
SOUNDSCAPEGENERATOR: SOUNDSCAPE MODELLING AND
SIMULATION

Marinos Koutsomichalis
CIRMA/StudiUm - Università di Torino

marinos.koutsomichalis@unito.it

Andrea Valle
CIRMA/StudiUm - Università di Torino

andrea.valle@unito.it

ABSTRACT

This paper describes SoundScapeGenerator, a generic sys-
tem for modelling and simulating soundscapes both in real
and non-real time. SoundsScapeGenerator features algo-
rithms for three-dimensional sound-localisation and is able
to model complex spaces. The system relies on abstract
rule descriptions (generators) to simulate deterministic, “car-
toonified” (loosely modelled) sequencing of sound events.
It further supports virtual P.O.H. (point of hearing) and
is able to render the final output in various channel con-
figurations. Based on generative algorithms, the Sound-
ScapeGenerator implementation allows real-time user in-
teraction with ever-changing soundscapes, and it can easily
communicate with other applications and devices. Finally,
we introduce SoundScapeComposer, a higher level module
developed for the SoDA project (dedicated to soundscape
automatic generation), that has been built on top of Sound-
ScapeGenerator, hiding most of the latter’s details to the
user.

1. INTRODUCTION

Manual or automatic soundscape generation has been the
focus of several projects hitherto. Yet, to our knowledge
no system has been implemented that enables sophisticated
and full-scale modelling/simulation of complex soundscapes.
From our point of view such system should have the fol-
lowing features:

• modelling of complex soundscapes that may consist
of an arbitrary number of zones with different geo-
graphical, acoustical and sonic characteristics;

• 3-dimensional sound-localisation that takes into ac-
count listener’s and source’s positions, source’s size,
sound-zone’s acoustic features (reverberation, damp-
ening, resonance, etc);

• both deterministic and non-deterministic sequencing
and localisation of individual sounds;

• generation of sound events out of atomic sounds and
samples in both deterministic and non-deterministic
ways;

Copyright: ©2014 Marinos Koutsomichalis, Andrea Valle, . This

is an open-access article distributed under the terms of the

Creative Commons Attribution License 3.0 Unported, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

• modelling of sound events that may move in deter-
ministic or non-deterministic ways in 3D space;

• modelling and simulation of POH (Point Of Hear-
ing) “soundwalks” within the soundscape using vir-
tual listeners;

• multi-purpose audio decoding to various speaker con-
figurations –e.g. mono/stereo/quadraphonic/5.1/etc;

• Real-Time and Non-Real-Time operation.

Before examining the specifics of the proposed implemen-
tation, it is interesting to briefly discuss existing solutions,
which in some cases successfully address some of the pre-
viously introduced issues and propose plausible soundscape
generation paradigms. Regarding automatic soundscape
generation, at least four relevant research projects need to
be cited. The European project Listen [1] coordinated by
the Fraunhofer Institut für MedienKommunikation is fo-
cused on the generation and control of interactive sound-
scapes, although it is specifically targeted at innovative,
media-oriented experimentation on augmented reality. Its
main goal is to create a new medium: the immersive audio-
augmented environment (IAAE). Nevertheless, Listen is
not targeted at explicitly modelling the soundscape. Tape-
strea [2] is intended to create “environmental audio” in
real-time: however, it does not define any explicit relation-
ship between sound and space, and it does not provide user
interaction. Physis 1 is an industrial research project led
by IRCAM that deals with the modelling and the synthesis
of virtual soundscapes. Physis is exclusively oriented to-
wards the game industry and implementation details have
not been published yet. GeoGraphy [3] is designed for the
real-time simulation of existing soundscapes, starting from
a database containing sound materials and other informa-
tion. It can work interactively and in real-time, and in-
cludes the modelling of a virtual listener. Nonetheless, the
organisation of audio materials is based on specific data
structures (the so-called “graphs”) which are potentially
very complex and thus hard to handle. A generation tech-
nique of realistic soundscapes by means of a higher level
methodology based upon GeoGraphy has been proposed
too [4].

1 http://www.ircam.fr/305.html?&tx_
ircamprojects_pi1%5BshowUid%5D=74&tx_
ircamprojects_pi1%5BpType%5D=p&cHash=
ed317fa8927e424c8700c020b1812a58&L=1 Retrieved June
14, 2014.

mailto:marinos.koutsomichalis@unito.it
mailto:andrea.valle@unito.it
http://creativecommons.org/licenses/by/3.0/
http://www.ircam.fr/305.html?&tx_ircamprojects_pi1%5BshowUid%5D=74&tx_ircamprojects_pi1%5BpType%5D=p&cHash=ed317fa8927e424c8700c020b1812a58&L=1
http://www.ircam.fr/305.html?&tx_ircamprojects_pi1%5BshowUid%5D=74&tx_ircamprojects_pi1%5BpType%5D=p&cHash=ed317fa8927e424c8700c020b1812a58&L=1
http://www.ircam.fr/305.html?&tx_ircamprojects_pi1%5BshowUid%5D=74&tx_ircamprojects_pi1%5BpType%5D=p&cHash=ed317fa8927e424c8700c020b1812a58&L=1
http://www.ircam.fr/305.html?&tx_ircamprojects_pi1%5BshowUid%5D=74&tx_ircamprojects_pi1%5BpType%5D=p&cHash=ed317fa8927e424c8700c020b1812a58&L=1

2. SOUNDSCAPEGENERATOR (SSG)

SoundScapeGenerator (SSG) is an autonomous soundscape
synthesis engine capable of modelling soundscapes with a
variable degree of realism. It has been designed trying to
include all the features mentioned in Section 1, and has
been prototyped using the SuperCollider programming en-
vironment. In SoundScapeGenerator the audio is gener-
ated by a Renderer that expects as arguments a SonicScape
(the model of the soundscape, see Section 3), a Listener,
which may be fixed or movable in the space, and a De-
coder. The Decoder manages the desired output format.
Internally, SSG relies on ambisonics spatialisation algo-
rithms [5], so that, given the appropriate decoder, the same
audio stream may be decoded (at least, theoretically) to any
of the standard formats such as mono, stereo, 5.1, but also
to a custom, arbitrarily speaker configuration in 2D or 3D
space. The Renderer takes into account these three compo-
nents to generate the final audio signal. It can operate both
in real- and non-real time, thus making the system suitable
for a wide range of applications. The SonicSpace is in-
tended as a model of the desired space. A SonicSpace is
built as an aggregation of an arbitrary number of individ-
ual “SoundZones” and with respect to their individual ge-
ographic, acoustic and sonic characteristics. SoundZone’s
geographical features refer to their spatial boundaries and
their absolute positioning in 3D virtual space. Their acous-
tic features refer to modeled physical phenomena such as
reverberation and resonance. Acoustic features are mod-
elled independently and not with respect to the geometric
properties of a modelled SoundZone—geographical infor-
mations are merely used to position/localise sounds. SSG
also allows the user to model the acoustic properties of
the boundaries (e.g. walls) that delimit the various Sound-
Zones by means of various filtering. The sonic features of a
SoundZone refer to the type of sound events that may occur
inside a SoundZone and have to be specified using an arbi-
trary number of individual “SonicSources”. SonicSources
are conceived as containers for some sort of audio event
which may or may not be repeated in time—their only dif-
ferences lying in their spatial positioning and directional-
ity. This means that a SonicSource consists of both the
audio data to be reproduced and the information regarding
timing and location for generation. In our model, audio
data are intended as sound samples, as typically happens
in real soundscape modelling. Timing is defined by means
of a pattern-based mechanism (see next section); location
depends also on the type of source. Figure 1 depicts the
structure of a SonicSpace. SoundScapeGenerator features
five different types of SonicSources:

• SonicAtmosphere: non-directional sonic ambience;
• FixedSound: directional and fixed in space;
• AmbulatorySound (2): governed by envelopes or by

a callback function;
• SoundCloud: representing complex events, such as

e.g. rain or crowds, that are characterised by multi-
ple appearances of similar sonic sequences at ever-
changing and random positions within a given cubic
area and with respect to a density factor.

SonicSpace

Geography Acoustics Sounds

SoundZone 1 ...

SonicAtmosphere SonicSource 1 SonicSource 2 ...

Figure 1. Structure of SonicSpace.

Each SoundZone has to be associated with at least one
SonicAtmosphere, that functions as a background ambi-
ence and, therefore, provides a sort of canvas upon which
individual SoundSources are positioned. The presence of
such a background sound is useful also in order to mask
unwanted artefacts in the sound samples, such as e.g. back-
ground noises in sound samples. The particular acous-
tic profile of a SoundZone will also add coherence to the
scenery since all sound events within a given area will be
processed in a similar way. The various directional Son-
icSources are localized using ambisonics algorithms thata
have been further customized to allow for size-awareness
(objects emitting sound from a larger area should have a
broader spatial footprint than smaller ones) and listener-
awareness (concomitant to the topological positioning and
the listening radius of a virtual listener), as to be subse-
quently explained.The algorithm first encodes the audio
source into an omnidirectional soundfiled (a four-channel
b-format signal). Then the spherical coordinates of each
SonicSource with respect to the virtual Listener’s position-
ing in the SonicSpace are calculated as shown in equa-
tions 1, 2 and 3. In our implementation, the Listener’s and
Source’s position coordinates are internally represented as
three-channel control signals (to allow for ambulatory Lis-
teners/Sources) and in Cartesian notation—channel 0 stands
for the x, 1 for the y and 2 for the z dimensional axis. In the
above equations, ρ stands for radius, φ for azimuth angle,
θ for zenith, ∆x, ∆y and ∆z for the difference between
the Listener’s and the SonicSource’s coordinates for every
dimensional axis. All coefficients are represented as func-
tions of time (t) since they are audio signals. Note also
that the equation to calculate the radius has been modified
to account for the Source’s size (Rs)—each SonicSource
is assumed to be a spherical object that emits sound in all
directions.

ρ(t) =
√

∆x(t)2 + ∆y(t)2 + ∆z(t)2 − Rs
2

(1)

φ(t) = arctan
∆y(t)

∆x(t)
(2)

θ(t) = arccos
∆z(t)

ρ(t)
(3)

Each SonicSource’s corresponding audio signal is then
localised according to equation 4 which demonstrates how
a source soundfield is localised. Soundfields are notated
as a standard b-format ambisonics signal (b-format sig-
nals comprise of 4 coefficients, namely w, x, y, z [5]). ar

stands for relative amplitude and is a parameter associated
with each SonicSource so that the algorithm takes into ac-
count the phenomenological amplitude characteristics of
the Source (e.g. recordings of a space-rocket and a bird
may be of the same amplitude yet the first is phenomeno-
logically understood as much louder to the latter) which
has to be taken into account for a dynamic and realistic
SoundScape to be generated. Pr is a synthesis module used
to simulate the proximity effect. Pu is also a synthesis
module that ‘pushes’ the soundfield in a particular direc-
tion, taking into account a distortion angle (ω, calculated
as in equation 5) and the azimuth and zenith angles as cal-
culated in equations 2 and 3. A distortion angle of 0 stands
for a non-directional soundfiled coming from all directions
while one of π

2 stands for sound localised at a single spot.
The proposed algorithm will result in ‘pushing’ all sounds
that are outside a five meters range from the Listener’s po-
sition to behave as nominal single-spot Sources while it
will maintain a broader spatiality for those Sources located
closer to it. Finally, the aρ represents a amplification fac-
tor which is calculated as an exponential mapping of the
radius (ρ) (which represents the distance of a Source’s to
the Listener) to a range of 0, 1 and with respect to the Lis-
tener’s listening radius (ρl)—as shown in equation 6. The
formula first produces a value between 1, 2 and then sub-
tracts 1, to compensate for the idiosyncrasies of the unit
generators used internally in our implementation.

Si

[
w x
y z

]
(t) = ar×aρ(t)×Pr(Pu(

[
w x
y z

]
(t), ω, φ, θ))

(4)

ω(t) =

{
π
2 × ρ(t)

5 if 0 ≤ ρ(t) ≤ 5
π
2 if ρ(t) > 5

(5)

aρ(t) =

{
((1

2)
ρ
ρl × 2) − 1 if ρ(t) ≤ ρl(t)

0 if ρ(t) > ρl(t)
(6)

All SonicSources belonging to a SoundZone and the
SonicAtmosphere associated with it are mixed and further
processed with respect to the acoustic profile of the Sound-
Zone, as shown in equation 8. Then, the audio output of
all SoundZones (Zi−n) is mixed and routed to the a De-
coding module which will generate the SoundScape (Sf)
in the desired format. Equation 7 demonstrates the decod-
ing algorithm.

Sf = D(

n∑
i=1

Zi(t)) (7)

Zi(t) = Acoustics(Atmo +

n∑
i=1

Si(t)) (8)

Therefore, the proposed algorithm takes into account
the Listener’s relative three-dimensional positioning with
respect to each SonicSource, their distance (also account-
ing for the the potential proximity effect), the size of the
SonicSource and the acoustic profile of each SoundZone.
Insofar as localisation of audio samples is concerned, it

has to be kept in mind that sounds that already have spa-
tial information registered within the recording should be
treated differently when modelling a soundscape. Close-up
of sound events, for example, should be positioned accord-
ing to where the sound’s source should be, e.g. in the sky
in the case of a bird, while sound events recorded from a
distance should be positioned somewhere next to the lis-
tener, since they already convey a listener’s perspective of
something occurring in a distance. When positioning such
Sources, it should be also kept in mind that, as already ex-
plained the algorithm will progressively ‘push’ non-dire-
ctional soundfields to directional ones within a five me-
ters range from the Listener’s positioning; therefore and
for most cases, this means that such Sources should be
positioned at a distance no less than 5 meters. Figure 2
demonstrates the flow of audio and control signals within
our current implementation of SoundScapeGenerator. As
already mentioned, the Listener’s and the various Sources’
positioning are represented as three-channel control-rate
signals that feed into internal virtual buses. Audio is also
streamed internally using four-channel virtual-buses.

2.1 Pattern-based Sequencing

One of the most difficult aspects in soundscape simulation
and generation concerns the modelling of a source’s be-
haviour in time. In real-life soundscapes, sound events
may repeat themselves in irregular patterns. An interest-
ing approach in relation to sound synthesis is cartoonifica-
tion as devised by the Sounding Object project [6]; here
sounds are described not in terms of the real mechanics
of their production, but following a phenomenologically-
compliant and physically-simplified approach. The idea
at the base of cartoonification can be extended from sound
synthesis to the organisation of sound sequences. In Sound-
ScapeGenerator, time-organisation of sound events is thus
cartoonified (loosely modelled) by means of specific data
structures, namely generators [7]. A generator can be thought
of as a rule for generating sequences. When executed,
a generator will result in a stream of values of a certain
length and with respect to some high-level rule. As the rule
is specified rather than the actual data, the sequence can be
of infinite length. In relation to SoundSources, a generator-
based strategy allows for quick and efficient emulation of
a variety of time behaviours: from one-shot to repetitive
sound-events, from deterministic to stochastic sequences.
Thus, in SoundScapeGenerator, all SoundSources have to
be associated with a pattern that defines the exact time of
their first appearance and their repetition scheme. Support
for generators is native in the SuperCollider language by
means of “Patterns” and “Streams” of data that result from
their execution [8]. Hence on, we will use the term “pat-
tern” and the relative SuperCollider notation. Built-in pat-
terns include representations for linear sequences, random
selections from lists, probability-based number generators,
random walks, and other similar mathematical constructs
that provide a conceptually straightforward way to model
streams of values. Such patterns may be chained and/or
nested recursively, allowing for a very compact notation of

b-format
signal

Decoding

Master
Group

Atmosphere
(Sequence or

Object)

Zone I Group

SonicSource II

Localise Soundfield

Source Audio
Source’s

Positioning

Encode to non-
directional soundfield

Localise Soundfield

Source Audio
Source’s

Positioning

Encode to non-
directional soundfield

3 ch control
signal

b-format signal

b-format signal

Encode to non-
directional
soundfield

b-format
signal

b-format
signal

Listener’s
position

b-format signal

SonicSource I

3 ch control
signal

3 ch control
signal

 Zone I
Acoustic Profiles

 ...

SonicSpace

b-format
signal

b-format
signal

Figure 2. Audio flow within SSG.

1 2 3 4 5 6 7 8 9 10

1

0

1

2

1

2 2

Figure 3. Barking Sequence.

very complex behaviour. Consider, for instance the follow-
ing pattern:

Pseq([0, 1], 2)

This stands for a linear sequence of 0 and 1 repeated twice
(2), representing time intervals. As a model of temporal
behaviour, it will result in the corresponding SoundSource
being reproduced 4 times: immediately once the Renderer
is asked to play (0 seconds), 1 second after having fin-
ished playing back, immediately after this second appear-
ance has finished (again, 0 seconds), and 1 second after
the third appearance. As an example, it is easy to model a
highly realistic, ever-permuting dog barking by means of
simple patterns applied to just a few barks, like that:

Prand([a, b, s], inf)

Pwhite(0.5, 2.0, rrand(3, 10))

This two patterns will result in a virtual dog barking ev-
ery now and then, as shown in Figure 3 in irregular pat-
terns and having a varying duration. The first pattern de-
fines the atomic sounds that will be used, with a and b
representing two different bark atoms, s standing for si-
lence and inf for infinity (it is upon the duration pattern
to define the total number of atoms used). The second pat-
tern defines their durations as random numbers between
0.5 and 2 seconds and will aggregate a random number of
atoms between 3 and 10 (the rrand function). Then, a
Source which points to the aforementioned sequence ob-
ject will cause it to generate a new audio sequence when-
ever needed and with respect to its particular repetition
schemata. A graphical representation of a possible bark-
ing sequence (here made up of 7 sounds for ≈ 9 seconds)
is shown in Figure 3, where each bark sound is given an in-
dex (1 and 2) and silence is represented by 0. To compen-
sate for potential discontinuities when joining sound sam-
ples together and to seamlessly truncate audio files when

needed, SSG uses parametrisable linear (cross)fades. The
designer may select the appropriate cross-fade time with
respect the idiosyncracies of the audio samples in use; e.g.
joining individual footsteps together to form a larger se-
quence requires minimal or even not fade times between
each sample, while joining city ambiences to construct a
longer Atmosphere requires fade times of several seconds
(even minutes). In any case, looping may be achieved us-
ing pattern sequences: the algorithm will simply create
crossfades with a sound and a repetition of itself.

2.2 Composing soundscape as a hyper-narratives

As discussed, SoundScapeGenerator features different kinds
of Listeners. Listeners are given a listening radius as well,
outside of which no sound is audible. After having lo-
calised the sounds using the extended ambisonics tech-
niques described before, the algorithm modulates their am-
plitude proportionally to their distance from the Listener’s
positioning to deliver a POH (Point of Hearing) interpreta-
tion of the SonicSpace. In that sense, SoundScapeGener-
ator follows a listener-oriented and phenomenological ap-
proach. The exported soundscape is analogous to a virtual
listener’s perspective of the SonicSpace and with respect
to their spatial positioning, their listening radius and the
particular acoustic features of the area in which they are
positioned. Therefore, rendering with different Listeners
may result in dramatically different versions of the very
same SonicSpace.
Considered as a semiotics for the description of sound-
scape, SSG is able to output soundscapes as its utterances,
depending on various factors. In contrast to a DAW-like
purely “syntagmatic” (sequential) approach, SSG models
a SoundScape as a “semiotics” where each Listener’s par-
ticular trajectory through a SonicSpace can be seen as a
realisation of virtual possibilities (its “paradigm”). In that
sense, and from a user-perspective, SSG may be concep-
tualised as a tool to model a broader hyper-narrative (or
maybe, a hyper-soundscape) that may yield very different
outputs. Hyper-narratives are to be understood as the sum
of the multiple trajectories through a paradigm [9] or, in
this particular case, as the aggregate of all possible combi-
nations of the elements in a SonicSpace. Each time SSG
is asked to produce audio, a new narrative is generated, yet
one which is always a subset of a broader hyper-narrative.

Audio (RT/NRT)

Decoding

P.O.H.
Specialisation Listener

Soundscape
HyperNarrative

Decoder Sonic Sequences Atomic Sound
Objects

Acoustic Profiles

Topology

Sonic Sources

Sequence/Atom Selection
Generators

Localisation info

Sequence Generator

SonicSpace

Figure 4. General structure go the SoundScapeGenerator
Model.

From a practical point of view, using such an approach is
highly advantageous in that coherency and consistency are
easily achieved. A hyper-narrative remains identifiable as
such and, if carefully designed, it outputs a unique, dy-
namic and unpredictable utterance–thus offering a highly
personalised and dynamic experience that does not suffer
from the problems normally associated with fixed sound-
scape recordings[10]. Figure 4 shows the complete ar-
chitecture of SSG in four stages (dark grey): A “hyper-
narrative” (designed by means of a SonicSpace) is to be
“specialised” (with respect to a Listener object) and then
“decoded” (with respect to an ambisonics decoder) so that
audio is generated (in RT or NRT). Figure 4 further illus-
trates how a SonicSpace is designed by means of defining
Acoustic, Topological and Sonic profiles (for each Sound-
Zone). SonicSources are then shown to be depend on Gen-
erators (as already explained), localisation information and
sound samples (be in an atomic sound object or in a se-
quence concatenated by generators).

3. THE SODA PROJECT:
SOUNDSCAPECOMPOSER

SoundScapeGenerator has been designed as a generic sys-
tem. While it is theoretically possible to directly embed
it in third-party application, its current intended use is ei-
ther as a stand-alone autonomous unit or as part of broader
SuperCollider-based systems. Even in that form, however,
it is quite straightforward to use SuperCollider’s built-in
communication channels (OSC, MIDI, etc) so that SSG
can be controlled by other software or hardware applica-
tions. In this vein, SSG features no graphical user interface
to avoid specialisation and keep the project generic 2 . Pos-
sible applications for SSG may include soundscape com-
position, acoustic ecology projects, virtual or augmented
reality environments, interactive sound design. The sys-
tem’s NRT mode makes it a possible solution for audio-
visual sound designers and composers looking for simula-
tions of real or artificial environments to be used in other
contexts. SSG’s hyper-narrative paradigm in combination
with its real-time capabilities makes it suitable for inter-
active or reactive navigation in virtual spaces. These in-
clude for example video games, animation, virtual reality
or augmented reality applications, etc . We now describe

2 In any case, SuperCollider has a sophisticated support for designing
GUIs and it is a trivial task to create a GUI according to one’s needs.

SoundScape Generator

SoundScape ComposerSemantic
search engine

Audio
storage

Semantic
index

form
web interface

download

audio file

references

User

System

Figure 5. SoDA Architecture.

the SoDA project for which a specialised module has been
devised as a higher level interface to SSG.
The SoDA (Sound Design Accelerator) project 3 aims at
providing automatic soundscape composition by means of
an ontologically annotated sound library [11]. SoDA re-
quires a NRT sound engine which nevertheless should be
automatically parametrisable according to the results of
a semantical analysis engine. The idea is that the sound
designer simply queries the system by inputting few key-
words, and gets back an automatically generated sound-
scape. SoDA aims at providing –with respect to the cre-
ation of soundscapes– a twofold computational “accelera-
tion” (hence its name): on the selection of relevant sound
elements to be composited and on their organisation. Fig-
ure 5 shows SoDA’s architecture and the various modules
involved. The user is asked to provide a number of key-
words through a web interface, then the semantical analy-
sis engine is responsible for analysing the query so to re-
turn the sound files to be used in the generation step. Sound
files have been previously annotated by a semantical analy-
sis phase. Each of the audio files in the library is annotated
so that technical as well as contextual information is asso-
ciated, e.g. type of shot, relative amplitude, etc. SoDA then
relies on an automated SoundScapeComposer. The latter
is intended as a high level interface to SSG, as it provides
SSG all the required data by taking into account the results
of semantical analysis and by some ad hoc algorithms for
compositing sound files. Once opportunely tuned, SSG is
then responsible for the final audio rendering. Complying
with SoDA’s requirements for a fully automated sound-
scape composing paradigm, SoundScapeComposer (SSC)
has being conceived as a bridge between SSG and the other
components of SoDA. SSC has 4 tasks to address (6): pars-
ing and interpreting the result of the semantical analysis
engine; modelling a SonicSpace with the adequate fea-
tures; populating it with SoundSources; placing a Listener
within it. In the context of SoDA, a soundscape is in-
tended as a background ambience with some possible mov-
ing sources: thus, a SonicSpace of a singleton Zone inhab-
ited by a fixed Listener is enough. This is already an ex-
ample of the specialisation achieved on SSG through SSC.
SSC associates to the SonicSpace an ever-present Atmo-

3 http://sodaproject.wix.com/soda

Semantic data
Behaviour list

Rule-based engine
Stochastic functions

User regulations

Memory managerDefaults

Semantic engine Soundscape generator

Figure 6. SoundScapeComposer Overview.

sphere, in order to provide a first background layer. One
of the most difficult tasks of SSC is to figure out when and
how individual atoms should be joined to form “meaning-
ful” sequences. This is achieved by considering special
meta-tags entries as well as the technical data retrieved
from the files using a FEUtil –a special Feature Extrac-
tion Utility expressively designed for SoDA, which relies
on machine listening algorithms to extract various spec-
tral and psycho-acoustical information from audio files.
To accomplish each task, SSC relies on three modules:
an algorithmically generated Behaviour list; a Rule-based
Engine, featuring general rules, stochastic and probability
functions and user-defined regulations; a memory manager
(Figure 6). The Behaviour list is intended as a description
of the way a SonicSource behaves. It is built from the on-
tological data returned by the semantical engine, and pro-
vided with default states for everyday sounds: for example,
animals or cars may occasionally move while architectural
structures do not; speech is generally not to be repeated;
cars move mostly on ground-level while elevators move
vertically, etcetera. A behaviour list should be understood
as numerical answers to certain properties, such as: the
minimum/maximum allowed deviation in each spatial di-
mension for the localisation of a Sonic-Source, the mini-
mum/maximum speed of their movement and their acceler-
ation pattern, the maximum number of repetitions allowed
for a SonicSource, and so on. The Rule-based Engine
is, then, deputed to convert the data provided by the be-
haviour list into the required SonicSources and to provide
them with their spatio-temporal features. SSC also features
an intrinsic Memory module, initially empty, that is incre-
mentally populated at runtime with the features of the gen-
erated SonicSources. Then, and unless the behaviour lists
or the user-defined rules suggest otherwise, SSC attempts
to accelerate variance by consulting the memory manager
in order not to generate objects with almost identical fea-
tures.
SSG is intended as a low-level, fine-tuneable engine. On
the contrary, the purpose of SSC is to define an even higher
level, by hiding the user the complexities involved in man-
ually designing a soundscape with SSG. Interaction is in-
tended to happen primarily through the various semantical
filters s/he may apply to the query: the semantic engine
becomes the main user interface.

4. CONCLUSIONS

The SoundScapeGenerator has been designed as a generic
system suitable for generic soundscape simulation that in-

volves sound samples. Its pattern-based logic and its hyper-
narrative compositional paradigm are intended to provide
a flexible, interactive and generative low-level engine. In-
deed, it still requires the user a certain amount of work to
be set up. But its modular nature allows to define higher
level interfaces that provide automatic parametrisation and
specialisation, as in the case of SoDA’s SoundscapeCom-
poser. In fact, the latter relies on a minimum set of SSG’s
features. SoundScapeGenerator’s current implementation
is stable and fully functional. SSG has been initially tested
in a wide range of soundscape-generation scenarios. A rig-
orous user evaluation has not been carried on yet, and it
will be the next step of the project. Also, there is still room
for improvements (e.g. concerning fidelity, efficiency, flex-
ibility and ease of use), that will become more evident by
taking into account users’ feedback.

5. REFERENCES

[1] O. Warusfel and G. Eckel, “Listen-augmenting ev-
eryday environments through interactive soundscapes,”
Virtual Reality for Public Consumption, IEEE Virtual
Reality 2004 Workshop, vol. 27, 2004.

[2] A. Misra, R. Cook, and G. Wang, “Musical tapestry:
Re-composing natural sounds,” in Proceedings of
ICMC, 2006.

[3] A. Valle, V. Lombardo, and M. Schirosa, “Simulat-
ing the soundscape through an analysis/resynthesis
methodology,” CMMR/ICAD, pp. 330–357, 2009.

[4] M. Schirosa, J. Janer, S. Kersten, and G. Roma, “A
system for soundscape generation, composition and
streaming,” in Prossime distanze. Atti del XVIII CIM,
pp. 115–121, 2011.

[5] D. Malham and A. Myatt, “3-d sound spatialization us-
ing ambisonic techniques,” Computer Music Journal,
vol. 19, pp. 58–70, 1995.

[6] D. Rocchesso and F. E. Fontana, The Sounding Object.
Edizioni di Mondo Estremo, 2003.

[7] T. Budd, A Little Smalltalk. Reading, Mass.: Addison-
Wesley, 1987.

[8] R. Kuivila, “Events and patterns,” in The SuperCol-
lider Book (S. Wilson, D. Cottle, and N. Collins, eds.),
pp. 179–205, The MIT Press, 2011.

[9] L. Manovich, The Language of New Media. Leonardo
(Series) (Cambridge, Mass.), MIT Press, 2001.

[10] M. Koutsomichalis, “On soundscapes, phonography
and environmental sound art,” Journal of Sonic Stud-
ies, vol. 4, [Online], 2013.

[11] A. Valle, P. Armao, M. Casu, and M. Koustomichalis,
“Soda: A sound design accelerator for the au-
tomatic generation of soundscapes from an onto-
logically annotated sound library,” in Proceedings
ICMC—SMC—2014, (Athens), pp. 1610–1617, 2014.

	 1. Introduction
	 2. SoundScapeGenerator (SSG)
	2.1 Pattern-based Sequencing
	2.2 Composing soundscape as a hyper-narratives

	 3. The SoDA project: SoundScapeComposer
	 4. Conclusions
	 5. References

