
17 October 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Types for Deadlock-Free Higher-Order Programs

Publisher:

Published version:

DOI:10.1007/978-3-319-19195-9_1

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1528099 since 2017-11-22T16:14:58Z

Types for Deadlock-Free Higher-Order Programs

Luca Padovani and Luca Novara – Università di Torino – Italy

Abstract. Type systems for communicating processes are typically studied using
abstract models – e.g., process algebras – that distill the communication behavior
of programs but overlook their structure in terms of functions, methods, objects,
modules. It is not always obvious how to apply these type systems to structured
programming languages. In this work we port a recently developed type system
that ensures deadlock freedom in the π-calculus to a higher-order language.

1 Introduction

In this article we develop a type system that guarantees well-typed programs that com-
municate over channels to be free from deadlocks. Type systems ensuring this property
already exist [8,9,11], but they all use the π-calculus as the reference language. This
choice overlooks some aspects of concrete programming languages, like the fact that
programs are structured into compartmentalized blocks (e.g., functions) within which
only the local structure of the program (the body of a function) is visible to the type
system, and little if anything is know about the exterior of the block (the callers of the
function). The structure of programs may hinder some kinds of analysis: for example,
the type systems in [8,9,11] enforce an ordering of communication events and to do
so they take advantage of the nature of π-calculus processes, where programs are flat
sequences of communication actions. How do we reason on such ordering when events
occur within a function, and nothing is known about the events that are supposed to oc-
cur after the function terminates? To answer this question, in the present work we port
the type system in [11] to a higher-order functional language. This study is a necessary
step for the application of this type system (and similar others) to concrete languages.

To illustrate the key ideas of the approach, let us consider the program

〈send a (recv b)〉| 〈send b (recv a)〉 (1.1)

consisting of two parallel threads. The thread on the left is trying to send the message
received from channel b on channel a; the thread on the right is trying to do the op-
posite. The communications on a and b are mutually dependent, and the program is a
deadlock. The basic idea used in [11] and derived from [8,9] for detecting deadlocks
is to assign each channel a number – which we call level – and to verify that channels
are used in order according to their levels. In (1.1) this mechanism requires b to have
smaller level than a in the leftmost thread, and a to have a smaller level than b in the
rightmost thread. No level assignment can simultaneously satisfy both constraints. In
order to perform these checks with a type system, the first step is to attach levels to
channel types. We therefore assign the types ![int]m and ?[int]n respectively to a and b
in the leftmost thread of (1.1), and ?[int]m and ![int]n to the same channels in the right-
most thread of (1.1). Crucially, distinct occurrences of the same channel have types

2 Luca Padovani and Luca Novara

with opposite polarities (input ? and output !) and equal level. We can also think of
the assignments send : ∀ı.![int]ı→ int→ unit and recv : ∀ı.?[int]ı→ int for the com-
munication primitives, where we allow polymorphism on channel levels. In this case,
the application send a (recv b) consists of two subexpressions, the partial application
send a having type int→ unit and its argument recv b having type int. Neither of these
types hints at the I/O operations performed in these expressions, let alone at the levels
of the channels involved. In other words, they are not sufficiently informative for check-
ing whether communication channels are used in an order that is consistent with their
level. A standard solution in these cases is to pair types with effects [1]: the effect of an
expression is an abstract description of the operations performed during its evaluation.
In our case, we take as effect the level of channels used for I/O operations, or ⊥ in the
case of pure expressions that perform no I/O. So, the judgment

b : ?[int]n ` recv b : int& n

states that recv b is an expression of type int whose evaluation performs an I/O opera-
tion on a channel with level n. As usual, function types are decorated with a latent effect
saying what happens when the function is applied to its argument. So,

a : ![int]m ` send a : int→m unit&⊥

states that send a is a function that, applied to an argument of type int, produces a
result of type unit and, in doing so, performs an I/O operation on a channel with level
m. By itself, send a is a pure expression whose evaluation performs no I/O operations,
hence the effect ⊥. Effects help us detecting dangerous expressions: in a call-by-value
language an application e1e2 evaluates e1 first, then e2, and finally the body of the
function resulting from e1. Therefore, the channels used in e1 must have smaller level
than those occurring in e2 and the channels used in e2 must have smaller level than those
occurring in the body of e1. In the specific case of send a (recv b) we have ⊥< n for
the first condition, which is trivially satisfied, and n < m for the second one. Since the
same reasoning on send b (recv a) also requires the symmetric condition (m < n), we
detect that the parallel composition of the two threads in (1.1) is ill typed, as desired.

It turns out that the information given by latent effects in function types is not suf-
ficient for spotting some deadlocks. To see why, consider the function

f def
= λx.(send a x; send b x)

which sends its argument x on both a and b and where ; denotes sequential composition.
The level of a (say m) should be smaller than the level of b (say n), for a is used before b
(we assume that communication is synchronous and that send is a potentially blocking
operation). The question is, what is the latent effect that decorates the type of f , of the
form int→h unit? Consider the two obvious possibilities: if we take h = m, then

〈recv a〉| 〈 f 3; recv b〉 (1.2)

is well typed because the effect m of f 3 is smaller than the level of b in recv b, which
agrees with the fact that f 3 is evaluated before recv b; if we take h = n, then

〈recv a; f 3〉| 〈recv b〉 (1.3)

Types for Deadlock-Free Higher-Order Programs 3

is well typed for similar reasons. This is unfortunate because both (1.3) and (1.2) reduce
to a deadlock. To flag both of them as ill typed, we must refine the type of f to int→m,n

unit where we distinguish the smallest level of the channels that occur in the body of f
(that is m) from the greatest level of the channels that are used by f when f is applied
to an argument (that is n). The first annotation gives information on the channels in the
function’s closure, while the second annotation is the function’s latent effect, as before.
So (1.2) is ill typed because the effect of f 3 is the same as the level of b in recv b and
(1.3) is ill typed because the effect of recv a is the same as the level of f in f 3.

In the rest of the paper we formalize these ideas. We describe a core higher-order
programming language and implement two simple, but representative programs in it
(Section 2). One is a parallel version of the Fibonacci function; the other is a pipe
between infinite streams of messages. We develop the type system, show it at work on
the two programs, and state the properties of well-typed programs; these include both
deadlock freedom and also a liveness property that we call interactivity (Section 3).
Finally, we briefly discuss closely related work and a few extensions (Section 4). Proofs
and additional material can be found in Appendix A, beyond the page limit.

2 Language syntax and semantics

We use a countable set of variables x, y, . . . , a countable set of channels a, b, . . . , and a
set of constants k. Names u, . . . are either variables or channels. We consider a language
of expressions and processes as defined below:

e ::= k
∣∣ u

∣∣ λx.e
∣∣ ee P,Q ::= 〈e〉

∣∣ (νa)P
∣∣ P|Q

Expressions comprise constants k, names u, abstractions λx.e, and applications e1e2.
We write _ for unused/fresh variables. Constants include the unitary value (), the in-
teger numbers m, n, . . . , as well as the primitives fix, fork, new, send, recv whose
semantics will be explained shortly. Processes are either threads 〈e〉, or the restriction
(νa)P of a channel a with scope P, or the parallel composition P|Q of processes.

The notions of free and bound names are as expected, given that the only binders are
λ ’s and ν’s. We identify terms modulo renaming of bound names and we write fn(e)
(respectively, fn(P)) for the set of names occurring free in e (respectively, in P).

The reduction semantics of the language is given by two relations, one for expres-
sions, another for processes. We adopt a call-by-value reduction strategy, for which we
need to define reduction contexts E , . . . and values v, w, . . . respectively as:

E ::= []
∣∣ E e

∣∣ vE v,w ::= k
∣∣ a

∣∣ λx.e
∣∣ send v

The reduction relation −→ for expressions is defined by standard rules

(λx.e)v −→ e{v/x} fix λx.e−→ e{fix λx.e/x}

and closed under reduction contexts. As usual, e{e′/x} denotes the capture-avoiding
substitution of e′ for the free occurrences of x in e.

The reduction relation of processes (Table 1) has labels `, . . . that are either a chan-
nel name a, signalling that a communication has occurred on a, or the special symbol

4 Luca Padovani and Luca Novara

Table 1. Reduction semantics of expressions and processes.

〈E [send a v]〉| 〈E ′[recv a]〉 a−−→ 〈E [()]〉| 〈E ′[v]〉 〈E [fork v]〉 τ−−→ 〈E [()]〉| 〈v()〉

〈E [new()]〉 τ−−→ (νa)〈E [a]〉
a 6∈ fn(E)

e−→ e′

〈e〉 τ−−→ 〈e′〉

P `−−→ P′

P|Q `−−→ P′ |Q

P `−−→ Q

(νa)P `−−→ (νa)Q
` 6= a

P a−−→ Q

(νa)P τ−−→ Q

P≡ `−−→≡ Q

P `−−→ Q

τ denoting any other reduction. There are four base reductions for processes: a com-
munication occurs between two threads when one is willing to send a message v on a
channel a and the other is waiting for a message from the same channel; a thread that
contains a subexpression fork v spawns a new thread that evaluates v(); a thread that
contains a subexpression new() creates a new channel; the reduction of an expression
causes a corresponding τ-labeled reduction of the thread in which it occurs. Reduc-
tion for processes is then closed under parallel compositions, restrictions, and structural
congruence. The restriction of a disappears as soon as a communication on a occurs: in
our model channels are linear and can be used for one communication only; structured
forms of communication can be encoded on top of this simple model (see Example 2
and [4]). Structural congruence is defined by the standard rules rearranging parallel
compositions and channel restrictions, where 〈()〉 plays the role of the inert process.

We conclude this section with two programs written using a slightly richer language
equipped with let bindings, conditionals, and a few additional operators. All these
constructs either have well-known encodings or can be easily accommodated.

Example 1. The fibo function below computes the n-th number in the Fibonacci se-
quence and sends the result on a channel c:

1 fix λfibo.λn.λc.if n ≤ 1 then send c n

2 else let a = new() and b = new() in

3 (fork λ_.fibo (n - 1) a);

4 (fork λ_.fibo (n - 2) b);

5 send c (recv a + recv b)

The fresh channels a and b are used to collect the results from the recursive, parallel
invocations of fibo. Note that expressions are intertwined with I/O operations. It is
relevant to ask whether this version of fibo is deadlock free, namely if it is able to
reduce until a result is computed without blocking indefinitely on an I/O operation. �

Example 2. In this example we implement a function pipe that forwards signals re-
ceived from an input stream x to an output stream y:

1 let cont = λx.let c = new() in (fork λ_.send x c); c in

2 let pipe = fix λpipe.λx.λy.pipe (recv x) (cont y)

Types for Deadlock-Free Higher-Order Programs 5

Since linear channels are consumed after communication, each signal includes a
continuation channel on which the subsequent signals in the stream will be sent/re-
ceived (more interesting protocols can be realized by considering data types such as
records and sums [4]). In particular, cont x sends a fresh continuation c on x and re-
turns c, so that c can be used for subsequent communications, while pipe x y sends
a fresh continuation on y after it has received a continuation from x, and then repeats
this behavior on the continuations. The program below connects two pipes so that the
output of one pipe is the input of the other:

3 let a = new() and b = new() in

4 (fork λ_.pipe a b); (fork λ_.pipe b (cont a))

It is not obvious that this program runs without deadlocks, because the two pipes re-
alize a cyclic network in which the communications on a and b are apparently mutually
dependent, much like in (1.1). Nonetheless, we will see in Section 3 that this program
is well typed and therefore deadlock free. Forgetting cont on line 4 or not forking the
send on line 1, however, produces a deadlock. �

3 Type and effect system

We present the features of the type system gradually, in three steps: we start with a
monomorphic system to get some familiarity with types and effects, then we introduce
level polymorphism (required by Examples 1 and 2), and finally recursive types (re-
quired by Example 2). We end the section studying the properties of the type system.

Core types. Let L def
=Z∪{⊥,>} be the set of channel levels ordered in the obvious way

(⊥ < n < > for every n ∈ Z); we use ρ , σ , . . . to range over L and we write ρ uσ

(respectively, ρ tσ) for the minimum (respectively, the maximum) of ρ and σ . Polar-
ities p, q, . . . are non-empty subsets of {?, !}; we abbreviate {?} and {!} with ? and !
respectively, and {?, !} with #. Types t, s, . . . are defined by

t,s ::= B
∣∣ p[t]n

∣∣ t→ρ,σ s

where basic types B, . . . include unit and int. The type p[t]n denotes a channel with
polarity p and level n. The polarity describes the operations allowed on the channel: ?
means input, ! means output, and # means both input and output. Channels are linear
resources: they can be used once according to each element in their polarity. The type
t→ρ,σ s denotes a function with domain t and range s. The function has level ρ (its
closure contains channels with level ρ or greater) and, when applied, it uses channels
with level σ or smaller. If ρ =>, the function has no channels in its closure; if σ =⊥,
the function uses no channels when applied. We write→ as an abbreviation for→>,⊥,
so→ denotes pure functions not containing and not using any channel.

Recall from Section 1 that levels are meant to impose an order on the use of chan-
nels: roughly, the lower the level of a channel, the sooner the channel must be used.
It is useful to extend the notion of level from channel types to arbitrary types: basic
types have level > because there is no need to use them as far as deadlock freedom is

6 Luca Padovani and Luca Novara

concerned; the level of functions and of channels is written in their type. Formally, the
level of t, written |t|, is defined as:

|B| def
=> |p[t]n| def

= n |t→ρ,σ s| def
= ρ (3.1)

Levels can be used to distinguish linear types, denoting values (such as channels)
that must be used to guarantee deadlock freedom, from unlimited types, denoting values
that have no effect on deadlock freedom and may be disregarded. We say that t is linear
if |t| ∈ Z; we say that t is unlimited, written un(t), if |t|=>.

Below are the type schemes of the constants that we consider. Some constants have
many types (constraints are on the right); we write types(k) for the set of types of k.

() : unit
n : int

fix : (t→ t)→ t
fork : (unit→ρ,σ unit)→ unit

new : unit→ #[t]n n < |t|
recv : ?[t]n→>,n t n < |t|
send : ![t]n→ t→n,n unit n < |t|

The type of (), of the numbers, and of fix are ordinary. The primitive new creates
a fresh channel with the full set # of polarities and arbitrary level n. The primitive recv
takes a channel of type ?[t]n, blocks until a message is received, and returns the message.
The primitive itself contains no free channels in its closure (hence the level >) because
the only channel it manipulates is its argument. The latent effect is the level of the
channel, as expected. The primitive send takes a channel of type ![t]n, a message of type
t, and sends the message on the channel. Note that the partial application send a is a
function whose level and latent effect are both the level of a. Note also that in new, recv,
and send the level of the message must be greater than the level of the channel: since
levels are used to enforce an order on the use of channels, this condition follows from
the observation that a message cannot be used until after it has been received, namely
after the channel on which it travels has been used. Finally, fork accepts a thunk with
arbitrary level ρ and latent effect σ and spawns the thunk into an independent thread
(see Table 1). Note that fork is a pure function with no latent effect, regardless of
the level and latent effect of the thunk. This phenomenon is called effect masking [1],
whereby the effect of evaluating an expression becomes unobservable: in our case, fork
discharges effects because the thunk runs in parallel with the code executing the fork.

We now turn to the typing rules. A type environment Γ is a finite map u1 : t1, . . . ,un :
tn from names to types. We write /0 for the empty type environment, dom(Γ) for the
domain of Γ , and Γ(u) for the type associated with u in Γ ; we write Γ1,Γ2 for the union of
Γ1 and Γ2 when dom(Γ1)∩dom(Γ2) = /0. We also need a more flexible way of combining
type environments. In particular, we make sure that every channel is used linearly by
distributing different polarities of a channel to different parts of the program. To this
aim, following [10], we define a partial combination operator + between types:

t + t def
= t if un(t)

p[t]n + q[t]n def
= (p∪q)[t]n if p∩q = /0

(3.2)

that we extend to type environments, thus:

Γ + Γ ′
def
= Γ ,Γ ′ if dom(Γ)∩dom(Γ ′) = /0

(Γ ,u : t)+ (Γ ′,u : s) def
= (Γ + Γ ′),u : t + s

(3.3)

Types for Deadlock-Free Higher-Order Programs 7

For example, we have (x : int,a : ![int]n)+ (a : ?[int]n) = x : int,a : #[int]n, so we
might have some part of the program that (possibly) uses a variable x of type int along
with channel a for sending an integer and another part of the program that uses the same
channel a but this time for receiving an integer. The first part of the program would
be typed in the environment x : int,a : ![int]n and the second one in the environment
a : ?[int]n. Overall, the two parts would be typed in the environment x : int,a : #[int]n

indicating that a is used for both sending and receiving an integer.
We extend the function | · | to type environments so that |Γ | def

=
d

u∈dom(Γ) |Γ(u)| with
the convention that | /0|=>; we write un(Γ) if |Γ |=>.

Table 2. Core typing rules for expressions and processes.

Typing of expressions

[T-NAME]

Γ ,u : t ` u : t &⊥
un(Γ)

[T-CONST]

Γ ` k : t &⊥
un(Γ)
t ∈ types(k)

[T-FUN]

Γ ,x : t ` e : s & ρ

Γ ` λx.e : t→|Γ |,ρ s &⊥

[T-APP]

Γ1 ` e1 : t→ρ,σ s & τ1 Γ2 ` e2 : t & τ2

Γ1 + Γ2 ` e1e2 : s & σ t τ1t τ2

τ1 < |Γ2|
τ2 < ρ

Typing of processes

[T-THREAD]

Γ ` e : unit& ρ

Γ ` 〈e〉

[T-PAR]

Γ1 ` P Γ2 ` Q

Γ1 + Γ2 ` P|Q

[T-NEW]

Γ ,a : #[t]n ` P

Γ ` (νa)P

We are now ready to discuss the core typing rules, shown in Table 2. Judgments
of the form Γ ` e : t & ρ denote that e is well typed in Γ , it has type t and effect ρ;
judgments of the form Γ ` P simply denote that P is well typed in Γ .

Axioms [T-NAME] and [T-CONST] are unremarkable: as in all substructural type systems
the unused part of the type environment must be unlimited. Names and constants have
no effect (⊥); they are evaluated expressions that do not use (but may contain) channels.

In rule [T-FUN], the effect ρ caused by evaluating the body of the function becomes the
latent effect in the arrow type of the function and the function itself has no effect. The
level of the function is determined by that of the environment Γ in which the function
is typed. Intuitively, the names in Γ are stored in the closure of the function; if any
of these names is a channel, then we must be sure that the function is eventually used
(i.e., applied) to guarantee deadlock freedom. In fact, |Γ | gives a slightly more precise
information, since it records the smallest level of all channels that occur in the body of
the function. We have seen in Section 1 why this information is useful. A few examples:

– the identity function λx.x has type int→>,⊥ int in any unlimited environment;
– the function λ_.a has type unit→n,⊥ ![int]n in the environment a : ![int]n; it contains

channel a with level n in its closure (whence the level n in the arrow), but it does

8 Luca Padovani and Luca Novara

not use a for input/output (whence the latent effect ⊥); it is nonetheless well typed
because a, which is a linear value, is returned as result;

– the function λx.send x 3 has type ![int]n→>,n unit; it has no channels in its closure
but it performs an output on the channel it receives as argument;

– the function λx.(recv a+ x) has type int→n,n int in the environment a : ?[int]n;
note that neither the domain nor the codomain of the function mention any channel,
so the fact that the function has a channel in its closure (and that it performs some
I/O) can only be inferred from the annotations on the arrow;

– the function λx.send x (recv a) has type ![int]n+1→n,n+1 unit in the environment
a : ![int]n; it contains channel a with level n in its closure and performs input/output
operations on channels with level n+1 (or smaller) when applied.

Rule [T-APP] deals with applications e1e2. The first thing to notice is the type envi-
ronments in the premises for e1 and e2. Normally, these are exactly the same as the
type environment used for the whole application. In our setting, however, we want to
distribute polarities in such a way that each channel is used for exactly one communica-
tion. For this reason, the type environment Γ1 + Γ2 in the conclusion is the combination
of the type environments in the premises. Regarding effects, τi is the effect caused by
the evaluation of ei. As expected, e1 must result in a function of type t→ρ,σ s and e2 in
a value of type t. The evaluation of e1 and e2 may however involve blocking I/O oper-
ations on channels, and the two side conditions make sure that no deadlock can arise.
To better understand them, recall that reduction is call-by-value and applications e1e2
are evaluated sequentially from left to right. Now, the condition τ1 < |Γ2| makes sure
that any I/O operation performed during the evaluation of e1 involves only channels
whose level is smaller than that of the channels occurring free in e2 (the free channels
of e2 must necessarily be in Γ2). This is enough to guarantee that the functional part
of the application can be fully evaluated without blocking on operations concerning
channels that occur later in the program. In principle, this condition should be paired
with the symmetric one τ2 < |Γ1| making sure that any I/O operation performed during
the evaluation of the argument does not involve channels that occur in the functional
part. However, when the argument is being evaluated, we know that the functional part
has already been reduced a value (see the definition of reduction contexts in Section 2).
Therefore, the only really critical condition to check is that no channels involved in I/O
operations during the evaluation of e2 occur in the value of e1. This is expressed by the
condition τ2 < ρ , where ρ is the level of the functional part. Note that, when e1 is an
abstraction, by rule [T-FUN] ρ coincides with |Γ1|, but in general ρ may be greater than
|Γ1|, so the condition τ2 < ρ gives better accuracy. The effect of the whole application
e1e2 is, as expected, the combination of the effects of evaluating e1, e2, and the latent
effect of the function being applied. In our case the “combination” is the greatest level
of any channel involved in the application. Below are some examples:

– (λx.x) a is well typed, because both λx.x and a are pure expressions whose effect
is ⊥, hence the two side conditions of [T-APP] are trivially satisfied;

– (λx.x) (recv a) is well typed in the environment a : ?[int]n: the effect of recv a is
n (the level of a) which is smaller than the level > of the function;

– send a (recv a) is ill typed in the environment a : #[int]n because the effect of
evaluating recv a, namely n, is the same as the level of send a;

Types for Deadlock-Free Higher-Order Programs 9

– (recv a) (recv b) is well typed in the environment a : ?[int→ int]0,b : ?[int]1. The
effect of the argument is 1, which is not smaller than the level of the environment
a : ?[int→ int]0 used for typing the function. However, 1 is smaller than >, which
is the level of the result of the evaluation of the functional part of the application.
This application would be illegal had we used the side condition τ2 < |Γ1| in [T-APP].

The typing rules for processes are standard: [T-PAR] splits contexts for typing the
processes in parallel, [T-NEW] introduces a new channel in the environment, and [T-THREAD]

types threads. The effect of threads is ignored: effects are used to prevent circular depen-
dencies between channels used within the sequential parts of the program (i.e., within
expressions); circular dependencies that arise between parallel threads are indirectly
detected by the fact that each occurrence of a channel is typed with the same level (see
the discussion of (1.1) in Section 1).

Level polymorphism. Looking back at Example 1, we notice that fibo n c may gen-
erate two recursive calls with two corresponding fresh channels a and b. Since the send
operation on c is blocked by recv operations on a and b (line 5), the level of a and b

must be smaller than that of c. Also, since expressions are evaluated left-to-right and
recv a + recv b is syntactic sugar for the application (+) (recv a) (recv b),
the level of a must be smaller than that of b. Thus, to declare fibo well typed, we
must allow different occurrences of fibo to be applied to channels with different lev-
els. Even more critically, this form of level polymorphism of fibo is necessary within
the definition of fibo itself, so it is an instance of polymorphic recursion [1].

The core typing rules in Table 2 do not support level polymorphism. Following the
previous discussion on fibo, the idea is to realize level polymorphism by shifting levels
in types. We define level shifting as a type operator ⇑n, thus:

⇑nB
def
= B ⇑n p[t]m def

= p[⇑nt]n+m ⇑n(t→ρ,σ s) def
= ⇑nt→n+ρ,n+σ ⇑ns (3.4)

where + is extended from integers to levels so that n+>=> and n+⊥=⊥. The effect
of ⇑nt is to shift all the finite level annotations in t by n, leaving > and ⊥ unchanged.

Now, we have to understand in which cases we can use a value of type ⇑nt where
one of type t is expected. More specifically, when a value of type ⇑nt can be passed to a
function expecting an argument of type t. This is possible if the function has level>. We
express this form of level polymorphism with an additional typing rule for applications:

[T-APP-POLY]

Γ1 ` e1 : t→>,σ s & τ1 Γ2 ` e2 : ⇑nt & τ2

Γ1 + Γ2 ` e1e2 : ⇑ns & (n+σ)t τ1t τ2

τ1 < |Γ2|
τ2 <>

This rule admits an arbitrary mismatch n between the level the argument expected
by the function and that of the argument supplied to the function. The type of the appli-
cation and the latent effect are consequently shifted by the same amount n.

Soundness of [T-APP-POLY] can be intuitively explained as follows: a function with
level > has no channels in its closure. Therefore, the only channels possibly manip-
ulated by the function are those contained in the argument to which the function is
applied or channels created within the function itself. Then, the fact that the argument

10 Luca Padovani and Luca Novara

has level n+ k rather than level k is completely irrelevant. Conversely, if the function
has channels in its closure, then the absolute level of the argument might have to satisfy
specific ordering constraints with respect to these channels (recall the two side condi-
tions in [T-APP]). Since level polymorphism is a key distinguishing feature of our type
system, and one that accounts for much of its expressiveness, we elaborate more on this
intuition using an example. Consider the term

fwd
def
= λx.λy.send y (recv x)

which forwards on y the message received from x. The derivation
...

[T-APP]
y : ![int]1 ` send y : int→1,1 unit&⊥

...
[T-APP]

x : ?[int]0 ` recv x : int& 0
[T-APP]

x : ?[int]0,y : ![int]1 ` send y (recv x) : unit& 1
[T-FUN]

x : ?[int]0 ` λy.send y (recv x) : ![int]1→0,1 unit&⊥
[T-FUN]

` fwd : ?[int]0→ ![int]1→0,1 unit&⊥
does not depend on the absolute values 0 and 1, but only on the level of x being smaller
than that of y, as required by the fact that the send operation on y is blocked by the
recv operation on x. Now, consider an application fwd a, where a has type ?[int]2. The
mismatch between the level of x (0) and that of a (2) is not critical, because all the levels
in the derivation above can be uniformly shifted up by 2, yielding a derivation for

` fwd : ?[int]2→ ![int]3→2,3 unit&⊥
This shifting is possible because fwd has no free channels in its body (indeed, it is typed
in the empty environment). Therefore, using [T-APP-POLY], we can derive

a : ?[int]2 ` fwd a : ![int]3→2,3 unit&⊥
Note that (fwd a) is a function having level 2. This means that (fwd a) is not level

polymorphic and can only be applied, through [T-APP], to channels with level 3. If we
allowed (fwd a) to be applied to a channel with level 2 using [T-APP-POLY] we could derive

a : #[int]2 ` fwd a a : unit& 2

which reduces to a deadlock.

Example 3. To show that the term in Example 1 is well typed, consider the environment

Γ
def
= fibo : int→ ![int]0→>,0 unit,n : int,c : ![int]0

In the proof derivation for the body of fibo, this environment is eventually enriched
with the assignments a : #[int]−2 and b : #[int]−1. Now we can derive

...
[T-APP]

Γ ` fibo (n - 2) : ![int]0→>,0 unit&⊥
[T-NAME]

a : ![int]−2 ` a : ![int]−2 &⊥
[T-APP-POLY]

Γ ,a : ![int]−2 ` fibo (n - 2) a : unit&−2

where the application fibo (n - 2) a is well typed despite the fact that fibo (n - 2)

expects an argument of type ![int]0, while a has type ![int]−2. A similar derivation can
be obtained for fibo (n - 1) b, and the proof derivation can now be completed. �

Types for Deadlock-Free Higher-Order Programs 11

Recursive types. Looking back at Example 2, we see that in a call pipe x y the
channel recv x is used in the same position as x. Therefore, according to [T-APP-POLY],
recv x must have the same type as x, up to some shifting of its level. Similarly, chan-
nel c is both sent on y and then used in the same position as y, suggesting that c must
have the same type as y, again up to some shifting of its level. This means that we need
recursive types in order to properly describe x and y.

Instead of adding explicit syntax for recursive types, we just consider the possibly
infinite trees generated by the productions for t shown earlier. In light of this broader
notion of types, the inductive definition of type level (3.1) is still well founded, but type
shift (3.4) must be reinterpreted coinductively, because it has to operate on possibly
infinite trees. The formalities, nonetheless, are well understood.

It is folklore that, whenever infinite types are regular (that is, when they are made
of finitely many distinct subtrees), they admit finite representations either using type
variables and the familiar µ notation, or using systems of type equations [3]. Unfortu-
nately, a careful analysis of Example 2 suggests that – at least in principle – we also
need non-regular types. To see why, let a and c be the channels to which (recv x)

and (cont y) respectively evaluate on line 2 of the example. Now:

– x must have smaller level than a since a is received from x (cf. the types of recv).
– y must have smaller level than c since c is sent on y (cf. the types of send).
– x must have smaller level than y since x is used in the functional part of an appli-

cation in which y occurs in the argument (cf. line 2 and [T-APP-POLY]).

Overall, in order to type pipe in Example 2 we should assign x and y the types tn and
sn that respectively satisfy the equations

tn = ?[tn+2]n sn = ![tn+3]n+1 (3.5)

Unfortunately, these equations do not admit regular types as solutions. We recover
typeability of pipe with regular types by introducing a new type constructor

t ::= · · ·
∣∣ dten

that wraps types with a pending shift: intuitively dten and ⇑nt denote the same type, ex-
cept that in dten the shift ⇑n on t is pending. For example, d?[int]0e1 and d?[int]2e−1

are both possible wrappings of ?[int]1, while int→0,⊥ ![int]0 is the unwrapping of
dint→1,⊥ ![int]1e−1. To exclude meaningless infinite types such as ddd· · ·enenen we
impose a contractiveness condition requiring every infinite branch of a type to contain
infinite occurrences of channel or arrow constructors. To see why wraps help finding
regular representations for otherwise non-regular types, observe that the equations

tn = ?[dtne2]n sn = ![dtn+1e2]n+1 (3.6)

denote – up to pending shifts – the same types as the ones in (3.5), with the key differ-
ence that (3.6) admit regular solutions and therefore finite representations. For example,
tn could be finitely represented as a familiar-looking µα.?[dαe2]n term.

We should remark that dten and ⇑nt are different types, even though the former is
morally equivalent to the latter: wrapping is a type constructor, whereas shift is a type

12 Luca Padovani and Luca Novara

operator. Having introduced a new constructor, we must suitably extend the notions of
type level (3.1) and type shift (3.4) we have defined earlier. We postulate

|dten| def
= n+ |t| ⇑ndtem def

= d⇑ntem

in accordance with the fact that d·en denotes a pending shift by n (note that | · | extended
to wrappings is well defined thanks to the contractiveness condition).

We also have to define introduction and elimination rules for wrappings. To this
aim, we conceive two constants, wrap and unwrap, having the following type schemes:

wrap : ⇑nt→dten unwrap : dten→⇑nt

We add wrap v to the value forms. Operationally, we want wrap and unwrap to an-
nihilate each other. This is done by enriching reduction for expressions with the axiom

unwrap (wrap v)−→ v

Example 4. We suitably dress the code in Example 2 using wrap and unwrap:

1 let cont = λx.let c = new() in (fork λ_.send x (wrap c)); c in

2 let pipe = fix λpipe.λx.λy.pipe (unwrap (recv x)) (cont y)

and we are now able to find a typing derivation for it that uses regular types. In par-
ticular, we assign cont the type sn→ sn+2 and pipe the type tn→ sn→n,> unit where
tn and sn are the types defined in (3.6). Note that cont is a pure function because its
effects are masked by fork and that pipe has latent effect > since it loops performing
recv operations on channels with increasing level. Because of the side conditions in
[T-APP] and [T-APP-POLY], this means that pipe can only be used in tail position, which is
precisely what happens above and in Example 2. �

Properties. The first, expected property of well-typed programs is subject reduction,
namely that the reduction of expressions/processes preserves well typedness. In formu-
lating this result, we must take into account the fact that linear channels are consumed
after communication (last but one reduction in Table 1). This means that when a process
P communicates on some channel a, a must be removed from the type environment used
for typing the residual of P after the communication. To this aim, we define a partial
operation Γ − ` that removes ` from Γ , when ` is a channel. Formally:

Theorem 1 (subject reduction). If Γ ` P and P `−−→ Q, then Γ − ` ` Q where

Γ − τ
def
= Γ (Γ ,a : #[t]n)−a def

= Γ

The fact that the type environment changes because of reductions is a common
trait of behavioral type systems, such as those based on session types [6,7,5,4]. Lin-
ear channel types are a basic form of behavioral types. Note that Γ − a is undefined
if a 6∈ dom(Γ). This means that well-typed programs never attempt at using the same
channel twice, namely that channels in well-typed programs are indeed linear chan-
nels. This property has important practical consequences, since it allows the efficient
implementation (and deallocation) of channels [10].

Types for Deadlock-Free Higher-Order Programs 13

Deadlock freedom means that if the program halts, then there must be no pending
I/O operations. In our language, the only halted program without pending operations is
(structurally equivalent to) 〈()〉. We can therefore define deadlock freedom thus:

Definition 1. We say that P is deadlock free if P τ−−→
∗

Q X−→ implies Q≡ 〈()〉.

As usual, τ−−→
∗

is the reflexive, transitive closure of τ−−→ and Q X−→ means that Q is
unable to reduce further. Now, every well-typed, closed process is free from deadlocks:

Theorem 2 (soundness). If /0 ` P, then P is deadlock free.

Theorem 2 can be generalized to processes that are well typed in even environments
Γ , where Γ is even if it only contains channels with # polarity. The evenness condition,
which is trivially satisfied by the empty context /0 in Theorem 2, ensures that every
linear channel is used for both an input and an output operation. This is essential to
guarantee that the program does not get stuck on a pending I/O operation which has
no complementary one. Nonetheless, one may think that Theorem 2 is weak, consid-
ering that every process P (even an ill-typed one) can be “fixed” and become part of a
deadlock-free system if composed in parallel with the diverging thread 〈fix λx.x〉.

It is not easy to state an interesting property of well-typed partial programs – pro-
grams that are well typed in uneven environments – or of partial computations – com-
putations that have not reached a stable (i.e., irreducible) state. One might think that
well-typed programs eventually use all of their channels. This property is false in gen-
eral, for two reasons. First, our type system does not ensure termination of well-typed
expressions, so a thread like 〈send a (fix λx.x)〉 never uses channel a, because the
evaluation of the message diverges. Second, there are threads that continuously gener-
ate (or receive) new channels, so that the set of channels they own is never empty; this
happens in Example 2. What we can prove is that, assuming that a well-typed program
does not internally diverge, then each channel it owns is eventually used for a communi-
cation or is sent to the environment in a message. To formalize this property, we need a
labeled transition system describing the interaction of programs with their environment.
Labels π , . . . of transitions are defined by

π ::= `
∣∣ a?e

∣∣ a!v

and the transition relation π7−→ extends reduction with the rules

a 6∈ bn(C)

C [send a v]
a!v7−→ C [()]

a 6∈ bn(C) fn(e)∩bn(C) = /0

C [recv a] a?e7−→ C [e]

where C ranges over process contexts C ::= 〈E 〉 | (C |P) | (P|C) | (νa)C . Messages
of input transitions have the form a?e where e is an arbitrary expression instead of a
value. This is just to allow a technically convenient formulation of Definition 2 below.
We formalize the assumption concerning the absence of internal divergences as a prop-
erty that we call interactivity. Interactivity is a property of typed processes, which we
write as pairs Γ # P, since the messages exchanged between a process and the environ-
ment in which it executes are not arbitrary in general.

14 Luca Padovani and Luca Novara

Definition 2 (interactivity). Interactivity is the largest predicate on well-typed pro-
cesses such that Γ #P interactive implies Γ ` P and:

1. P has no infinite reduction P
`17−→ P1

`27−→ P2
`37−→ ·· · , and

2. if P `7−→ Q, then Γ − ` #Q is interactive, and
3. if P a!v7−→ Q and Γ = Γ ′,a : ![t]n, then Γ ′′ #Q is interactive for some Γ ′′ ⊆ Γ ′, and

4. if P a?x7−→ Q and Γ = Γ ′,a : ?[t]n, then Γ ′′ # Q{v/x} is interactive for some v and
Γ ′′ ⊇ Γ ′ such that n < |Γ ′′ \ Γ ′|.

Clause (1) says that an interactive process does not internally diverge: it will even-
tually halt either because it terminates or because it needs interaction with the environ-
ment in which it executes. Clause (2) states that internal reductions preserve interactiv-
ity. Clause (3) states that a process with a pending output on a channel a must reduce
to an interactive process after the output is performed. Finally, clause (4) states that a
process with a pending input on a channel a may reduce to an interactive process after
the input of a particular message v is performed. The definition looks demanding, but
many conditions are direct consequences of Theorem 1. The really new requirements
besides well typedness are convergence of P (1) and the existence of v (4). It is now
possible to prove that well-typed, interactive processes eventually use their channels.

Theorem 3 (interactivity). Let Γ #P be an interactive process such that a∈ fn(P). Then
P

π17−→ P1
π27−→ ·· · πn7−→ Pn for some π1, . . . ,πn such that a 6∈ fn(Pn).

4 Concluding remarks

We have demonstrated the portability of a type system for deadlock freedom of π-
calculus processes [11] to a higher-order language using an effect system [1]. We have
shown that effect masking and polymorphic recursion are key ingredients of the type
system (Examples 1 and 2), and also that latent effects are not sufficient for our analysis,
and must be paired with one more annotation – the function level.

Our type system assumes a communication model based on linear channels. While
this assumption certainly limits the range of addressable applications, recent studies
show that this range is sufficiently wide to include binary sessions [4], multiparty ses-
sions to a large extent [11, technical report], and in general a good fraction of commu-
nicating systems [10] with possibly dynamic network topologies.

Other type systems for higher-order languages with session-based communication
primitives have been recently investigated [5,15,2]. In addition to safety, types are used
for estimating bounds in the size of message queues [5] and for detecting memory
leaks [2]. Since binary sessions can be encoded using linear channels [4], our type sys-
tem addresses the same programs considered in these works. The type system described
by Wadler [15] is interesting because it guarantees deadlock freedom without resorting
to any type annotation dedicated to this purpose. In his case the syntax of (well-typed)
programs prevents the modeling of cyclic network topologies, which is a necessary
condition for deadlocks. However, this also means that some useful program patterns
cannot be modeled. For instance, the program in Example 2 is ill typed in [15].

Types for Deadlock-Free Higher-Order Programs 15

The type system discussed in this paper lacks compelling features. Structured data
types (records, sums) have been omitted for lack of space; an extended technical re-
port [14] and previous works [12,11] show that they can be added without issues. The
same goes for non-linear channels [11], possibly with the help of dedicated accept

and request primitives as in [5]. True polymorphism (with level and type variables)
has also been studied in the technical report [14]. Its impact on the overall type sys-
tem is significant, especially because level and type constraints (those appearing as side
conditions in the type schemes of constants, Section 3) must be promoted from the
metatheory to the type system. The realization of level polymorphism as type shift-
ing that we have adopted in this paper is an interesting compromise between impact
and flexibility. Our type system can also be relaxed with subtyping: arrow types are
contravariant in the level and covariant in the latent effect, whereas channel types are
invariant in the level. Invariance of channel levels can be relaxed refining levels to pairs
of numbers as done in [8,9]. This can also improve the accuracy of the type system in
some cases, as discussed in [11]. Finally, type reconstruction algorithms for related and
similar type systems have been studied and implemented [12,13]. We are confident to
say that they scale to type systems with arrow types and effects.

References
1. T. Amtoft, F. Nielson, and H. Nielson. Type and Effect Systems: Behaviours for Concurrency.

Imperial College Press, 1999.
2. V. Bono, L. Padovani, and A. Tosatto. Polymorphic Types for Leak Detection in a Session-

Oriented Functional Language. In FORTE’13, LNCS 7892, pages 83–98. Springer, 2013.
3. B. Courcelle. Fundamental properties of infinite trees. Theor. Comp. Sci., 25:95–169, 1983.
4. O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In PPDP’12, pages

139–150. ACM, 2012.
5. S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types. J. Funct.

Program., 20(1):19–50, 2010.
6. K. Honda. Types for dyadic interaction. In CONCUR’93, LNCS 715, pages 509–523.

Springer, 1993.
7. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for

structured communication-based programming. In ESOP’98, LNCS 1381, pages 122–138.
Springer, 1998.

8. N. Kobayashi. A type system for lock-free processes. Inf. and Comp., 177(2):122–159, 2002.
9. N. Kobayashi. A new type system for deadlock-free processes. In CONCUR’06, LNCS

4137, pages 233–247. Springer, 2006.
10. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. ACM Trans.

Program. Lang. Syst., 21(5):914–947, 1999.
11. L. Padovani. Deadlock and Lock Freedom in the Linear π-Calculus. In CSL-LICS’14, pages

72:1–72:10. ACM, 2014. http://hal.archives-ouvertes.fr/hal-00932356v2/.
12. L. Padovani. Type Reconstruction for the Linear π-Calculus with Composite and Equi-

Recursive Types. In FoSSaCS’14, LNCS 8412, pages 88–102. Springer, 2014.
13. L. Padovani, T.-C. Chen, and A. Tosatto. Type Reconstruction Algorithms for Deadlock-

Free and Lock-Free Linear π-Calculi. Technical report, 2015. https://hal.

archives-ouvertes.fr/hal-01105202.
14. L. Padovani and L. Novara. Types for Deadlock-Free Higher-Order Concurrent Programs.

Technical report, Università di Torino, 2014. http://hal.inria.fr/hal-00954364.
15. P. Wadler. Propositions as sessions. In ICFP’12, pages 273–286. ACM, 2012.

http://hal.archives-ouvertes.fr/hal-00932356v2/
https://hal.archives-ouvertes.fr/hal-01105202
https://hal.archives-ouvertes.fr/hal-01105202
http://hal.inria.fr/hal-00954364

16 Luca Padovani and Luca Novara

A Supplement to Section 3

A.1 Basic definitions

To ease readability we reproduce below the full grammars of values and of types. For
values we have:

v ::= k
∣∣ a

∣∣ λx.e
∣∣ send v

∣∣ wrap v

and for types we have:

t,s ::= B
∣∣ p[t]n

∣∣ t→ρ,σ s
∣∣ dten

Note that in the value form send v the argument of the application is another value,
but in well-typed values v is always a channel.

Table 3. Complete typing rules for expressions and processes.

Typing of expressions

[T-NAME]

un(Γ)

Γ ,u : t ` u : t &⊥

[T-CONST]

un(Γ) t ∈ types(k)

Γ ` k : t &⊥

[T-FUN]

Γ ,x : t ` e : s & ρ

Γ ` λx.e : t→|Γ |,ρ s &⊥

[T-APP]

Γ1 ` e1 : t→ρ,σ s & τ1 Γ2 ` e2 : t & τ2 τ1 < |Γ2| τ2 < ρ

Γ1 + Γ2 ` e1e2 : s & σ t τ1t τ2

[T-APP-POLY]

Γ1 ` e1 : t→>,σ s & τ1 Γ2 ` e2 : ⇑nt & τ2 τ1 < |Γ2| τ2 <>
Γ1 + Γ2 ` e1e2 : ⇑ns & (n+σ)t τ1t τ2

Typing of processes

[T-THREAD]

Γ ` e : unit& ρ

Γ ` 〈e〉

[T-PAR]

Γ1 ` P Γ2 ` Q

Γ1 + Γ2 ` P|Q

[T-NEW]

Γ ,a : #[t]n ` P

Γ ` (νa)P

Table 3 presents the complete set of typing rules of the calculus.

A.2 Basic properties

The following are standard properties of well-typed expressions and values. In all cases
the proofs are simple inductions on the derivation of well typedness.

Lemma 1. If Γ ` e : t & ρ , then fn(e)⊆ dom(Γ).

Types for Deadlock-Free Higher-Order Programs 17

The following Lemma shows that a value has no effects, which is a common feature
of effect systems. We implicitly use this property in the rest of the appendix and omit
the effect from the judgments that regard values. Therefore, we will often write Γ ` v : t
instead of Γ ` v : t &⊥.

Lemma 2. If Γ ` v : t & ρ , then ρ =⊥.

For values it is possible to establish a close relationship between the level of their
type and that of the type environment in which they are typed:

Lemma 3. If Γ ` v : t, then |t|= |Γ |.

Proof. By induction on v.

– (v = k) Then > = |Γ | and t ∈ types(k). We conclude by analyzing the level of
constants.

– (v = a) Then t = p[s]n and Γ = Γ ′,a : t and >= |Γ ′|. We conclude |t|= n = |Γ |.
– (v = λx.e) Then Γ ,x : t1 ` e : t2 & ρ and t = t1→|Γ |,ρ t2 and we conclude |t|= |Γ |.
– (v = send w) Similar to the case for a.
– (v = wrap w) Then Γ ` w : s and t = d⇑−nsen. By induction hypothesis we have
|s|= |Γ |. We conclude |t|= n−n+ |s|= |Γ |.

We introduce the category of quasi values v̂, . . . , namely of expressions that are
substituted. These include the values, as expected, but also applications of fix, which
are substituted when unfolded:

v̂ ::= v | fix v

For quasi values, we have a weaker property than that of Lemma 3 because a recur-
sive term may, in principle, have a linear type.

Lemma 4. If Γ ` v̂ : t, then |t| ≤ |Γ |.

Proof. When v̂ is a value the result follows from Lemma 3. When v̂ has the form fix w,
from the type of fix we deduce that Γ ` w : t→ t. From Lemma 3 we deduce |t→ t|=
>= |Γ |. We conclude |t| ≤ >= |Γ |.

Note that Lemma 4 does not hold for generic expressions. For example, we have
that send a 3 has type unit in the type environment a : ![int]n, however > = |unit| 6≤
n = |a : ![int]n|.

A.3 Subject Reduction

This section is dedicated to the proof of Theorem 1 (subject reduction). The result is
key for proving the soundness of the type system. The sequence of auxiliary results
follows the same pattern as in [5], with the necessary adjustments due to the differences
between the type systems.

18 Luca Padovani and Luca Novara

Lemma 5 (typability of subterms). If D is a derivation of Γ ` E [e] : t & ρ , then there
exist Γ1, Γ2, s, and σ such that Γ = Γ1 + Γ2, D has a subderivation D ′ concluding Γ1 `
e : s & σ , the position of D ′ in D corresponds to the position of the hole in E , and D ′

does not end with a generalization or instantiation rule.

Proof. By induction on E .

Lemma 6 (replacement). If

1. D is a derivation of Γ0 + Γ ` E [e] : t0 & ρ ,
2. D ′ is a subderivation of D concluding Γ ` e : t & σ ,
3. the position of D ′ in D corresponds to the position of [] in E ,
4. Γ ′ ` e′ : t & σ ′ where σ ′ ≤ σ ,
5. Γ0 + Γ ′ is defined,

then Γ0 + Γ ′ ` E [e′] : t & ρ ′ and ρ ′ ≤ ρ . Furthermore, σ ′ = σ implies ρ ′ = ρ .

Proof. By induction on E .

Lemma 7 (substitution). If Γ0,x : t ` e : s & ρ , and Γ1 ` v̂ : t, and Γ0 + Γ1 = Γ , then
Γ ` e{v̂/x} : s & ρ .

Proof. The proof is almost entirely conventional. The only critical aspect is the fact that
x may occur non linearly within e, hence multiple copies of v̂ may be necessary. In these
cases, however, the type t of x must be unlimited, as by definition of type combination,
and from Lemma 4 one deduces that Γ1 is also unlimited, meaning that Γ1+ Γ1 is defined
and equal to Γ1 itself.

Lemma 8 (shifting). If Γ ` e : t & ρ , then ⇑nΓ ` e : ⇑nt & n+ρ .

Proof. Straightforward induction on the derivation of Γ ` e : t & ρ .

Lemma 9 (subject reduction for expressions). Let Γ ` e : t &ρ where Γ is ground and
e−→ e′. Then Γ ` e′ : t & ρ .

Proof. By induction on the derivation of e−→ e′.

e = (λx.e′′)v −→ e′′{v/x}= e′ We distinguish two sub-cases, depending on whether
the application has been typed using [T-APP] or [T-APP-POLY].

– If the application has been typed using [T-APP], then there exist Γ1 and Γ2 such that
Γ = Γ1 + Γ2 and Γ1 ` λx.e′′ : s→σ ,ρ t and Γ2 ` v : s. From [T-FUN] we deduce Γ1,x :
s ` e′′ : t & ρ and σ = |Γ1|. We conclude Γ ` e′′{v/x} : t & ρ with an application of
Lemma 7.

– If the application has been typed using [T-APP-POLY], then there exist Γ1 and Γ2 such
that Γ = Γ1 + Γ2 and Γ1 ` λx.e′′ : s→>,σ s′ and Γ2 ` v : ⇑ns and t = ⇑ns′ and ρ =
n+σ . From [T-FUN] we deduce Γ1,x : s ` e′′ : s′& σ and >= |Γ1|. Since Γ is ground,
we deduce Γ1 = /0. From Lemma 8, we deduce Γ1,x : ⇑ns ` e′′ : t & ρ . We conclude
Γ ` e′′{v/x} : t & ρ with an application of Lemma 7.

Types for Deadlock-Free Higher-Order Programs 19

e = fix λx.e′′ −→ e′′{fix λx.e′′/x}= e′ From [T-APP] and the type scheme of fix
we deduce Γ ` λx.e′′ : t→ t & ρ and ρ =⊥. From [T-FUN] we deduce Γ ,x : t ` e′′ : t &⊥
and > = |Γ |. Since Γ is ground, it must be the case that Γ = /0. We conclude with an
application of Lemma 7.

e = unwrap (wrap v)−→ v = e′ From [T-APP] and the type scheme of unwrap we de-
duce Γ ` wrap v : d⇑−nten &ρ for some n. From [T-APP] and the type scheme of wrap we
conclude Γ ` v : t & ρ .

e = E [e0]−→ E [e′0] = e′ where e0 −→ e′0 By Lemma 5 we deduce that there exist Γ1,
Γ2, s, and σ such that Γ = Γ1+ Γ2 and Γ1 ` e : s&σ . By induction hypothesis we deduce
Γ1 ` e′ : s & σ . By Lemma 6 we conclude Γ ` E [e′] : t & ρ .

Lemma 10. Let Γ ` P and P≡ Q. Then Γ ` Q.

Proof. Straightforward induction on the derivation of P≡ Q.

Theorem 1. Let Γ ` P where Γ is ground and P `−−→ Q. Then Γ − ` ` Q.

Proof. By induction on the derivation of P `−−→ Q.

P = 〈E [send a v]〉| 〈E ′[recv a]〉 a−−→ 〈E [()]〉| 〈E ′[v]〉= Q From [T-PAR] and [T-THREAD]

we deduce that there exist Γ1 and Γ2 such that Γ = Γ1 + Γ2 and Γ1 ` E [send a v] :
unit& ρ1 and Γ2 ` E ′[recv a] : unit& ρ2. By Lemma 5 we deduce that there exist Γi j
for i, j ∈ {1,2} such that Γi = Γi1 + Γi2 for i = 1,2 and Γ12 ` send a v : unit& n and
Γ22 ` recv a : t & n. From [T-APP], the type scheme of send, and the hypothesis that Γ is
ground we deduce Γ12 = Γ ′12 + a : ![t]n and Γ ′12 ` v : t. From [T-APP], the type scheme of
recv, and the hypothesis that Γ is ground we deduce Γ22 = a : ?[t]n. Let Γ ′2 = Γ ′12 + Γ21.
By Lemma 6 we deduce Γ11 ` E [()] : unit&σ1 and Γ ′2 ` E ′[v] : unit&σ2 where σi ≤ ρi
for i = 1,2. We conclude with [T-THREAD] and [T-PAR].

P = 〈E [fork v]〉 τ−−→ 〈E [()]〉| 〈v()〉= Q From [T-THREAD] we deduce Γ ` E [fork v] :
unit& ρ . By Lemma 5 we deduce that there exist Γ1 and Γ2 such that Γ = Γ1 + Γ2 and
Γ1 ` fork v : unit. From [T-APP], the type scheme of fork, and the hypothesis that Γ is
ground we deduce Γ1 ` v : unit→ρ1,ρ2 unit. By Lemma 6 and an application of [T-THREAD]

we derive Γ2 ` 〈E [()]〉. By [T-APP] we derive Γ1 ` v() : unit& ρ2. We conclude with one
application of [T-THREAD] and one of [T-PAR].

P = 〈E [new()]〉 τ−−→ (νa)〈E [a]〉= Q and a 6∈ fn(E) From [T-THREAD] we deduce Γ `
E [new()] : unit& ρ . By Lemma 5 we deduce that there exist Γ1 and Γ2 such that Γ =
Γ1 + Γ2 and Γ1 ` new() : #[t]σ . From the hypothesis that Γ is ground we deduce Γ1 = /0.
Using [T-NAME] we derive Γ1,a : #[t]σ ` a : #[t]σ . From the hypothesis a 6∈ fn(E) we
deduce a 6∈ dom(Γ2) hence Γ ,a : #[t]σ = (Γ1,a : #[t]σ)+ Γ2. By Lemma 6 we derive Γ ,a :
#[t]σ ` E [a] : unit& ρ . We conclude Γ ` (νa)〈E [a]〉 with one application of [T-THREAD]

and one of [T-NEW].

P = 〈e〉 τ−−→ 〈e′〉= Q where e−→ e′ From [T-THREAD] we deduce Γ ` e : unit& ρ . By
Lemma 9 we deduce Γ ` e′ : unit& ρ . We conclude with one application of [T-THREAD].

20 Luca Padovani and Luca Novara

P = P1 |P2
`−−→ Q1 |P2 = Q where P1

`−−→ Q1 From [T-PAR] we deduce that there exist
Γ1 and Γ2 such that Γ = Γ1+ Γ2 and Γi ` Pi for every i = 1,2. By induction hypothesis we
have Γ1−` `Q1 and we conclude Γ−` `Q with one application of [T-PAR] and observing
that Γ − `= (Γ1− `)+ Γ2.

P = (νa)P′ `−−→ (νa)Q′ = Q where P′ `−−→ Q′ and ` 6= a From [T-NEW] we deduce that
Γ ,a : #[t]n ` P′. By induction hypothesis and using the fact that ` 6= a we deduce (Γ −
`),a : #[t]n ` Q′. We conclude Γ − ` ` Q with one application of [T-NEW].

P = (νa)P′ τ−−→ Q where P′ a−−→ Q From [T-NEW] we deduce Γ ,a : #[t]n ` P′. We con-
clude Γ ` Q by induction hypothesis and observing that (Γ ,a : #[t]n)−a = Γ .

P≡ P′ `−−→ Q′ ≡ Q Straightforward application of Lemma 10 and the induction hy-
pothesis.

A.4 Deadlock Freedom

This section is devoted to the proof of the soundness theorem, namely Theorem 2. The
first auxiliary result states that the effect of an expression is (numerically) larger than the
priority of a channel that is the subject of a communication in a well-typed expression.
That is, the effect is a conservative approximation of the priority of all the I/O operations
performed during the evaluation of a well-typed expression.

Lemma 11. Let Γ be ground and either Γ ` E [recv a] : t &ρ or Γ ` E [send a v] : t &ρ .
Then |Γ(a)| ≤ ρ .

Proof. This is a straightforward induction on E , using the fact that the typing rules
accumulate effects in the conclusion.

The second auxiliary result states the relationship between the priority of the subject
of a communication that is a redex, and the priority of any other channel that may occur
in a well-typed expression. In particular, the subject of the communication is the channel
with the highest (i.e., numerically smallest) priority occurring free in the expression.

Lemma 12. Let Γ be ground and either

– Γ ` E [recv a] : t & ρ and b ∈ fn(E), or
– Γ ` E [send a v] : t & ρ and b ∈ fn(E)∪ fn(v).

Then |Γ(a)|< |Γ(b)|.

Proof. We prove the result assuming Γ ` E [send a v] : t & ρ and b ∈ fn(E)∪ fn(v).
With the other hypothesis the proof is analogous. We proceed by induction on E and by
cases on its shape.

E = [] Then it must be the case that b ∈ fn(v). From [T-APP] and the type of send we
deduce that there exist Γ1 and Γ2 such that Γ1 + Γ2 = Γ and Γ1 ` send a : s→n,n unit and
Γ2 ` v : s and Γ(a) = ![s]n and n< |Γ2|. We conclude |Γ(a)|= n< |Γ2| ≤ |Γ2(b)|= |Γ(b)|.

Types for Deadlock-Free Higher-Order Programs 21

E = E ′e First of all we observe that this application must have been typed with [T-APP].
Indeed, if it had been typed with [T-APP-POLY], then E ′[send a v] would be a function with
level >, contradicting the fact that the channel a occurs free in its body. We deduce
Γ1 + Γ2 = Γ and Γ1 ` E ′[send a v] : s→σ1,σ2 t & τ1 and Γ2 ` e : s & τ2 and τ1 < |Γ2|
and τ2 < σ1. We distinguish two sub-cases. If b ∈ fn(E ′), then by induction hypothesis
we deduce |Γ1(a)| < |Γ1(b)| and we conclude by observing that |Γ(a)| = |Γ1(a)| and
|Γ(b)|= |Γ1(b)|. If b ∈ fn(e), then we conclude

|Γ(a)| = |Γ1(a)| by definition of +
≤ τ1 by Lemma 11
< |Γ2| from [T-PAIR]

≤ |Γ2(b)| by definition of |Γ2|
= |Γ(b)| by definition of +

E = wE ′ Suppose that the application has been typed with [T-APP]. Then, we deduce
Γ1 + Γ2 = Γ and Γ1 ` w : s→σ1,σ2 t & τ1 and Γ2 ` E ′[send a v] : s & τ2 and τ1 < |Γ1| and
τ2 < σ1. We distinguish two sub-cases. If b ∈ fn(w), then we conclude

|Γ(a)| = |Γ2(a)| by definition of +
≤ τ2 by Lemma 11
< σ1 from [T-APP]

= |Γ1| by Lemma 3
≤ |Γ1(b)| by definition of |Γ1|
= |Γ(b)| by definition of +

If b ∈ fn(E ′), then we conclude |Γ(a)|= |Γ2(a)|< |Γ2(b)|= |Γ(b)| using the defini-
tion of + and the induction hypothesis.

Suppose now that the application has been typed with [T-APP-POLY]. Then w is a func-
tion with level >, meaning that b ∈ fn(E ′)∪ fn(v). We can proceed as for case where
wE ′ has been typed with [T-APP].

We are approaching the core of the soundness proof. Before establishing the crucial
lemma, we introduce some convenient terminology regarding type environments.

Definition 3 (even and odd type environment). We say that Γ is even if for every
u ∈ dom(Γ) we have that Γ(u) is a channel type with # polarity. We say that it is odd if,
for every u ∈ dom(Γ) we have that Γ(u) is a channel type with either ? or ! polarity.

Note that the empty type environment is both even and odd. In the following, we
use Γeven (respectively, Γodd) to range over even (respectively, odd) type environments.
Note that any ground type environment Γ can be split into a pair Γodd,Γeven. A funda-
mental property of well-typed, stable processes, those that cannot reduce any further,
is that they must be typed in an environment where the odd part contains at least one
channel whose level is smaller than the level of all the channels in the even part. That
is, the process cannot be blocked on a I/O operation for a channel that occurs with both
polarities in the very same process.

Lemma 13. Let Γodd,Γeven ` P and P X τ−−→. Then |Γodd| ≤ |Γeven|.

22 Luca Padovani and Luca Novara

Proof. We do an induction on the number of restrictions in P.
In the base case P has no restrictions. Then, from the hypothesis P X τ−−→ it must be

the case that
P≡∏

i∈I
〈Ei[recv ai]〉|∏

j∈J
〈E ′j [send b j v j]〉

Suppose, by contradiction, that |Γeven| < |Γodd| and let c ∈ dom(Γeven) such that
|Γeven(c)| = |Γeven|. By Lemma 12 we deduce that c 6∈ fn(Ei) for every i ∈ I and c 6∈
fn(E ′j)∪ fn(v j) for every j ∈ J, because c has minimum level hence it cannot be blocked
by other operations on channels with greater or equal level. Then, since c ∈ dom(Γeven)
and all channel types in Γeven have even polarity, it must be the case that c = ai = b j for
some i ∈ I and j ∈ J. This contradicts the hypothesis that P X τ−−→. We conclude that the
assumption |Γeven|< |Γodd| is absurd, hence |Γodd| ≤ |Γeven|.

In the inductive case, we have P ≡ (νa)Q where Q has fewer restrictions than P.
From the hypothesis Γodd,Γeven ` P and [T-NEW] we deduce Γodd,Γeven,a : #[t]n ` Q. By
induction hypothesis we have |Γodd| ≤ |Γeven,a : #[t]n|. We conclude by observing that
|Γeven,a : #[t]n|= |Γeven|un≤ |Γeven|.

An easy consequence of Lemma 13 is that every stable process that is well typed in
an even environment must be structurally equivalent to 〈()〉.

Lemma 14. Let Γeven ` P and P X τ−−→. Then P≡ 〈()〉.

Proof. We do an induction on the number of restrictions in P. If P has no restrictions,
then from Lemma 13 we deduce that Γeven = /0, namely that P is a closed process. We
conclude observing that every well-typed, closed process is structurally congruent to
〈()〉. If P≡ (νa)Q, then there exists Γ ′even such that Γ ′even ` Q. By induction hypothesis
we deduce Q≡ 〈()〉. This contradicts the hypothesis that P is well typed, since a must
occur free in Q, hence this case is impossible.

Soundness of the type system is then an easy corollary of the previous Lemmas.

Theorem 2. If /0 ` P, then P is deadlock free.

Proof. Straightforward consequence of Theorem 1 and of Lemma 14.

A.5 Interactivity

The first auxiliary result we need states that reductions can only increase the level of a
type environment.

Lemma 15. If Γ − ` is defined, then |Γ | ≤ |Γ − `|.

Proof. Immediate consequence of the definition of Γ − `.

Then, we show that every interactive typed process has a sequence of transitions
(possibly involving channels with odd type) that leads to a new state in which the level
of channels is strictly greater than in the original process.

Types for Deadlock-Free Higher-Order Programs 23

Lemma 16. Let Γ #P be an interactive typed process such that |Γ |< >. Then there exist
π1, . . . ,πn and Γ ′ such that

P
π17−→ ·· · πn7−→ P′

and Γ ′ #P′ is an interactive typed process and |Γ |< |Γ ′|.

Proof. Consider a maximal reduction

P
`1−−→ P1

`2−−→ ·· · `m−−→ Pm X τ−−→

We know that such reduction exists and is finite because Γ # P is interactive. Let
Γ ′′ = (· · ·((Γ − `1)− `2)−·· ·− `m). From Theorem 1 we know that Γ ′′ ` Pm and from
Lemma 15 we also know |Γ | ≤ |Γ ′′|. If |Γ |< |Γ ′′| there is nothing left to prove, so sup-
pose |Γ |= |Γ ′′| and let Γ ′′ = Γodd,Γeven where Γodd contains only channel with odd polar-
ity and Γeven contains only channels with even polarity. From the hypothesis Pm X τ−−→ and
Γ ′′ ` Pm and Lemma 13 we deduce that |Γodd| ≤ |Γeven|. From the hypothesis |Γ |<> we
also know that dom(Γodd) contains at least one channel. Let a1, . . . ,ak be the channels
in dom(Γodd) such that |Γodd(ai)|= |Γodd|, that is the ai are the channels with minimum
level in Γ ′′. Then it must be the case that

Pm ≡ (ν c̃)

(
Q|∏

i=1..k
Ri

)
where each Ri is blocked on ai, because no ai can be blocked by another channel with
greater (or equal) level. Using the hypothesis that Γ ′′ #Pm we know that there exists a Γ ′

and k labels πi each of the form ai?vi or ai!vi such that

Pm
π17−→ ·· · πk7−→ P′

and Γ ′ #P′ is an interactive typed process where none of the ai occurs in Γ ′. Also, by Def-
inition 2 we know that every output action can only remove channels from processes,
and every input action can only add channels with level strictly greater than |Γodd|. Since
the ai were all the channels with level |Γodd|, we conclude |Γ ′′|< |Γ ′|.

Interactivity is then a consequence of the fact that the level of any given channel is
at finite distance from that of the whole type environment used for typing a process.

Theorem 4 (Theorem 3). Let Γ #P be an interactive typed process such that Γ ` P and
a ∈ fn(P). Then

P
π17−→ P1

π27−→ ·· · πn7−→ Pn

for some π1, . . . ,πn such that a 6∈ fn(Pn).

Proof. We proceed by induction on |Γ(a)| − |Γ |. By Lemma 16, we know that there
exist π1, . . . ,πm and Γ ′′ such that

P
π17−→ ·· · πm7−→ P′

and Γ ′′ # P′ is an interactive typed process and |Γ | < |Γ ′′|. We have two possibilities.
If |Γ(a)| < |Γ ′′|, then we conclude a 6∈ fn(P′). If |Γ ′′| ≤ |Γ(a)|, then |Γ(a)| − |Γ ′′| <
|Γ(a)|− |Γ | and we conclude by induction hypothesis.

	Types for Deadlock-Free Higher-Order Programs

