The heterogeneity hidden in allergic rhinitis and its impact on coexisting asthma in adults: a population-based survey

This is the author's manuscript

Original Citation:
The heterogeneity hidden in allergic rhinitis and its impact on coexisting asthma in adults: a population-based survey / Leonardo, Antonicelli; Pierpaolo, Marchetti; Simone, Accordini; Roberto, Bono; Aurelia, Carosso; Lucio, Casali; Lucia, Cazzoletti; Angelo, Corsico; Marcello, Ferrari; Alessandro, Fois; Gabriele, Nicolini; Mario, Olivieri; Pietro, Pirina; Giuseppe, Verlato; Simona, Villani; Roberto, de Marco. - In: INTERNATIONAL ARCHIVES OF ALLERGY AND IMMUNOLOGY. - ISSN 1018-2438. - 168:3(2015), pp. 205-212.

Availability:
This version is available http://hdl.handle.net/2318/1529722 since 2016-02-03T15:46:54Z

Published version:
DOI:10.1159/000442872

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
This is an author version of the contribution published on:

[International archives of allergy and immunology, Vol. 162 issue 3, 2015, 10.1159/000442872]

The definitive version is available at:
La versione definitiva è disponibile alla URL:
[http://www.karger.com/Article/Pdf/442872]
This is the pre-print, uncorrected and not-copy edited version of the paper.

Antonicelli Leonardo, Marchetti Pierpaolo, Accordini Simone, Bono Roberto, Carosso Aurelia, Casali Lucio, Cazzoletti Lucia, Corsico Angelo, Ferrari Marcello, Fois Alessandro, Nicolini Gabriele, Olivieri Mario, Pirina Pietro, Verlato Giuseppe, Villani Simona, de Marco Roberto.

The heterogeneity hidden in allergic rhinitis and its impact on coexisting asthma in adults: a population-based survey.

Int Arch Allergy Immunol 2015;168:205-212 (DOI: 10.1159/000442872)
The heterogeneity hidden in allergic rhinitis and its impact on coexisting asthma in adults: a population-based survey

Authors: Antonicelli Leonardo¹, Marchetti Pierpaolo², Accordini Simone², Bono Roberto³, Carosso Aurelia⁴, Casali Lucio⁵, Cazzollelli Lucia², Corsico Angelo⁶, Ferrari Marcello⁷, Fois Alessandro⁸, Nicolini Gabriele⁹, Olivieri Mario¹⁰, Pirina Pietro⁸, Verlato Giuseppe², Villani Simona¹¹, de Marco Roberto².

Institutional affiliation of each author:

¹Allergy Unit, Department of Immuno-Allergic and Respiratory Diseases, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
²Unit of Epidemiology & Medical Statistics, Department of Public Health and Community Medicine, University of Verona, Italy
³Dept of Public Health and Microbiology, University of Turin, Turin
⁴Unit of Pneumology, National Local Health - ASL TO2, Torino, Italy
⁵University of Perugia, Perugia, Italy
⁶Department of Molecular Medicine, University of Pavia, Pavia, Italy
⁷Unit of Internal Medicine, University of Verona, Verona, Italy
⁸Institute of Respiratory Diseases, University of Sassari, Sassari, Italy
⁹Global Clinical Development, Chiesi Farmaceutici, Parma, Italy
¹⁰Unit of Occupational Medicine, University Hospital of Verona, Verona, Italy
¹¹Unit of Biostatistics and Clinical Epidemiology, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
RUNNING TITLE: The heterogeneity of allergic rhinitis

Corresponding author:
Leonardo Antonicelli
Allergy Unit, Department of Immuno-Allergic and Respiratory Diseases, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Via Conca, 71, 60126 Ancona, Italy
Tel.: +39 0715965693; fax: +39 0715963253.
E-mail address: Leonardo.Antonicelli@ospedaliriuniti.marche.it

KEYWORDS
Allergic rhinitis, sinusitis, polyposis, asthma.

Funding: The GEIRD project was funded by: the Cariverona Foundation, the Italian Ministry of Health, Chiesi Farmaceutici, and the Italian Medicines Agency (AIFA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Abstract:

Background: It has been suggested that there is some overlap between allergic rhinitis (AR), sinusitis and polyposis but it has not been fully documented. This study aimed to evaluate the prevalence of these coexisting diseases and their impact on bronchial asthma in the general population in Italy.

Methods: In the frame of the multicentre Gene Environment Interactions in Respiratory Diseases (GEIRD) study, a postal screening questionnaire including questions about self-reported symptoms of asthma, AR, AR with Sinusitis without Nasal Polyps (AR+SsNP) and AR with Sinusitis with Nasal Polyps (AR+SwNP) was administered. Random samples of subjects aged 20-44 years (n=5162) answered the postal questionnaire in 4 Italian centres (Pavia, Sassari, Torino, Verona). In allergic rhinitis subjects, the association among AR only, AR+SsNP, AR+SwNP, and bronchial asthma was estimated by the Relative Risk Ratio (RRR) using multinomial regression models.

Results: The prevalence of AR in the sample was 25.4% (95%CI:24.2-26.6). The self-reported diagnosis of AR+SsNP and AR+SwNP was reported by 5.7% (95%CI:5.0-6.3) and by 1.2% (95%CI:0.9-1.5) of the subjects respectively. Current asthma was reported by 17.5% of the AR subjects. In the adjusted multivariate analysis, the risk of having current asthma (RRR=2.31; 95%CI:1.29-4.15), of having at least 1 asthma attack/year (RRR=2.30; 95%CI:1.19-4.46) and of having an emergency department admission for respiratory diseases (RRR=5.61; 95%CI:1.81-23.92) was higher for subjects with AR+SwNP than subjects with AR only.

Conclusions: The diagnosis of allergic rhinitis in the epidemiological setting includes heterogeneous upper airway diseases that affect the clinical features of AR and its interactions with asthma.
Introduction

Allergic rhinitis (AR) is the most common immunologic disease and its prevalence is continuously on the increase, in particular in Western countries [1-3]. This not only affects the burden of the disease on patients [1-4], but it also has an impact on bronchial asthma and subsequently leads to an increased cost in health care use [1,6].

In epidemiology, validated questionnaires are used for the diagnosis of allergic rhinitis. An Italian study showed that the reliability of the question on allergic rhinitis seems adequate for epidemiological purposes and about 20% of the subjects who answered positively to the question on allergic rhinitis had had a negative skin prick test or specific IgE levels [7]. Studies focusing on the non-allergic upper airway diseases (such as chronic rhinitis and rhinosinusitis, with and without nasal polyps) showed the importance of the association between these diseases and severe/not controlled asthma suggesting that these upper airway diseases have a greater impact on asthma compared to allergy [8-12].

The overlap between allergic and non allergic upper airways diseases has been discussed in clinical studies, but its epidemiological results remain controversial and poorly defined [13-15].

This study aimed to evaluate the prevalence of AR, AR with Sinusitis without Nasal Polyps (AR+SsNP), AR with Sinusitis and with Nasal Polyps (AR+SwNP) and if the interaction between AR and bronchial asthma has been affected by concomitant upper airway diseases.
Materials and Methods

The study Gene Environment Interactions in Respiratory Diseases (GEIRD), is a multicentre survey on respiratory health in the general adult population, carried out between 2007 and 2010. In the frame of this study, random samples of about 3000 subjects from the general population aged 20 to 44 years old (male/female ratio=1) were selected from the registry of the local health authority in each of the four Italian centres: Pavia, Sassari, Torino, Verona [16].

A screening questionnaire on respiratory symptoms was administered to eligible subjects by mail up to three times in case of non response and once by phone for subjects who had not responded by mail.

The GEIRD screening questionnaire (available in www.geird.org), a modified version of questionnaires used in previous studies [17] included self reported information about respiratory symptoms (asthma, rhinitis and chronic bronchitis, cough and phlegm), environmental exposures (smoking habits) and education level as a proxy of socio-economic status.

Definitions and conditions

The presence of AR was based on the answer to the questionnaire: “Do you have any nasal allergies including hay fever?”. Subjects who answered “yes” were classified as subjects with AR. If a subject answered “no” to the question he/she was classified as a subject without allergic rhinitis.

Subjects with allergic rhinitis subjects were further classified as follows:

- AR only: subjects with AR but without sinusitis (S) or Nasal Polyps (NP);
- AR+SsNP: subjects with AR and who also answered “yes” to the question: “Do you suffer from sinusitis?”;
• AR+SwNP: subjects with AR and Sinusitis and who also answered “yes” to the question: “Do you suffer from nasal polyps?”.

The presence of asthma was defined as:

• physician-diagnosed asthma if he/she answered “yes” to both of the following questions: “Have you ever had asthma?” and “Was this confirmed by a doctor?”;
• current asthma if he/she had physician-diagnosed asthma and took any medicines for asthma and had had an attack of asthma or at least one among the following asthma-like symptoms: wheezing, chest tightness, shortness of breath, in the last 12 months.

As indicators of asthma severity/control we used:

• the number of asthma attacks reported by the subject in the last 12 months classified as: “at least 1 asthma attack” and “>3 asthma attacks”;
• the presence of the asthma-chronic obstructive pulmonary disease (COPD) overlap syndrome, when a subject with current asthma answered “yes” to the following question: “Have you ever been told by a doctor that you have or had chronic bronchitis, COPD or emphysema?”
• the intake of drugs for rhinitis and asthma based on the answers to the following questions: “Have you used any medicines for asthma in the last 12 months (including inhalers, aerosols or tablets)”? and “Have you used any medicines for rhinitis in the last 12 months (including inhalers, aerosols or tablets)?”.

A four level variable was computed to evaluate which type of drugs a subject used:
• “no medicines” if a subject answered “no” to both questions; “only asthma medicines” if a subject took medicines for asthma and had not taken medicine for rhinitis in the last 12 months; “only rhinitis medicines” if a subject took medicines for rhinitis and had not taken medicine for asthma in the last 12 months;
“both” if a subject had taken medicines for both rhinitis and for asthma in the last 12 months.

The presence of chronic cough and phlegm assessed by a positive answer to the question “Have you had coughing and phlegm on most days for a minimum of 3 months a year and for at least 2 successive years?”

Also, a subject has been to Emergency Department (ED) for respiratory diseases if he/she answered “yes” to both of the following questions: “In the past 3 months have you been to Emergency Department for any reason, excluding accidents and injuries?” and “Was it due to respiratory problems?”.

Confounders

The potential confounders considered in the analysis were: gender, age (<30, 30-39, ≥40 years), smoking habits (never smoker, ex smoker, current smoker), level of education (primary and lower secondary school, upper secondary school, degree), season of response (spring, summer, autumn, winter). In addition, type of contact (mail, phone), percentile rank of cumulative response centre-specific and centre were included as design confounders in the analysis.

Statistical analysis

Categorical variables were summarized with percentages, and were compared across strata by the Pearson’s Chi-squared test.

The associations among different allergic rhinitis overlapping diseases (AR only, AR+SnNP, AR+SwNP), and other outcomes (diagnosed and current asthma, number of asthma attacks, asthma-COPD overlap syndrome, cough and phlegm and ED visits for respiratory diseases), were assessed by using multinomial regression models adjusted for potential confounders (gender, age, smoking habits, level of education, season of
response, type of contact, percentile rank of cumulative response and centre). The
Relative Risk Ratio (RRR) was estimated by choosing the group with AR only as the
reference category. A p-value <0.05 was considered statistically significant. Statistical
analyses were performed with STATA 12.1 (Stata Corp LP, College Station, TX, USA).
Results

Prevalence of allergic rhinitis and demographic data

Overall 5162 subjects filled in the questionnaire in the 4 centres. The response rate was 53%, ranging from 37.1% (Pavia) to 67.7% (Verona). The overall prevalence of allergic rhinitis in the study was 25.4% (95%CI 24.2-26.6). The subjects who self-reported diagnosis of AR+SsNP and AR+SwNP were 5.7% and 1.2% respectively.

The subjects with AR were younger (table 2), fewer current smokers and they had a higher level of education than those without AR. The distribution of sex and education level among the three different groups of upper airway diseases (AR only, AR+SsNP and AR+SwNP) was statistically significant. The percentage of females was lower in subjects with AR+SwNP (36.1%) compared to the other two groups (51.8% and 63.5% for AR and AR+SsNP respectively). The level of education was significantly lower for subjects with AR+SwNP than for those of the other two groups (p=0.019).

Overlapping upper airway diseases and asthma

Overall, 23.8% of the subjects with AR had a physician diagnosed asthma and 17.5% of the subjects reported current asthma at the time of the survey (table 3). The prevalence of current asthma and the distribution of the control/severity markers of coexisting asthma varied significantly across the three different groups of AR subjects. In particular, the prevalence of current asthma increased from 15.8% in the group of AR only to 31.2% in the group AR+SwNP (p<0.001). The same statistically significant trend was found when considering the proportion of subjects who had at least one asthma attack in the last 12 months (p=0.01), of subjects with the asthma-COPD overlap syndrome (p=0.03), of subjects with chronic cough and phlegm (p<0.001) and of those who had been hospitalized for respiratory diseases (p<0.01).
The only exception to this general trend was the prevalence for subjects who had had more than three asthma attacks/year which, was similar in the three groups of upper airway diseases (p=0.76).

In the multivariate analysis (table 4), after adjusting for potential confounders, the subjects with AR+SwNP, had a statistically significant increased risk of having current asthma (RRR=2.31; 95%CI: 1.29-4.15), of having at least one asthma attacks in the last year (RRR=2.30; 95%CI: 1.19-4.46) and of having an ED admission for respiratory disease in the last 3 months (RRR= 5.61; 95%CI: 1.81-23.92) than subjects with AR only.

Finally, the subjects with AR+SsNP and AR+SwNP had a statistically significant increased risk of having cough and phlegm (RRR=2.59; 95%CI: 1.89-3.54 and RRR=2.91; 95%CI: 1.63-5.21 respectively) than subjects with AR only, while the asthma-chronic bronchitis overlap syndrome did not show statistically significant variations among the AR groups.

Overlapping upper airway diseases and drug intake for rhinitis and asthma.

Overall, 54% and 17.5% of subjects with AR had used medication for rhinitis and asthma respectively in the last year. After adjusting for potential confounders, in the multivariate analysis we found an increased risk that the subjects with AR+SsNP and AR+SwNP took medications both for rhinitis (RRR=1.91; 95%CI: 1.43-2.54 and RRR=2.46; 95%CI: 1.38-4.40 respectively) and for asthma (RRR=1.52; 95%CI: 1.08-2.15 and RRR=2.27; 95%CI: 1.23-4.19 respectively) than subjects with AR only.

The overall distribution of the drugs intake for rhinitis and/or asthma across the three different groups of AR subjects is shown in the figure 1. The proportion of subjects who had not used medication in the last 12 months decreased from 46% in subjects with AR only to 28% in those with AR+S+P, whereas the use of medication for both rhinitis and asthma increased from 11% in the subjects with AR only to 28% in the subjects with AR+SwNP (p<0.001).
When we considered the distribution of the drugs used only by the subjects with current asthma, stratified by no asthma attacks and at least one asthma attack, we found that the proportion who used drugs for asthma or for rhinitis was almost 65% in those who had not had an asthma attack and almost 95% in those who had had at least one asthma attack.

The distribution of drugs used among the three groups of upper airway diseases was similar both for subjects with no asthma attack and at least one asthma attack (figure 2).
Discussion

The most important finding of the study was that AR coexisted with sinusitis, with and without nasal polyps, in 6.9% of the general population. In addition, subjects with AR+SwNP had a higher likelihood of having more severe asthma than those with AR only. We also discuss the reliability of a self-reported diagnosis of sinusitis and the identification of subjects with nasal polyps as a subgroup of those with AR.

Prevalence of the upper airway diseases.

Overall, about 25% of the subjects reported AR, about 6% reported AR plus sinusitis with and without nasal polyps and these prevalence were similar across the centres.

Concerns about the self-reported diagnosis of chronic rhinosinusitis [18,19] have led to the development of a specific questionnaire, to diagnose chronic rhinosinusitis in the epidemiological setting [20].

A recent postal survey performed in Europe, using the EP3OS criteria questionnaire, found that the prevalence of chronic rhinosinusitis in the general population was 10.9%, with relevant variations of prevalence in the different geographical areas. In the only Italian center participating in this survey (Palermo) the prevalence was 10.8% (6.9% self-reported doctor-diagnosis) [21].

In the EP3OS study, the diagnosis of chronic rhinosinusitis includes patients with and without nasal polyps, while the diagnosis of chronic rhino-sinusitis is limited only to the young adult subjects with AR in our survey. Although the diagnosis of sinusitis was only assessed in subjects with AR and consisted of a single question in the questionnaire, we might suppose that the prevalence of AR+SwNP found in our survey is coherent with that found in Italy.

The prevalence of AR+SwNP found in our survey is in line with the estimated prevalence found both in Europe, which ranged from 2 to 4% of the general populations [22] and
found in a specific survey in France (2.1%) [23]. However other studies [24] found a higher prevalence of polyposis than our survey but this could be due to the fact that it was not in a population-based study.

Overall, the reliability of the self-reported diagnosis of chronic rhinosinusitis and of AR+SwNP in our survey seems to be acceptable.

Impact of allergic rhinitis on asthma

The increase in drug intake for rhinitis suggests an increase in severity from AR to AR+SwNP [25]. Moreover, the association between the severity of the upper airway diseases and their impact on asthma in the non adjusted analysis, seems to confirm the United Airways Diseases hypothesis [1,26]. After adjusting for potential confounders, the results show the presence of two different subsets of subjects within the AR group. The first one includes subjects with AR and with sinusitis, and the second one those with polyposis.

In the first group, the increase in the proportion of subjects who took drugs for rhinitis and asthma suggests an increase in the severity of the upper airway diseases, which, does not correspond to an increase in the indicators of asthma severity (at least one asthma attack) and the ED visits for respiratory diseases.

Despite the increase in the drug intake in the group of subjects with polyposis, it is evident that there is poor asthma control in this case.

We hypothesize that the positive answer to the question on the presence of nasal polyps made it possible to identify two different asthma phenotypes in the AR subjects. In the first one, “early onset allergic asthma phenotype”, the disease could be determined by allergen-specific adaptative Th2 cells [27], and in the second one, “late onset eosinophilic asthma phenotype” could be driven by allergen independent innate lymphoid cells, and the responsiveness is characterized by refractory to steroids [28].
Although these two pathogenic mechanisms are not mutually exclusive, as confirmed by the detection of allergic sensitization in patients with nasal polyposis, the role of the main pathogenic mechanism seems to be clear [29].

When the severity of the upper airway diseases increased, a similar prevalence of the most unstable subset of asthmatic subjects (about 3% of them) was unexpected. This may be due to the poor adherence to the therapy [30].

Furthermore, the prevalence of poor control, even in subjects with the mildest asthma, seems to be consistent with the recent studies on the presence of mast cells at the alveolar level in subjects with allergic rhinitis and uncontrolled asthma [31-33].

Strengths and Limitations

The strength of this study is that we found the heterogeneity hidden in the diagnosis of allergic rhinitis obtained from the questionnaire. This is in contrast to the simple model used to compare allergic rhinitis and asthma (i.e. subjects with nasal polyp within those with AR), and our finding suggests that their interaction should be considered with more caution.

The main limitation of our survey is that we could not determine the allergic pathogenesis of the upper airway diseases without cutaneous, serological [30] or any other clinical tests, which also influence the reliability of the self-reported diagnosis of the upper airways comorbidity, such as the diagnosis of chronic rhinosinusitis with and without polyps. Another important limitation is the lack of any information about type, duration and the adherence to the therapy for rhinitis and asthma. The only information available was if a subject had used or not used drugs for rhinitis and/or asthma in the last 12 months.
Acknowledgements

Members of the GEIRD study group: R. de Marco, G. Verlato, M.E. Zanolin, S. Accordini, O. Bortolami, M. Braggion, V. Cappa, L. Cazzoletti, P. Girardi, F. Locatelli, A. Marcon, E. Montoli, M. Rava, R. Vesentini, P. Marchetti, G. Pesce, L. Calciano, G. Nguyen (Unit of Epidemiology and Medical Statistics, University of Verona, Italy); M. Ferrari, L. Donatelli, C. Posenato, V. Lo Cascio (Section of Internal Medicine, University of Verona); L. Perbellini, M. Olivieri, J. D'Amato, E. Donatini, M. Martinelli (Unit of Occupational Medicine, Azienda Ospedaliera “Istituti Ospitalieri di Verona”); P.F. Pignatti, C. Bombieri, M.D. Bettin, E. Trabetti (Unit of Biology and Genetics, University of Verona); A. Poli, M. Nicolis, S. Sembeni (Unit of Hygiene and Preventive, Environmental and Occupational Medicine, University of Verona); L. Antonicelli, F. Bonifazi (Dept of Internal Medicine, Immunological and Allergic and Respiratory Diseases, Ospedali Riuniti di Ancona); F. Attena, V. Galdo (Dept of Public, Clinical and Preventive Medicine, II University of Naples); V. Bellia, S. Battaglia (Dept of Medicine, Pneumology, Physiology and Human Nutrition, University of Palermo); I. Cerveri, A.G. Corsico, F. Albicini, E. Gini, A. Grosso (Division of Respiratory Diseases, IRCCS Policlinico “San Matteo”, University of Pavia), A. Marinoni, S. Villani, V. Ferretti (Dept of Health Sciences, University of Pavia); L. Casali, A. Miniucchi (Dept of Internal Medicine, Section of Respiratory Diseases, University of Perugia); L. Briziarelli, M. Marcarelli (Dept of Medical-Surgical Specialties and Public Health, University of Perugia); M.G. Panico (National Health Service, Epidemiology Unit, ASL 2, Salerno); P. Pirina, A.G. Fois, F. Becciu, A. Deledda, V. Spada (Institute of Respiratory Diseases, University of Sassari); M. Bugiani, A. Carosso, P. Piccioni, G. Castiglioni (National Health Service, CPA-ASL TO2, Unit of Respiratory Medicine and Allergology, Turin); R. Bono, R. Tassinari, G. Trucco (Dept of Public Health and Microbiology, University of Turin); G. Rolla, E. Heffler (Dept of Biomedical Sciences and Human Oncology, University of Turin); E. Migliore (Centre of Oncologic Prevention, Turin).
We are very grateful to Prof. de Marco, who tragically passed away on 9th October this year for his valuable contribution to this paper and for leading our research team with passion and tenacity until the end.

Competing Interests

The authors confirm that Gabriele Nicolini is an employee of the “Chiesi Farmaceutici, Parma, Italy,” one of the commercial funders of this research. There are no patents, products in development or marketed products to declare. All remaining authors declare that they have no competing interests.

Authors’ Contributions

Conceived and designed the experiments: Roberto de Marco. Pierpaolo Marchetti performed the data analysis. Leonardo Antonicelli, Pierpaolo Marchetti and Roberto de Marco wrote the paper. All the authors participated in the study design and in data collection and assembly, read and approved the final manuscripts.
References

T, Baena-Cagnani CE, Canonica GW, van Weel C, Agache I, Aït-Khaled N, Bachert
C, Blaiss MS, Bonini S, Boulet LP, Bousquet PJ, Camargos P, Carlsen KH, Chen
O, Kaliner MA, Kim YY, Kowalski ML, Kuna P, Le LT, Lemiere C, Li J, Lockey
RF, Mavale-Manuel S, Meltzer EO, Mohammad Y, Mullol J, Naclerio R, O’Hehir
RE, Ohta K, Ouedraogo S, Palkonen S, Papadopoulos N, Passalacqua
G, Pawankar R, Popov TA, Rabe KF, Rosado-Pinto J, Scadding GK, Simons
FE, Toskala E, Valovirta E, van Cauwenberge P, Wang DY, Wickman M, Yawn
BP, Yorgancioglu A, Yusuf OM, Zar H, Annesi-Maesano I, Bateman ED, Ben
Kheder A, Boakye DA, Bouchard J, Burney P, Busse WW, Chan-Yeung
M, Chavannes NH, Chuchalin A, Dolen WK, Emuzyte R, Grouse L, Humbert
M, Jackson C, Johnston SL, Keith PK, Kemp JP, Klossek JM, Larenas-Linnemann
B, Nizankowska-Mogilnicka E, Okamoto Y, Orru MP, Potter P, Price D, Stoloff
SW, Vandenplas O, Viegi G, Williams
D; World Health Organization; GA(2)LEN; AllerGen. Allergic Rhinitis and its Impact
on Asthma (ARIA) 2008 update (in collaboration with the World Health

K, Lötvall J, Olafsdóttir IS, Torén K, Lundbäck B, Janson C. Increased prevalence
of symptoms of rhinitis but not of asthma between 1990 and 2008 in Swedish

3. de Marco R, Cappa V, Accordini S, Rava M, Antonicelli L, Bortolami O, Braggion
M, Bugiani M, Casali L, Cazzoletti L, Cerveri I, Fois AG, Girardi P, Locatelli

TABLES AND FIGURES

Table 1. Number of responders, response rate and prevalence of AR (with 95%CI) for each participating centre.

<table>
<thead>
<tr>
<th>centers</th>
<th>n. of participating subjects (response rate (%))</th>
<th>prevalence (95%CI)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AR overall</td>
<td>AR only</td>
<td>AR+SsNP</td>
<td>AR+SwNP</td>
</tr>
<tr>
<td>Verona</td>
<td>1746 (67,7)</td>
<td>24.4 (22.4-26.5)</td>
<td>17.8 (16.0-19.6)</td>
<td>5.5 (4.5-6.8)</td>
<td>1.1 (0.7-1.7)</td>
</tr>
<tr>
<td>Pavia</td>
<td>966 (37,1)</td>
<td>25.0 (22.2-27.8)</td>
<td>18.7 (16.3-21.3)</td>
<td>5.2 (3.9-6.8)</td>
<td>1.0 (0.5-8.3)</td>
</tr>
<tr>
<td>Turin</td>
<td>1205 (54,6)</td>
<td>27.0 (24.4-29.6)</td>
<td>21.0 (18.7-23.5)</td>
<td>5.0 (3.8-6.4)</td>
<td>0.9 (0.5-1.7)</td>
</tr>
<tr>
<td>Sassari</td>
<td>1245 (53,0)</td>
<td>25.7 (23.2-28.2)</td>
<td>17.2 (15.2-19.4)</td>
<td>6.7 (5.4-8.3)</td>
<td>1.7 (1.1-2.6)</td>
</tr>
<tr>
<td>overall</td>
<td>5162 (53,0)</td>
<td>25.4 (24.2-26.6)</td>
<td>18.6 (17.5-19.7)</td>
<td>5.7 (5.0-6.3)</td>
<td>1.2 (0.9-1.5)</td>
</tr>
</tbody>
</table>

AR: Allergic Rhinitis; SsNP: Sinusitis without Nasal Polyps; SwNP: Sinusitis with Nasal Polyps

CI: Confidence Interval
<table>
<thead>
<tr>
<th>variables</th>
<th>without AR</th>
<th>AR overall</th>
<th>AR only</th>
<th>AR+SnP</th>
<th>AR+SwNP</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n= 3795</td>
<td>n= 1294</td>
<td>n= 945</td>
<td>n= 288</td>
<td>n= 61</td>
<td></td>
</tr>
<tr>
<td>gender (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>53.5</td>
<td>53.6</td>
<td>51.8</td>
<td>63.5</td>
<td>36.1</td>
<td><0.001</td>
</tr>
<tr>
<td>age (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.041</td>
</tr>
<tr>
<td><30</td>
<td>26.2</td>
<td>29.7</td>
<td>30.4</td>
<td>29.5</td>
<td>19.7</td>
<td>0.516</td>
</tr>
<tr>
<td>30-39</td>
<td>43.8</td>
<td>42.6</td>
<td>42.0</td>
<td>43.4</td>
<td>49.2</td>
<td></td>
</tr>
<tr>
<td>≥40</td>
<td>30.0</td>
<td>27.7</td>
<td>27.6</td>
<td>27.1</td>
<td>31.1</td>
<td></td>
</tr>
<tr>
<td>smoking habits (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.048</td>
</tr>
<tr>
<td>never smoker</td>
<td>54.7</td>
<td>57.6</td>
<td>59.1</td>
<td>54.7</td>
<td>47.5</td>
<td>0.181</td>
</tr>
<tr>
<td>ex-smoker</td>
<td>18.0</td>
<td>18.6</td>
<td>17.2</td>
<td>22.1</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>current smoker</td>
<td>27.3</td>
<td>23.8</td>
<td>23.7</td>
<td>23.2</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td>education (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.006</td>
</tr>
<tr>
<td>primary and lower school</td>
<td>23.4</td>
<td>19.2</td>
<td>18.4</td>
<td>18.8</td>
<td>32.8</td>
<td>0.019</td>
</tr>
<tr>
<td>upper school</td>
<td>50.5</td>
<td>52.8</td>
<td>52.0</td>
<td>57.5</td>
<td>42.6</td>
<td></td>
</tr>
<tr>
<td>degree</td>
<td>26.1</td>
<td>28.1</td>
<td>29.6</td>
<td>23.7</td>
<td>24.6</td>
<td></td>
</tr>
<tr>
<td>season (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.052</td>
</tr>
<tr>
<td>spring</td>
<td>46.1</td>
<td>46.0</td>
<td>47.3</td>
<td>42.0</td>
<td>44.3</td>
<td>0.237</td>
</tr>
<tr>
<td>summer</td>
<td>15.4</td>
<td>15.0</td>
<td>15.8</td>
<td>12.8</td>
<td>14.8</td>
<td></td>
</tr>
<tr>
<td>autumn</td>
<td>32.4</td>
<td>30.7</td>
<td>28.7</td>
<td>37.2</td>
<td>31.1</td>
<td></td>
</tr>
<tr>
<td>winter</td>
<td>6.1</td>
<td>8.3</td>
<td>8.2</td>
<td>8.0</td>
<td>9.8</td>
<td></td>
</tr>
</tbody>
</table>

AR: Allergic Rhinitis; SsNP: Sinusitis without Nasal Polyps; SwNP: Sinusitis with Nasal Polyps
Table 3. Crude prevalence (%) of different symptom or condition of asthma and drugs used in the last 12 months among subjects with allergic rhinitis, sinusitis and polyposis.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>AR overall</th>
<th>AR only</th>
<th>AR+SsNP</th>
<th>AR+SwNP</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physician-diagnosed asthma</td>
<td>23.8</td>
<td>23.0</td>
<td>24.8</td>
<td>31.7</td>
<td>0.28</td>
</tr>
<tr>
<td>Current asthma</td>
<td>17.5</td>
<td>15.8</td>
<td>20.1</td>
<td>31.2</td>
<td><0.01</td>
</tr>
<tr>
<td>At least 1 asthma attack</td>
<td>11.5</td>
<td>10.2</td>
<td>13.9</td>
<td>21.3</td>
<td>0.01</td>
</tr>
<tr>
<td>>3 asthma attacks</td>
<td>3.2</td>
<td>3.0</td>
<td>3.9</td>
<td>3.3</td>
<td>0.76</td>
</tr>
<tr>
<td>Asthma-COPD overlap syndrome</td>
<td>3.0</td>
<td>2.6</td>
<td>3.2</td>
<td>8.6</td>
<td>0.03</td>
</tr>
<tr>
<td>Drugs for asthma used in the last 12 months</td>
<td>17.5</td>
<td>15.2</td>
<td>22.4</td>
<td>29.3</td>
<td>0.001</td>
</tr>
<tr>
<td>Cough and phlegm</td>
<td>22.7</td>
<td>17.9</td>
<td>34.9</td>
<td>40.7</td>
<td><0.001</td>
</tr>
<tr>
<td>ED admissions for respiratory diseases</td>
<td>1.1</td>
<td>0.8</td>
<td>1.4</td>
<td>5.1</td>
<td><0.01</td>
</tr>
<tr>
<td>Drugs for rhinitis used in the last 12 months</td>
<td>54.0</td>
<td>48.9</td>
<td>65.2</td>
<td>70.5</td>
<td><0.001</td>
</tr>
</tbody>
</table>

AR: Allergic Rhinitis; SsNP: Sinusitis without Nasal Polyps; SwNP= Sinusitis with Nasal Polyps

ED: Emergency Department
Table 4. Association of different symptom or condition of asthma and among subjects with allergic rhinitis, sinusitis and polyposis. (Relative Risk Ratio (RRR*) and 95%CI)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>AR only</th>
<th>AR+SsNP</th>
<th>AR+SwNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physician-diagnosed asthma</td>
<td>1</td>
<td>1.11 (0.81-1.52)</td>
<td>1.48 (0.83-2.64)</td>
</tr>
<tr>
<td>Current asthma</td>
<td>1</td>
<td>1.35 (0.95-1.91)</td>
<td>2.31 (1.29-4.15)</td>
</tr>
<tr>
<td>At least 1 asthma attack</td>
<td>1</td>
<td>1.39 (0.93-2.08)</td>
<td>2.30 (1.19-4.46)</td>
</tr>
<tr>
<td>>3 asthma attacks</td>
<td>1</td>
<td>1.26 (0.61-2.61)</td>
<td>1.03 (0.23-4.54)</td>
</tr>
<tr>
<td>Asthma-COPD overlap syndrome</td>
<td>1</td>
<td>1.08 (0.49-2.40)</td>
<td>2.71 (0.96-7.67)</td>
</tr>
<tr>
<td>Drugs for asthma used in the last 12 months</td>
<td>1</td>
<td>1.52 (1.08-2.15)</td>
<td>2.27 (1.23-4.19)</td>
</tr>
<tr>
<td>Cough and phlegm</td>
<td>1</td>
<td>2.59 (1.89-3.54)</td>
<td>2.91 (1.63-5.21)</td>
</tr>
<tr>
<td>ED admissions for respiratory diseases</td>
<td>1</td>
<td>1.91 (0.54-6.71)</td>
<td>5.61 (1.81-23.92)</td>
</tr>
<tr>
<td>Drugs for rhinitis used in the last 12 months</td>
<td>1</td>
<td>1.91 (1.43-2.54)</td>
<td>2.46 (1.38-4.40)</td>
</tr>
</tbody>
</table>

*adjusted for gender, age, smoking habits, level of education, season of response, centre, type of contact and percentile rank of cumulative response.

AR: Allergic Rhinitis; SsNP:Sinusitis without Nasal Polyps; SwNP= Sinusitis with Nasal Polyps

ED: Emergency Department

RRR: Relative Risk Ratio

CI: Confidence Interval
Figure 1. Distribution of subjects who used medication for rhinitis and asthma or both in the last 12 months stratified by categories of rhinitis.

AR: Allergic Rhinitis; SsNP: Sinusitis without Nasal Polyps; SwNP: Sinusitis with Nasal Polyps
Figure 2. Distribution of subjects with allergic rhinitis who used medication for rhinitis and asthma in the last 12 months stratified by categories of rhinitis and asthma attacks

AR: Allergic Rhinitis; SsNP: Sinusitis without Nasal Polyps; SwNP = Sinusitis with Nasal Polyps