatives were efficiently linked 

together via a 1,2,3-triazole moiety using metallic copper under sonochemical conditions (Scheme 

1). 6I-Azido-6I-deoxy-CyD was subjected to cycloaddition in the presence of an excess of cyanine 

IRIS3 in order to obtain the monosubstituted CyD 1.The product was obtained in a 23% yield but 

very poor solubility was observed. A sulfonate cyanine (IRIS5) was reacted with 6-monoazido-6-

monodeoxy-CyD to obtain product 2, in a 33% yield, as a means to increase solubility and to avoid 

dye aggregation. All products were isolated as solids and chemical structures were confirmed by 1H 

NMR, 13C NMR and mass spectroscopy (see Supporting Information).  

3.2 Absorption and fluorescence 

Figure 2 shows absorption spectra for 1 and 2/tris-HCl buffer solutions at 25ºC. The spectrum for 

1 exhibited a relatively strong absorption band at 545 nm (23,000 M-1cm-1) and less intense ones 

below 300 nm, centered at 279 nm (~6,100 M-1cm-1) and around 215 nm (~11,000 M-1cm-1). Intense 

low energy bands, responsible for the red color, are attributed to electronic transitions involving  

electrons along the polymethine chain whose placements are strongly dependent on its length. A 

solution of 2, however, displayed a much more intense absorption spectrum than that of 1, especially 

in the low energy region (×10). Moreover, the shape of the bands which appeared in the spectrum of 

2 seemed to match those obtained for 1,  but shifted to longer wavelengths by about 100-110 nm. 
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Thus these bands appeared at 650 nm, blue color (200,000 M-1cm-1), 385 nm (~2,900 M-1cm-1) and 

333 nm (~10,200 M-1cm-1). Additionally, other more energetic bands centered at 288 nm (~9,700 M-

1cm-1) and 215 nm (~23,800 M-1cm-1) were also observed in the spectrum.  

Bathochromic displacements are usually attributed to improved electronic delocalization caused 

by the fact that the polymethine chain was two members longer for 2 than 1. No evidence of the 

presence of aggregates was found in the spectra analysis at the concentrations used in our 

experiments. Linear Beer-Lambert dependence was observed at these concentrations (except for the 

saturation of the UV-Vis spectrophotometer at 650 nm for the most concentrated solutions of 2. 

<Figure 3> 

Steady-state fluorescence emission spectra for 1 (or 2) solutions were performed upon excitation 

at the shoulder placed at 515 nm (at 600 nm) to monitor the entire emission spectra. Figure 3 (a) and 

(b) depict fluorescence emission spectra at 25 ºC for 1 and 2 Tris-buffer solutions at different dye 

concentrations. The emission spectra of 1 exhibited a broad band whose maximum was located at 

558 nm and which was accompanied by a shoulder at 600 nm for the most dilute solutions. A 

monotonic 10 nm slight bathochromic displacement from 558 to 568 nm and obviously an increase 

in the intensity was observed when increasing the concentration. However, a slight decrease in the 

fluorescence occurred for the large concentrations. This must be due to a decrease in the excitation 

intensity at the center of the 10 mm path cell caused by the inner filter effect. [23] The fluorescence 

intensities, corrected using eq. 3 as a function of the concentration of 1 at different temperatures 

which is linear in the whole range of concentrations, are superimposed in Figure 3 (a). A decrease in 

the fluorescence intensity was observed with temperature. Spectra for solutions of 2 presented a 

unique emission band whose maximum underwent a large bathochromic displacement from 662 nm 

to 694 nm with [2]. The intensity initially increased almost linearly with concentration for the diluted 

solutions, but drastically decreased at concentrations larger than 6×10-6 M. In addition to the inner 
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filter effect, the large molar absorptivities of the low energy band and its overlap with emission 

maxima, as depicted in Figure 6S of the supporting information, can result in a quenching of the 

fluorescence at the overlapping region (the shorter wavelengths) via emission self-absorption. 

Subsequently, a remarkable emission band displacement and an intensity decrease were observed 

with increasing [2]. This also occurred in a small extension for the cyanine derivate 1. Once corrected 

using eq. 3, superimposed in Figure 3(b), emission intensity became linear with concentration in the 

whole range of [2]. An increase in temperature, not shown, also caused a decrease in fluorescence 

intensity.  

Fluorescence quantum yields of approximately 0.09 and 0.08 were obtained in Tris-buffer 

solutions at 25ºC for 1 and 2 cyanine βCyD derivatives at 515 nm and 550 nm, respectively. Table 1 

provides a summary of some of the photophysical parameters for 1 and 2 CyD derivatives. 

<Table 1> 

Fluorescence intensity profiles were also monitored at 25ºC for 1/ and 2/Tris-buffer solutions of 

varying concentration. Excitation wavelengths were 515 nm for 1 and either 580 nm (upper limit for 

excitation with the H2 lamp) or 332 nm (monochromatic emitter NanoLed) for 2. Emission was 

monitored at the maxima (or near) of their respective bands, 560 nm and 665 nm, respectively. Decay 

profiles for 1 were mono-exponential and showed very short lifetime values which were in the 0.3-

0.5 ns range and no apparent special trend was observed with varying concentration. Profiles for 

solution 2, however, were more complex and were fitted to bi-exponential decay functions. When 

exciting with a 332 nm NanoLed, one fast component with a lifetime of around 1.0-1.1 ns, which 

contributes 85-90 % to the total fluorescence decay was detected and a slower component with a 

lifetime of 11-15 ns, whose contribution was 10-15 %, was also observed. The weighted average 

lifetime <> was almost constant (2.3-2.8 ns) in the whole range of dye concentrations used. Rather 
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similar lifetime components of 1.2 and 10.3 ns, which provide 90.4 and 9.6 % contributions 

respectively, and <>2.2 ns were obtained using a low intensity hydrogen pulsed lamp at 580 nm. 

Anisotropies (r) were obtained from fluorescence depolarization measurements, using eq. 2, 

under ex = 515 nm (600 nm) by recording the emission at 560 nm (at 665 nm) for 1 (or 2) cyanine 

derivative Tris-buffer solutions. As Figure 7S (supporting information) depicts, a rather concentration 

insensitive and constant value of r=0.246±0.004 was obtained for 1 at 25 ºC. However, anisotropies 

for 2 decreased with [2] from an initial value of r=0.156±0.004 for the most diluted solution to 0.08-

0.12 for the most concentrated ones. The large anisotropy values for both cyanines are caused by the 

low rotational diffusion of a large chromophore attached to a large macroring. The relative values of 

r for the chromophores of both 1 and 2 can give us some information about differences in the excited 

state lifetimes, of which that for 2 is larger, and probably about the self-absorption processes at the 

emission wavelengths of 2, which also depolarizes the fluorescence at the highest dye concentration 

(see Figure 6S). In addition, larger  values mean higher rotational diffusion during excited state 

lifetimes.  

3.3 Circular Dichroism spectra 

A chiral macroring, like βCyD, can induce a circular dichroism signal (Cotton effect) on an achiral 

chromophore (cyanine substituents for 1 or 2), independently of whether it is bound to the cylodextrin 

or not.  The occurrence of an induced Circular Dichroism (ICD) spectrum can provide information 

on the location of the appended cyanine relative to the CyD cavity, as the sign and intensity of the 

ICD signal is related to its distance and orientation relative to the n-fold CyD axis. [60-63] On the 

other hand, exciton coupling (EC) is produced by the presence of two or more chromophores, which 

are close enough in space and at least one of which displays a large molar absorptivity, that couple 

their electric transition moments. This interaction can also occur intramolecularly between two 
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chromophore groups in a single molecule. As a result, a typical bisignate Cotton effect appears in the 

ICD spectrum.[64]  

<Figure 4> 

Figure 4 (a) and (b) depict the CyD spectra for 1 and 2 solutions that were recorded in the 215- 

600 nm and 450-750 nm ranges, respectively. Dye 1 did not present any induced signal at any of the 

concentrations measured. Apparently, the cavity-chromophore or appended chromophore–

chromophore distances are not short enough to produce any interaction capable of providing an ICD 

signal at the concentrations used. However, 2 presented a very complex induced spectrum and a 

relatively low intensity positive signal at ~650 nm as well as two intense bands; a negative one located 

at 288 nm and a positive one at 222 nm. These signals would seem to correspond to the interaction 

of the cyanine appended chromophore with the βCyD cavity. The intensity of these bands, not shown, 

varied linearly with [2], indicating that the interaction was intramolecular. In fact, molar ellipticity 

values at 223 and 280 nm are independent of [2]. In addition, the ICD spectrum for the absorption 

band centered at 333 nm splits into very weak intensity bands of opposite sign in what looks like an 

exciton coupling bisignal. This effect is probably due to the intramolecular interaction of two portions 

of the appended chromophore. Interestingly however, neither absorption, emission, ICD spectra nor 

fluorescence depolarization measurements revealed the presence of any significant dye aggregation 

at the concentrations used in our experiments. 

Evidence of the interaction between the cyanine moiety and the CyD cavity was also sought in 

the NOESY spectrum of 2. As depicted in the spectrum, the experimental data (Figure 4S of the 

supporting information) confirmed the interaction between the CyD macroring and cyanine appended 

group. NOEs were observed from the βCyD to both the aromatic, polymethine chain (Ha and Hb), 

and methyl of cyanine dye.  
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<Figure 5> 

3.4 Interaction of 1 and 2 with Doxorubicin (Dox) 

Dox was dissolved in a 0.05 M Tris-HCl buffer of pH=7.4 in order to achieve a concentration of 

5×10-7 M. At this concentration, Dox dimer species are negligible. [20] 10L aliquots of solutions of 

1 (or 2) were added to the 10 mm quartz cell containing 2 mL of the above Dox solution for titration 

and stirred during temperature equilibration (10 min) before the emission spectrum was recorded. At 

the end of the titration, the Dox/1 or 2 molar ratios reached values of approximately 1:2. The effect 

of Dox dilution upon the addition of each aliquot never gave a Dox concentration error of more than 

7%. Nevertheless, fluorescence emission intensities were corrected for this dilution.  

Emission spectra for the isolated Dox solution upon ex=470 nm exhibit, as depicted in Figure 5, 

two maxima centered at 560 nm and 590 nm, the second one being a little more pronounced, 

whereas 1 and 2 showed maxima emission bands centered at 560 nm and 665 nm respectively, i.e. 

at the emission maxima for Dox or near to it. As a consequence, the emission intensity of Dox during 

titrations with derivatives of 1 (or 2) was corrected to remove their fluorescence and/or to take into 

account the fact that a fraction of the incident light is absorbed by βCyD derivatives at the Dox 

excitation wavelength of (470 nm). 

Figure 5 (left) depicts an increase in emission spectra upon the addition of 1 to the Dox solution. 

Although Dox's complexation with native βCyD usually causes a decrease in intensity with [βCyD], 

[29], an increase takes place in this case as a consequence of the overlap of the emission spectra of 

Dox and 1. It was thus necessary to perform a correction which was carried out using a fraction of 

intensities, FDox+1 / F1 (measured as the area under the emission spectra), for the Dox solution in the 

presence of 1 (FDox+1) and for the 1 solution in the absence of Dox at the same dye concentration (F1). 

The top of Figure 6 shows the representation of FDox+1 /F1 versus [1] which monotonically decreases. 



19 

 

<Figure 6> 

Dox emission spectra, carried out in the presence of 2, exhibited a band above 660 nm due to the 

fluorescence of 2 in addition to the Dox emission, upon exciting mainly Dox (470 nm). As seen in 

Figure 6 (right), some bands increase (670 nm) with [2], while others decrease (560 nm and 590 

nm). However, a fraction of the incident light is absorbed by 2 at the excitation wavelength of 470 

nm. Hence, to avoid this effect during titration, fluorescence intensities (IDox+2), at 560 nm (where 

only Dox emits) for Dox solutions in the presence of varying concentrations of 2, were corrected by 

measuring the ratio of this intensity and the fraction of the total light absorbed by 2 at 470 nm. If A2 

is the absorbance for 2 for each Dox+2 solution at 470 nm, this faction is 2A(1 10 ) . The right side 

of Figure 6 depicts the 
A

Dox+I /(1 10 ) 2

2  ratios as a function of [2], which also monotonically 

decreases. 

Adjustments to the experimental data in equation 6  give association constants for the 1:1 

stoichiometry Dox:1 and Dox:2 complexes of  (3.30.2)106 and (12.81.5)106 M-1, respectively. 

These values are four orders of magnitude larger than those for the complexation of native βCyD with 

Dox, for which a value of 2.1×102 M-1 has been reported [29], and  even larger still than values for 

the association of  Dox to DNA (5.4×105 M-1).[33] Swiech et al., have recently studied the Dox 

complexation abilities of several CyD derivatives which contain aromatic appended moieties 

connected via a triazole group to the macrorings. They reported binding constants in the 103-104 M-1 

order of magnitude which decrease at acidic pH values which cause the protonation of the triazole 

group.[38] Nevertheless, the same authors studied Dox complexation with other similar CyD 

derivatives in both aqueous and aqueous-DMSO solutions and some of the formation constants were 

in the 105 M-1 order. [37] Ideal carrier systems should release the drug into the cell interior in order 

to avoid the unspecific loss of the therapeutic molecule before it reaches its target and also ensure the 

stability of the drug during transport. In general, CyD drug inclusion complexes rapidly dissociate to 
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free both CyDs and drug after parenteral administration because of their weak interaction.[65] 

Importantly, Stella et al. state that CyD:drug association constants of more than 104−105 M−1 are 

required to maintain a stable complex in vivo. [65, 66] Therefore, the constants for Dox complexation 

with 1 and 2 fully satisfy the required values for successful cell target delivery without previous 

dissociation.  

<Figure 7> 

3.5 Molecular Modeling  

The calculation of the binding energy upon the approach of Dox to 1 and 2 (Figure 5S of the 

supporting information), which was carried out according to previously described protocol, showed 

that the Dox:1 and Dox:2 inclusion processes take place across some barriers of potential, which 

nevertheless appear to be easily surmountable, to reach the stable 1:1 minima binding energy (MBE) 

complexes depicted in Figure 8S of the supporting information.  In these structures, which are rather 

similar, Dox totally penetrates the CyD cavities. Both electrostatic and van der Waals contributions 

to binding energy are important to the complexation. The optimized (0.5 kcal mol-1Å-1) MBE 

structures, depicted in Figure 8S, were employed as starting conformations for the 2 ns MD 

simulations. Figure 7 shows the binding energy histories and contributions from the MD simulation 

analysis for Dox:1 and Dox:2 structures, whose values are favorable throughout the trajectories.  The 

MD simulations reinforce the results, obtained from MM, which show that both electrostatic and van 

de Waals contributions are important to the stabilization of the system. The distances between the 

Dox center and the center of mass of the 1 and 2 βCyD macrorings are quite short and hardly change 

during the MD; average values were  0.810.17 Å and 1.350.22 Å, respectively. These distances 

show that Dox is completely inside the 1 and 2 macrocycles. Both structures were apparently stable 

during the MD trajectory and, as a consequence, large association constants, such as those found 

experimentally, are expected. 
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3.6 Imaging experiments in HeLa cells 

The different photophysical characteristics for cyanine from derivative 2  and Dox chromophores 

allows us to study the internalization of the Dox:2 complex via confocal laser scanning microscopy 

(LSCM)  and to obtain information about the drug and the carrier uptake separately. The cellular 

uptake of the 2-Dox complex was studied using HeLa cells. Experiments were conducted at a 

[CD]/[Dox] molar ratio of 100. The majority of the Dox is in the form complexed with 2 at this molar 

ratio.  

<Figure 8> 

According to the parameters shown in Table 1 and Figure 2, two excitation wavelengths, 488 and 

633 nm, were selected for recording the fluorescence images. Dox was principally excited at 488 nm, 

hence most of the detected fluorescence was ascribed to Dox fluorescence emission which showed 

its distribution in the cytoplasm, as depicted in Figure 8 (B), in green. However, only 2 was excited 

at 633 nm and the cyanine fluorescence was also observed in the cytoplasm in red, as illustrated in 

Figure 8 (C). Information on 2 and Dox colocalization inside the cell, which is the result of merging 

fluorescence cell images obtained after excitation at both wavelengths, is shown in Figure 8 (D). After 

24 h of incubation Dox and 2 were distributed along the cytoplasm. Moreover, the emission of 2 is 

associated to that of Dox in many areas of the image. We might conclude that both Dox and 2 are 

taken simultaneously towards the HeLa cytoplasm cells in the supramolecular 2-Dox complex form 

without apparently reaching the nuclei. 

The internalization of only the drug was also studied for a Dox solution (4.810-7M) (Supporting 

Information Figure 9S). Dox presented a high degree of internalization. [67] The fluorescence of Dox 

was observed in the cytoplasm, as well as in the nuclei of the HeLa cells after 240 min of incubation. 
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The absence of Dox emission from the nuclei in our experiments was ascribed to either the strong 

Dox-2 binding affinity or to a different mechanism of internalization in the cells. 4. Conclusions 

We have designed and synthesized, via CuAAC under simultaneous US/MW irradiation, two 

water soluble cyanine/βCyD derivatives (1 and 2) which have been used as versatile carriers for drug 

delivery and optical imaging. Dyes 1 and 2 present reasonable fluorescence properties and form 

strong inclusion complexes with doxorubicin (Dox) in a Tris-HCl buffer at pH=7.4. Their association 

constants are four orders of magnitude greater than those obtained for Dox complexation with native 

βCyDs and one order greater than those obtained for the complexation of Dox with DNA. Molecular 

Modeling analysis confirms the stability of complexes of 1 and 2 with doxorubicin. The ability of 2 

to act as a Dox carrier through the formation of a 2-Dox complex has been studied with HeLa cells 

by LSCM, Dox and 2 are simultaneously up-taken by the HeLa cells and localized in the cytoplasm. 

Unlike, only Dox, in the absence of carrier, presents a high degree of internalization reaching the 

nuclei of the HeLa cells.  
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Scheme Legends 

Scheme 1. Synthesis of 1 and 2 cyanine derivatives.  Reagents and conditions a) for  product 1: Cu 

powder, MW/US, DMF, 100°C, 2h; for product 2: Cu powder, MW/US, H2O, 75 °C, 2h. 
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Figure Legends 

Figure 1. Structures for 1 and 2 cyanine CyD derivatives.  

Figure 2. Absorption spectra at 25ºC for 1 (----) and 2 (____) 1.8×10-5 M and 1.0×10-5 M in 0.05 

M Tris-HCl buffer solutions, respectively and for a 2×10-5 M Dox/Tris-HCl buffer solution (...). The 

structure for the Dox drug is superimposed. 

Figure 3. Fluorescence emission spectra for 1 (a) and 2 (b) buffer solutions of varying 

concentration at 25ºC; [1]=0.89, 1.77,  3.54, 5.32, 7.10, 8.88, 17.74, 35.48, 53.21 and  70.95 M; 

[2]=0.99, 1.99, 3.99, 5.99, 7.99, 9.99, 19.97, 39.95, 59.92, 79.89 and 99, 87 M. Superimposed are 

the corrected fluorescence intensities according to eq. 3, at several temperatures 5ºC (), 25ºC () 

and 45ºC (). 

Figure 4. Circular dichroism (ICD) spectra at 25ºC for 1 and 2/Tris-buffer solutions recorded in 

the (a) 215- 600 nm and (b) 450-750 nm ranges respectively. 

Figure 5. Emission spectra for Dox tris-buffer solutions during titration with 1 and 2 CyDs at 

25ºC upon excitation at 470 nm. (Left) Emission for Dox upon addition of 1, both spectra  (Dox and 

1) are superimposed; (right) bands to the blue that decrease with [2] are due to Dox; the peak to the 

red, which increases in intensity, is due to emission from 2. 

Figure 6. (left) Ratios of the fluorescence intensities (F) (measured as the area under the emission 

spectra, upon ex=470nm) for Dox (510-7 M) buffer solutions in the presence of varying 

concentrations of 1 and in the absence of Dox at the same concentrations of 1 to avoid the effect of 

1's emission on the emission spectra. (right) Ratios of the fluorescence intensity at 560 nm (almost 

only emitted Dox) for Dox (510-7 M) buffer solutions in the presence of different concentrations of 
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2, IDox+2, and the fraction of light absorbed by 2, to avoid the effect of a fraction of the incident light 

which was absorbed by 2. 

Figure 7. (upper part) Total binding energy histories (black), electrostatics (dark gray) and van 

der Waals (gray) contributions, as well as (bottom) the Dox-host distances during the 2 ns MD 

trajectories for 1 and 2 cyanine derivative complexes with Dox in water. Superimposed are the MBE 

structures for the 1:1 stoichiometry complexes. 

Figure 8.  LSCM of HeLa cells incubated with [2-Dox] for 24 h: A) Bright-field image,  B) and 

C) Fluorescence intensity images upon excitation at 486 and 633 nm respectively; D) The 

constructive image obtained by overlapping the corresponding cell images upon excitation at 486 and 

633 nm. 

 

 

 


