This is an author version of the contribution:
Questa è la versione dell’autore dell’opera:
DOI: 10.1111/ppa.12319]

The definitive version is available at:
La versione definitiva è disponibile alla URL:
Testing and modelling the effects of climate on the incidence of the emergent nut rot agent of chestnut *Gnomoniopsis castanea*

G. Lione, L. Giordano, F. Sillo and P. Gonthier

Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco, Italy

E-mail: paolo.gonthier@unito.it

Running head: Modelling incidence of *G. castanea*

Keywords: *Gnomoniopsis castanea*, *Castanea sativa*, nut rot, incidence, climate, modelling
Abstract

Gnomoniopsis castanea is an emerging fungal pathogen causing nut rot of Castanea sativa. This study was aimed at testing and modelling the effects of climate on disease incidence. Up to 120 ripe nuts were collected in 2011 from trees in each of 12 sites located in the north-west of Italy. The incidence of G. castanea in each site was expressed as the number of infected nuts on the total number of nuts sampled (%), as determined by combining the results of morphological identification of isolates obtained from nuts and their typing through a newly developed taxon-specific molecular assay. Disease incidence ranged from 20% to 93%, depending on site.

Geostatistical analyses revealed that, despite the clustering of sites (P<0.05), disease incidence was not spatially autocorrelated (P>0.05). This finding suggests that the disease is influenced by site-dependent factors whose scale (~7.5-15.6 km) is consistent with the climate variability throughout the sampling region. Multivariate analyses on maximum, mean and minimum temperatures and on rainfall showed that warmer temperatures were associated with higher levels of the disease incidence. The temperatures of months before nut harvesting were selected as predictors for Partial Least Squares Regression (PLSR) models (GnoMods) of G. castanea incidence. External validation on data collected either on sites or in years not used for models fitting showed the good predictive abilities of the GnoMods (Spearman $\rho_{\text{pred,obs}} > 0.72$, P<0.05). The above findings support a relation between climate and incidence of G. castanea, providing statistical tools to forecast disease incidence at site level.
Introduction

Sweet chestnut (*Castanea sativa* Miller) is a widespread broadleaf species in southern and western Europe, in Maghreb, Turkey, Caucasus as well as in Australia and New Zealand. This species has been spread and cultivated for thousands of years for both fruit and wood production and plays an important economic role in many countries, being a source of food highly appreciated for both fresh consumption and processing because of appreciable organoleptic and nutritional properties.

Several fungi can cause nut rot of chestnut in pre-harvest and/or post-harvest conditions resulting in yield and economic losses, including *Botrytis cinerea* Pers., *Ciboria batschiana* (Zopf) N.F. Buchw., *Cytodiplospora castanea* Oudem., *Diplodina castaneae* Prill. & Delacr., *Dothiorella* spp., *Fusarium* spp., *Penicillium* spp., *Pestalotia* spp., *Phoma castanea* Peck, *Phomopsis endogena* (Speg.) Cif., *Phomopsis viterbensis* Camici and *Rhizopus* spp. (Washington *et al*., 1997). Since 2005, in Italy, France and Switzerland, chestnut growers have noticed an abnormal increase in the amount of rotten nuts locally affecting more than 80% of nuts (Visentin *et al*., 2012; Maresi *et al*., 2013). The huge majority of these nut rots were associated with an emerging fungal pathogen recently described as *Gnomoniopsis castanea* Tamietti, an ascomycete belonging to the family of Gnomoniaceae (Visentin *et al*., 2012). The symptoms of the nut rot caused by this fungus include a chalky aspect of the nut kernel at ripening, turning to brown as soon as the mummification progresses and the mycelium invades the kernel tissues. Besides being a parasite in the kernel of the nuts, *G. castanea* can also be found as an endophyte in the thin bark of chestnut branches and in other green tissues of the tree (Visentin *et al*., 2012). The teleomorphic stage of the fungus produces its perithecia on the burrs (Visentin *et al*., 2012). The acervuli of the anamorphic stage can be observed on necrotic galls whose formation on chestnut buds and leaves is triggered by the Asian chestnut gall wasp (*Dryocosmus kuriphilus* Yasumatsu) accidentally introduced to Europe in the early 2000s (Quacchia *et al*., 2008). A disease very similar to the one here described was observed...
in New Zealand starting from 2008 (Shuttleworth et al., 2013). While the pathogen was described in New Zealand as *Gnomoniopsis smithogilvyi* L.A. Shuttlew. (Shuttleworth et al., 2012), it is still unknown whether the two congeneres *G. castanea* and *G. smithogilvyi* may be the same species or not.

To date, little is known about the ecology, epidemiology, biogeography and infection biology of *Gnomoniopsis* spp. on chestnut. Despite some hypotheses on the reasons determining the spread and the severity of these pathogens in chestnut orchards (Gentile et al., 2009; Maresi et al., 2013; Shuttleworth et al., 2013), many aspects still need to be elucidated.

The climate has been reported to be related to pathosystems dynamics at global, regional and local scale both in agriculture and in forestry (Garrett et al., 2006). Climate may affect the pathosystems influencing not only the pathogens and their hosts, but also ecosystems composition, structure and functions (Garrett et al., 2006). During the last decades researchers have shown a growing interest in elucidating the role played by climate on plant diseases under a quantitative perspective. Many regression and simulation models have been proposed to explain and/or predict disease parameters as a function of the climate. Despite no general rules can be used to forecast the impact of climate on plant diseases, a vast body of literature support that temperature and rainfall figure among the most important climatic variables to model and to predict incidence, severity and spread of plant pathogens (Coakley et al., 1999; Kendrick, 2000; Magarey et al., 2005; Garrett et al., 2006). Epidemiological models including temperature and/or rainfall as predictors have been proposed for a large variety of plant pathogens as, for instance, *Alternaria alternata* (Fr.) Keissl. (Moschini et al., 2006.), *Fusarium oxysporum* f. sp. *ciceris* Matuo & K. Satô (Navas-Cortés et al., 2007), *Heterobasidion* spp. (Gonthier et al., 2005), *Phytophthora ramorum* Werres, De Cock & Man in 't Veld (Kelly et al., 2007) and *Plasmopara viticola* (Berk. & M.A. Curtis) Berl. & De Toni (Lalancette et al., 1988). To date such models have found many practical applications in different fields including crop production estimation, food security policy, forest management, plant disease control, risk maps development, decision making support and economic losses estimation (Gregory
et al., 2009; Edmonds, 2013; Gonthier & Thor, 2013). In particular warming temperatures, often related to the global climate change, have been identified in many cases as risk factors increasing the detrimental effects of plant pathogens (Harvell et al., 2002; Doohan et al., 2003).

Some observations carried out in Italy, Australia and New Zealand suggest that climate could play a role in promoting high incidence levels of *G. castanea* and *G. smithogilvyi* (Maresi et al., 2013; Shuttleworth et al., 2013). Even if dry and warm periods (Maresi et al., 2013), as well as rainy and warm ones (Smith & Agri, 2008; Smith & Ogilvy, 2008; Gentile et al., 2009; Shuttleworth et al., 2013) occurring during the vegetative season have been suggested to affect the incidence of nut rots, many of these hypotheses still need to be confirmed by statistical evidence.

Several difficulties and constraints arise when modelling the incidence of plant diseases as a function of environmental variables because of sampling adequacy, spatial autocorrelation, spatial pseudoreplication, high collinearity among predictors, noise, lack of model parameters distributional theory and presence of restrictive assumptions regarding the statistical tests (Roy & Roy, 2008; Kéry, 2010; Crawley, 2013). However, recent improvements in statistics have led to the availability of methods allowing plant pathologists to carry out computational analyses that can deal with many of the above cited constraints. For instance, tools once unavailable or mainly confined to the borders of specific fields (e.g. chemometrics, criminology, urban planning) have recently been used in plant pathology (Gonthier et al., 2012a,b; Garbelotto et al., 2013). These methods and tools include Geographic Information Systems (GIS), spatial clustering and spatial autocorrelation analyses, Partial Least Squares Regression (PLSR), cross-validation, bootstrap and Principal Coordinates Analysis (PCoA).

Taking advantage from the above cited methods and tools, the goals of this research were: I) to verify if the spatial pattern of the incidence of *G. castanea* at regional level is consistent with the hypothesis of a climate influence on the disease, II) to test whether climatic parameters and incidence of the disease are correlated, III) to model the incidence of the disease at site level as a function of climatic parameters, and IV) to validate the models.
Materials and methods

Study sites, samplings and fungal isolations

Up to 120 ripe nuts per site (Table 1) were randomly collected at the beginning of November 2011 from the crown of 6-8 trees per site randomly chosen in 12 sweet chestnut orchards located in the north-west of Italy. The sites were selected so as to include a wide latitudinal and longitudinal extension according to the chestnut distribution in the area. Sites were located within a rectangular region of 9080 km² (63 km from E to W, 144 km from S to N) at a mean distance of 12 km. The precise location and the main characteristics of the study sites are reported in Table 1. Samples were transported to the laboratory and stored at 4°C before subsequent analyses.

Under a biological hood, 5 fragments per nut (approximately 1 × 1 × 2 mm in size) were excised and plated in 9 cm diameter Petri dishes filled with Malt Extract Agar (MEA) as previously described (Visentin et al., 2012). Putative colonies of G. castanea were identified by examining macro and micro-morphological features including both the aspect of mycelium and acervuli and the shape and size of conidia. The incidence of G. castanea at site level was calculated as the ratio (%) between the number of infected nuts and the total number of nuts sampled.

Development and application of a taxon-specific molecular diagnostic assay

To confirm the morphological identification, a subset of 36 randomly selected putative colonies of G. castanea and all colonies showing anomalous morphological characters were typed by using a taxon-specific molecular diagnostic assay. Taxon-specific primers for G. castanea were designed based on alignment of ITS (Internal Transcribed Spacer) sequences of 15 species belonging to Gnomoniaceae family. In order to check their specificity, primers were also tested in an optimized
PCR assay using as template the DNA extracted from three ascomycetes fungi frequently associated with chestnut. Details of primers design, DNA extractions, PCR reactions and gel electrophoresis visualization are reported as Supplementary Material (S1).

Geostatistical analyses

The coordinates of each site were recorded with a GPS device (Magellan Mobile Mapper 6) in UTM WGS84 (zone 32N). Geostatistical analyses were implemented in CrimeStat 3.3 (Levine, 2010) to detect the spatial pattern of sites and to test the spatial autocorrelation of incidence levels of *G. castanea*.

The spatial pattern of sites was investigated with the $L(d)$ transformed Ripley’s $K(d)$ function (Mitchell, 2005) where d is the geographic distance among sites. Lower ($L_{csr\text{-}lower}$) and upper ($L_{csr\text{-}upper}$) bounds were calculated for L_{csr}, that is the $L(d)$ function under the assumption of complete spatial randomness (csr) with 2000 simulations and 95% confidence level. The default correction for a rectangular study area was selected. The $L(d)$ function, $L_{csr\text{-}lower}$ and $L_{csr\text{-}upper}$ were plotted against d in order to find distance ranges of significant spatial clustering ($L(d)>L_{csr\text{-}upper}$), of significant spatial dispersion ($L(d)<L_{csr\text{-}lower}$) and the remaining ranges of random spatial pattern (Mitchell, 2005). A Nearest Neighbor Hierarchical Clustering (NNHC) analysis was performed to identify significant spatial clusters of sites and their order (Mitchell, 2005). The consistency between the results of the $L(d)$ function and the NNHC analysis was assessed by measuring the distance between clustering sites (see Results).

The spatial autocorrelation of incidence levels of *G. castanea* was assessed with the General Moran’s Index (I) and with the Getis-Ord General G-statistic (G) (Mitchell, 2005). The latter was calculated in a range of distances from 1 to 100 km (with 100 iterations) to detect the presence of cold and hot spots. The threshold to reject the null hypothesis of tests was set at $P=0.05$.
Climatic analyses

For each site, climatic data were downloaded from the nearest thermo-pluviometric station (ARPA Piemonte, 2011). Those data included daily maximum, mean and minimum temperatures (°C) and the total daily rainfall (mm) from January 1st 2011 to October 31st 2011. To estimate the consistency between the climatic data derived from the thermo-pluviometric stations and the climate of the study sites, the mean distance between the sites and their nearest thermo-pluviometric stations was calculated (Table 1). Moreover, to assess the consistency between the spatial distribution of the sites and the spatial distribution of their nearest thermo-pluviometric stations the correlation between the geographical distance matrices among sites and among their nearest thermo-pluviometric stations was tested with the simple Mantel test.

The correlation between the incidence of the pathogen at site level and the monthly average maximum, mean, minimum temperatures and the monthly average rainfall was assessed with the Spearman’s ρ correlation coefficient analysis (Crawley, 2013).

Each of the 1200 daily values for both temperatures and rainfall was used as variable to perform a Principal Coordinates Analysis (PCoA) on sites. The PCoA was performed on the Euclidean distance matrix calculated from the coordinates of the sites in the space defined by the above cited variables. The minimum number of principal axes accounting for more than 70% of the total variance was retained and the principal coordinates of the sites were calculated. On those principal coordinates a Hierarchical Cluster Analysis (HCA) based on the Euclidean distance matrix and on the Ward agglomerative method (Garbelotto et al., 2013) was run to define groups of sites characterized by similar climatic conditions. The maximum silhouette width and the minimum C-index criteria were used to identify the optimal number of clusters.

The climate conditions between the two clusters of sites detected by the HCA (see Results) were compared with the Mann-Whitney test performed with exact significance (Crawley, 2013) on the average maximum, mean, minimum temperatures and average rainfall of each month. Bootstrap
bias-corrected accelerated percentile confidence intervals were calculated for each monthly average value based on 10000 iterations (Crawley, 2013).

The incidence of *G. castanea* was calculated for the two clusters. The incidence levels were then compared with a χ^2 test.

The above mentioned analyses were carried out in R programming language (R Core Team, 2013) by running the *labdsdv* library for PCoA, the *NbClust* and *clValid* libraries for HCA, the *boot* library for the calculation of the bootstrap confidence intervals and the *ecodist* library for the simple Mantel test.

Model fitting and validation

A PLSR (Wold *et al.*, 2001) was performed to model the incidence of *G. castanea* at site level in relation to the climatic conditions. The incidence value of the pathogen in each site was transformed through the application of the logit function before PLSR models fitting (Crawley, 2013). The logit transformed incidence at site level was used as dependent variable. The monthly average maximum, mean, minimum temperatures and the monthly average rainfall recorded at each site from January to October 2011 were considered as potential predictors. A pre-selection of predictors was performed before models fitting: only the climatic variables being significantly different between the 2 clusters of sites identified with the PCoA-HCA analyses were retained as predictors.

A first set of PLSR models was fitted to sites data including all the pre-selected predictors (hereafter in the text simply defined as predictors) and from 2 to 11 latent variables (LV) (Abdi, 2010). In addition, the null model was also fitted. Every model was identified by the acronym *GnoMod* (*Gnomoniopsis Model*) followed by two indexes indicating the number of LV and the number of predictors. Each *GnoMod* was expressed in terms of a vector-matrix form equation

$$\hat{Y} = XB$$ (Equation 1) where \hat{Y} is the column vector of the predicted values of the incidence of *G. castanea* at site level (i.e. logit of the percentage of nuts infected by *G. castanea*), X is design
matrix of the predictors for a model parameterization including the intercept (i.e. a matrix of the
predictors values whose first column is filled by 1s) and \(\mathbf{B} \) is the column vector of the \(\beta \)
coefficients (i.e. the multiplicative coefficients obtained through PLSR fitting and assigned to each
predictor) (Wold et al., 2001; Kéry, 2010).

For every GnoMod the Akaike Information Criterion (AIC) was calculated as described by Li et
al. (2002) by adding a constant set to 100. LV selection was performed according to the minimum
AIC criterion (Li et al., 2002). For the resulting GnoMod (i.e. the one with lowest AIC), the ΔAIC
between the null model and the actual model was calculated. A semiparametric bootstrap based on
10000 iterations was performed on the ΔAIC, deriving its 95% confidence interval (Carpenter &
Bithell, 2000). On the same model, the internal validation parameters \(Q^2 \) (Wold et al., 2001) and
\(Q_{\text{cum}}^2 \) (Lazraq et al., 2003) were determined by cross-validation. The \(Q^2 \) is similar to \(R^2 \) in classical
Ordinary Least Squares (OLS) regression, but originates from iterative calculus and refers to the
estimation of predictive ability rather than to goodness of fit. Instead \(Q_{\text{cum}}^2 \) provides and estimate of
the internal adequacy of the predictors.

In order to test and validate the effective predictive ability, the GnoMod was run on data of a
validation set (i.e. data not used to fit the model) (Abdi, 2010) gathered from 8 chestnut orchards,
some of which were sampled more than once but in different years during a period lasting from
2007 to 2013 (Table 2). Samplings in these orchards were carried out at the beginning of
November. The incidence of \(G. \) castanea (i.e. observed incidence) was assessed through
morphological identification of isolates as previously described, while the input predictors were
collected for the validation set and then inserted in the GnoMod equation to estimate the incidence
of \(G. \) castanea (i.e. predicted incidence) in logit scale. The predicted and the observed values
recorded for the validation set were used to calculate some external validation indexes including
their squared correlation coefficient and associated P-value (\(R_{\text{obs/pred}}^2 \)) (Roy & Roy, 2008), their
Spearman’s correlation coefficient and related P-value (\(\rho_{\text{obs/pred}} \)) (Gonthier et al., 2012a), the
semiparametric bootstrap 95% confidence interval for the dependent variable based on 10000 iterations (95% CI_Δ) (Carpenter & Bithell, 2000; Abdi, 2010) and the Mean Square Error of Prediction (MSEP) (Aptula et al., 2005). For the 95% CI_Δ, its mean width value (95% CI_{ΔΔ}) was calculated as a summary measure.

The PLS-bootstrap method was applied on the GnoMod to perform predictors selection according to the algorithms of Amato & Esposito Vinzi (2003) and Lazraq et al. (2003) run in their semiparametric variant (Carpenter & Bithell, 2000). This procedure was iterated until no 95% confidence intervals of the predictors coefficients included 0. All the above described indexes were calculated for each nested GnoMod obtained at every step of the PLS-bootstrap method. The collinearity of the predictors was assessed with the Steiger test.

To further assess the consistency among the climatic analyses and the GnoMods equations a simulation was carried out. The simulation consisted in running the equations on the validation set after increasing the predictors values by a multiplicative constant set to 1.01, then to 1.02 and finally to 1.05 and in recording at each step the extent of variation of the mean predicted dependent variable. The effect was estimated by calculating the mean percentage of increase in the predicted dependent variable for a 1% increment of the predictors values.

The PLSR models were fitted and cross-validated with the plsdepot library, while the other algorithms described were compiled in R programming language (R Core Team, 2013).

Results

Incidence of G. castanea and taxon-specific molecular diagnostic assay

A total of 441 colonies were identified as G. castanea based on macro and micro-morphological features. G. castanea was present in nuts from all the study sites. The incidence of the disease ranged from 20.0% to 93.5%, depending on site (Table 1), while the total incidence was 64.6%.
A forward primer (Gc1f, 5'-AGCGGGCATGCTGGTTGAG-3') and a reverse primer (Gc1r, 5'-ACGGCAAGGCAACCGCAGG-3') were designed to amplify a 168 bp PCR product when used with the following thermocycler parameters: an initial cycle with a 95°C denaturation step of 5 min, followed by 35 cycles, each one consisting of a 95°C denaturation step of 30 s, a 62°C annealing step of 45 s and a 72°C extension step of 1 min and a final cycle with a 72°C extension step of 10 min. No cross-reactivity of primers with DNA of ascomycotes frequently associated with chestnut was observed (Fig. 1). The morphological identification of *G. castanea* was confirmed by the results of the taxon-specific molecular diagnostic analysis for the whole subset of isolates.

Geostatistical analyses

The *L*(d) function analysis indicated that the sites were significantly clustered (P<0.05) within a distance range comprised between 7.47 and 15.55 km (*L*(d) > *L*_{CSR-upper}), while for all the other distance ranges the spatial pattern of sites did not differ significantly from a random one (*L*_{CSR-lower} ≤ *L*(d) ≤ *L*_{CSR-upper}) (P>0.05) (Fig. 2).

The NNHC analysis identified three significant first order spatial clusters of sites. The largest cluster (A) included four sites, while the other two (B and C) were composed by only two sites each (Table 1). The mean distance among sites within the clusters was 7.49 km, a value in agreement with the clustering range indicated by the *L*(d) function.

The General Moran’s Index (I) excluded the presence of spatial autocorrelation of the incidence of *G. castanea* (I=0.18; P>0.05). This result was confirmed by the Getis-Ord General G-statistic, that attained not significant values ranging from 0.00 to 0.82 (P>0.05), showing that neither hot spots nor cold spots could be identified.

Climatic analyses
The simple Mantel test revealed a strong and significant correlation between the distance matrices of sites and of their nearest thermo-pluviometric stations (R=0.99; P<0.05). The mean distance between sites and their nearest thermo-pluviometric stations was 4.79 km.

The Spearman’s ρ correlation coefficients analysis (Fig. 3) showed significant positive correlations (P<0.05) between the incidence of *G. castanea* and the monthly average maximum temperatures of July (ρ =0.60), August (ρ =0.62), September (ρ =0.61) and October (ρ =0.62) and the monthly average mean temperatures of June (ρ =0.70) and July (ρ =0.63). Instead, no significant correlations were detected between the incidence of *G. castanea* and the monthly average rainfall, with the only exception of August which showed a negative correlation coefficient (ρ =- 0.60; P<0.05).

In the PCoA only two principal axes were retained, the first one accounting for 56.2% and the second for the 14.3% of the total variance. The HCA performed on the principal coordinates of sites revealed that two clusters of sites sharing similar climatic conditions could be identified (Fig. 4). In fact the maximum silhouette width (0.51) and the minimum C-index (0.33) were obtained when sites were partitioned in two groups. The first cluster (cluster 1) included eight sites (1, 2, 5, 6, 7, 9, 11, 12; see Table 1 for sites codes) while the second one (cluster 2) comprised the remaining four sites (3, 4, 8, 10).

Despite a slightly lower amount of precipitation in late spring, early and late summer in cluster 1 compared to cluster 2, differences between the two clusters in terms of monthly average rainfall along the period from January to October were not significant (Mann-Whitney test; P>0.05). Instead, many significant differences were detected for the monthly average maximum, mean and minimum temperatures between the two clusters, indicating warmer climatic conditions in cluster 1. The monthly average maximum temperatures were significantly higher in cluster 1 than in cluster 2 in every month from January to October (P<0.05), and the same was true for the monthly average mean temperatures from February to October (P<0.05). Significant differences between the two
clusters were also observed in terms of monthly average minimum temperatures in the period ranging from April to July (P<0.05) (Fig. 5).

The incidence of *G. castanea* was 68.2% in cluster 1 and 57.8% in cluster 2. The χ^2 test revealed that the difference of incidence levels between the two clusters was significant (P<0.05).

Model fitting and validation

The pre-selection performed with the climatic analyses allowed for the identification of 23 predictors (i.e. the monthly average temperatures listed in the previous section that were significantly different between the two clusters). The null model attained an AIC value of 128.77, while among the models from *GnoMod*-2-23 to *GnoMod*-11-23 the minimum AIC (78.27) was observed in *GnoMod*-8-23. Thus, from *GnoMod*-8-23, the nested models *GnoMod*-8-19, *GnoMod*-8-16 and *GnoMod*-8-15 were derived with the PLS-bootstrap method (Table 3). The four *GnoMods* differed because of the number of included predictors (i.e. the monthly average maximum, mean, minimum temperatures listed for each model in Table 3). Only in *GnoMod*-8-15 (the last step of the PLS-bootstrap method) the β coefficients were all significantly different from 0 (P<0.05). In all models the ΔAIC was significantly different from 0 and the Steiger test confirmed the collinearity among predictors (P<0.05). The four *GnoMods* showed a constant Q^2 (0.99), while the other internal validation parameter Q^2_{cum} ranged from 0.53 to 0.88. In the 8 orchards included in the validation set the incidence of *G. castanea* was comprised between 5.0% and 83.3% depending on site and sampling year (Table 2). The external validation parameters $R^2_{\text{obs-pred}}$ (attaining values ranging from 0.52 to 0.65) and $\rho_{\text{obs-pred}}$ (comprised between 0.72 and 0.79) were significant (P<0.05) in each *GnoMod*. The 95% CI$_{\text{dvw}}$ varied from 2.95 to 3.21 and the MSEP ranged from 5.81 to 7.68 depending on the model.
For all GnoMods the simulations recorded an increasing value of the predicted dependent variable at each step. On average a 1% increase of the predictors values produced a mean percentage of increase in the predicted dependent variable of 6.07% in GnoMod-8-23, 5.10% in GnoMod-8-19, 6.99% in GnoMod-8-16 and 6.90% in GnoMod-8-15.

Discussion

The nut rot caused by *G. castanea* represents a serious threat for sweet chestnut orchards, as shown in this study by the widespread occurrence and the high incidence of the pathogen in the north-west of Italy. In agreement with the results of previous surveys carried out in Italy (Visentin *et al.*, 2012; Maresi *et al.*, 2013), Australia (Shuttleworth *et al.*, 2013) and New Zealand (Smith & Agri, 2008), *Gnomoniopsis* spp. may be considered as emerging pathogens whose detrimental effects on nut production impose a better understanding of their ecology, epidemiology, biogeography and infection biology. This research was mainly focused at elucidating and modelling the relation between climate and the incidence of *G. castanea* at site level.

The primers Gc1f and Gc1r designed and tested in this study were shown to be taxon-specific for the amplification of the DNA of *G. castanea*, resulting in the successful discrimination between *G. castanea* and other common agents of nut rot of chestnut, such as *Ciboria* sp. and *Phomopsis* sp.

Since this molecular assay was designed *ad hoc* as a tool to validate previous morphological identifications of fungal colonies isolated from nut kernels, further research is needed to assess its diagnostic efficacy on DNA extracted directly from chestnut tissues.

Geostatistical analyses performed on the geographic coordinates of sites i.e. *L(d)* function and NNHC clearly showed that there was a significant clustered spatial pattern of sites at a scale of a few kilometres (~7.5-15.6). This pattern is usually unfavourable in the context of inferential statistics, since it can frustrate the attempt to draw correct conclusions from data because of spatial pseudoreplication (Crawley, 2013). However, it should be noted that the risk of spatial
pseudoreplication is substantial only if the Tobler’s principle holds true at the scale the study is performed. This principle states that the values of a variable (e.g. disease incidence) sampled from neighbouring locations are expected to be more similar than the ones coming from locations set far apart (Mitchell, 2005). The results of the General Moran’s Index and the Getis-Ord General G-statistic revealed that the incidence of *G. castanea* violated the Tobler’s principle and hence that the sampling was not affected by spatial pseudoreplication. Furthermore, the discrepancy between the geographic pattern of sites and the spatial autocorrelation pattern of the incidence of *G. castanea* indicates the scale at which factors potentially related to the disease are operating. In fact, considering that sites geographically clustered do not show similar values of disease incidence, the above mentioned factors are likely to be site-specific, hence variable from site to site at the sampling scale of few kilometres as indicated by the $L(d)$ function.

As reported by previous papers focused on *Gnomoniopsis* spp. associated with chestnut, the climate might stand among the most important factors related to the incidence of nut rot in chestnut orchards (Maresi *et al*., 2013; Shuttleworth *et al*., 2013). This study tested the consistency between the spatial pattern of the incidence of *G. castanea* and the hypothesis of a climate influence on the disease. Based on the results of HCA and NNHC, the lack of spatial autocorrelation of the incidence of *G. castanea* implies also that nearer sites were not more likely to share similar values of the disease incidence. Thus the spatial pattern of incidence of *G. castanea* is consistent with the hypothesis of climate as a site-specific factor influencing the disease. It is worth noting that the average spatial variability of climate in the north-west of Italy, that is often sizeable even at a local scale, is in agreement with these findings. Even though those data came from thermo-pluviometric stations not located within the sampled chestnut orchards, the spatial distribution of these stations was highly correlated with the spatial distribution of the study sites as demonstrated by the results of the simple Mantel test. The mean distance between the study sites and their nearest thermo-pluviometric stations was also consistent with the scale of the study. Both these observations
demonstrate that the selected thermo-pluviometric stations were representative enough to correctly describe the sites climate conditions.

The agreement between the spatial scale of both climate and disease incidence may suggest they are associated, however it does not allow interpretation of the role and the relative importance of different climatic parameters on the disease. For this reason further climatic analyses were carried out. Monthly average temperatures were always positively correlated with the incidence of nut rot caused by *G. castanea* and such correlation was significant for at least the maximum temperatures or the mean temperatures in the period lasting from June to October. This finding suggests that warmer temperatures in the second half of the vegetative season are associated with increasing percentages of rotten nuts. Further evidence confirming this interpretation derives from results of the PCoA and HCA. Cluster 1 was clearly characterized by warmer temperatures than cluster 2, with the most notable differences detectable in the monthly average maximum and mean temperatures. The incidence of *G. castanea* was significantly higher in cluster 1 than in cluster 2, despite the mild magnitude of the difference (+10.4%). This significant but not substantial increase of disease incidence may suggest that other factors in addition to climatic ones are likely to be involved in driving infections and/or disease expression. Although the mechanisms of infection and the pathways of host colonization are mostly unknown for this pathogen, some hypotheses on the role played by warm temperatures on the disease may be formulated. Temperature affects fungal growth and may trigger metabolic and functional changes in fungi improving their trophic balance and sporulating ability (Kendrick, 2000). Such traits are pivotal for phytopathogenic fungi since they are involved in host colonization and disease transmission. Interestingly, *in vitro* growth of *G. castanea* was reported to be optimal at 25°C (Visentin *et al.*, 2012), and such a temperature in this study was attained in the field only in sites of cluster 1, whose disease incidence was higher. However the effects of the temperature on the host side could be involved too. In fact the hypothesis that warmer temperatures could be associated with stress on chestnut and consequently with an increase of incidence of *G. castanea* was recently formulated (Maresi *et al.*, 2013).
In a previous study the severity of the nut rot was mainly interpreted as a potential consequence of drought (Maresi et al., 2013), suggesting that the decrease of the water input provided by the rainfall could have played an important role. Instead, in the opposite hemisphere, abundant rainfalls during the flowering period were shown to be mildly correlated to the incidence of *G. smithogilvyi* (Shuttleworth et al., 2013). A comparison between the ecology of *G. castanea* and *G. smithogilvyi* may be hazardous since they occur in different biogeographical and environmental contexts, yet, at a first glance, the role of rainfall in the epidemiology of these pathogens seems to be still an argument to debate. The results of the climatic analyses performed in our study suggested that the rainfall was not significantly associated with the incidence of the nut rot. In fact no significant correlations were detected between the monthly average rainfall and the incidence of *G. castanea*, with the exception of August where the correlation was significant, but negative. Moreover the above mentioned cluster 1 and cluster 2 were never significantly different when compared in terms of monthly average rainfall. These findings cannot exclude a possible role of drought, but it is worth noting that drought does not depend only on a reduced water input, but also on the water loss which is often increased by warmer temperatures. Furthermore, since no correlation between the rainfall during the flowering period of the chestnut (June-July in the study sites) and the incidence of nut rot was detected, other factors in addition to possible floral infections should be considered to elucidate the infection biology and the epidemiology of *G. castanea*. A better understanding could be achieved with investigations performed on the abundance of the airborne inoculum of this fungus during the year in relation to the phenology of chestnut, on the potential interactions between the pathogen and other organisms affecting chestnut (e.g. the Asian gall wasp) and on the ways the pathogen penetrates into the host tissues. All these factors are, at least in theory, potentially influenced by climatic conditions, yet investigations of these aspects were beyond the aim of this study.

Four PLSR models (i.e. *GnoMods*) were proposed in order to model the incidence of *G. castanea* at site level as the logit percent amount of infected nuts in function of monthly average
maximum, mean, minimum temperatures. Because of the high number of predictors and their collinearity, a simple OLS regression would not have been recommended. It is worth noting that a significant correlation between all the predictors and the dependent variable is not a prerequisite for PLSR fitting (Wold et al., 2001). However, a first pre-selection of predictors may be useful to improve the reliability of the β coefficients. The further selection of the predictors was considered advantageous since it improved the predictive performances, provided that all the four PLSR models obtained were significantly different from the null model. On one hand, the cross-validation suggested that the GnoMods were interchangeable for predictive purposes (since they showed the same Q^2), but GnoMod-8-15 was characterized by a better internal adequacy of the selected predictors (i.e. highest Q^2_{cum} value). On the other hand, the external validation indexes, often considered more reliable for models selection than the internal ones (Aptula et al., 2005), did not provide univocal response. Considering that the ideal model should maximise $R^2_{obs/pred}$ and $\rho_{obs/pred}$ while minimizing 95% CI, and MSEP (Aptula et al., 2005; Roy & Roy, 2008) there is not an outstanding GnoMod. However, combining the internal and external validation indexes, GnoMod-8-16 and GnoMod-8-15 may be the most reliable ones, especially considering the difference in MSEP with the other two models. It should be noted that all GnoMods showed significant and high external validation indexes $R^2_{obs/pred}$ and $\rho_{obs/pred}$. This suggests that no substantial overfitting occurred and that GnoMods are robust tools for predicting the incidence of $G. castanea$ at site level even with data gathered from different sites and/or years. This finding implies that the GnoMods predictions are reliable both under a spatial and under a temporal perspective. It is worth noting that a successful external validation is pivotal for all predictive models, but it is even more important in the case of models fitted on data gathered from a single-sampling session to ensure that no biased coefficients have been obtained. Moreover the simulations carried out with all GnoMods demonstrated the consistency between the association of warmer temperatures with increasing...
disease incidence (as identified by the climatic analyses) and the effects of increasing temperatures on the models response.

Modelling the incidence of the nut rot caused by *G. castanea* as a function of the climate may be interesting under many perspectives. Since *G. castanea* is an emerging pathogen whose ecology is still partially unknown, the fact that significant and robust models endowed with satisfactory predictive performances can be obtained is *per se* a relevant result enlightening there is a quantitative relation between the climate and the incidence of *G. castanea* at site level. Moreover, the GnoMods could be practical tools to predict the incidence before nut harvesting. Such an estimate of the amount of rotten nuts could allow nut growers to evaluate the related economic losses and thus the convenience of nut harvesting. A similar approach has already been proposed, for instance in the estimation of the direct financial losses related to the incidence of hearth rot caused by *Heterobasidion annosum* s.l. in Alpine conifer stands (Gonthier et al., 2012a.). It should be noted that despite the computational complexity for fitting the GnoMods to experimental data, their application to new datasets is fairly trivial since to obtain the prediction of the logit percent amount of nuts infected by *G. castanea* at site level only the matrix X needs to be compiled with the required monthly average maximum, mean and minimum temperatures, whose values are easy to download from widely available meteorological databases.

Beyond the practical applications, these models could also provide the researcher with equations able to quantify the disease incidence under different climate change scenarios, possibly helping in the interpretation of the epidemiology of *G. castanea*. Assuming that the global climate change implies for the future a long-term warming of the temperatures, according to our results we might expect on average an increase of the incidence of *G. castanea* in analogy with documented case studies involving other plant pathogens (Harvell *et al*., 2002; Doohan *et al*., 2003). Despite our results showed that temperatures are associated with the incidence of *G. castanea*, we cannot exclude that other climatic variables not investigated in our study could play a role. Relative humidity, wind and solar radiation have been reported to be related to fungal spores dispersion and
survival (Munk, 1981; Rotem et al., 1985; Kendrick, 2000), yet those climatic variables are often not available. In fact only a few thermo-pluviometric stations belonging to the official networks managed by regional or national agencies are equipped with the devices needed to measure those variables, and this is particularly true in the mountain areas where chestnut orchards are located.

In conclusion, this study showed that climate is a site-specific factor that, at a scale of a few kilometres, can affect the incidence of nut rot caused by *G. castanea*. It was shown that warm temperatures during the months before nut harvesting are associated with increasing amount of rotten nuts and that the incidence of the disease can be modelled based on temperature values.

Acknowledgements

This study was supported by a grant of Regione Piemonte through the activity of the “Chestnut Growing Center”. The authors wish to thank Giovanni Bosio (Servizio Fitosanitario Regione Piemonte), Giacomo Tamietti and Silvia Gentile (University of Torino) for technical assistance as well as the anonymous Referees that, with their suggestions, contributed to improve the paper.

References

Figures legends

Figure 1. Cross reactivity test for taxon-specific primers Gc1f/Gc1r. Gnomoniopsis castanea MUT 455 (lanes 1 and 5), Cryphonectria parasitica (lanes 2 and 6), Ciboria sp. (lanes 3 and 7) and Phomopsis sp. (lanes 4 and 8) were amplified with primers combination ITS1f and ITS4 and with primers combination Gc1f and Gc1r. No bands were observed with primers combination Gc1f and Gc1r for C. parasitica, Ciboria sp. and Phomopsis sp. Negative Controls (NC) were also included. M is the molecular weight marker 100-bp DNA Ladder.

Figure 2. Spatial pattern of sites investigated with the $L(d)$ transformed Ripley’s $K(d)$ function. The $L(d)$ function is plotted against the geographic distance (d) among sites as well as the upper and lower bounds ($L_{csr-upper}$ and $L_{csr-lower}$) of the 95% confidence interval simulated under the assumption of complete spatial randomness. A significant spatial clustering of sites occurs in the interval between 7.47 and 15.55 km, where $L(d) > L_{csr-upper}$.

Figure 3. Spearman’s ρ correlation analysis between the incidence of G. castanea, temperatures and rainfall. The Spearman’s ρ correlation coefficient is indicated for each climatic parameter (monthly average maximum, mean, minimum temperatures and rainfall) from January to October. Asterisks show significant ρ values (P<0.05).

Figure 4. Multivariate analyses of sites with similar climatic conditions. a) Each site (see codes in Table 1) is projected as a point in a bi-dimensional space defined by the Principal Coordinates Analysis (PCoA). Nearer points share more similar climatic conditions than farther ones. b) The Hierarchical Cluster Analysis (HCA) performed on the principal coordinates of the sites shows that two clusters of sites sharing similar climatic conditions can be identified (cluster 1 and cluster 2). Sites belonging to the same cluster are also circled in the principal coordinates space (a).
Figure 5. Comparisons of temperatures and rainfalls between the clusters identified with PCoA and HCA. The monthly average maximum, mean and minimum temperatures and the monthly average rainfall (a, b, c and d, respectively) were compared between cluster 1 and cluster 2. The 95% bootstrap confidence intervals are reported for each value. For each month, different letters next to the plotted points indicate a significant difference detected by the Mann-Whitney exact test (P<0.05).
Fig. 1
Fig. 2

![Graph showing functions L(d), Lcsr, Lcsr-upper, and Lcsr-lower against distance d (km). The graph highlights the distances 7.47 km and 15.55 km.]
Fig. 3

The graph shows the temperature and rainfall data for the months of January to October. The data points are represented by different symbols:

- ●: average maximum temperature
- ▲: average mean temperature
- ■: average minimum temperature
- ×: average rainfall

The x-axis represents the months from January to October, and the y-axis represents the temperature range from -1.0 to 1.0.
Fig. 4

(a) Principal axis 1 vs. principal axis 2

(b) Dendrogram of clustering heights

Cluster 2

Cluster 1
Table 1. Main characteristics of study sites sampled in 2011 for the assessment of the incidence of *Gnomoniopsis castanea*. For each site, the incidence of *G. castanea* and the results of the Nearest Neighbor Hierarchical Clustering (NNHC) are reported. Sites included in the same geographical cluster are marked with the same capital letter, while sites not included in any cluster are labelled with –.

<table>
<thead>
<tr>
<th>Site name</th>
<th>Site code</th>
<th>UTM WGS84 coordinates (m)</th>
<th>Altitude (m a.s.l.)</th>
<th>Exposure</th>
<th>Soil type (Soil Taxonomy)</th>
<th>Number of sampled nuts</th>
<th>G. castanea incidence (%)</th>
<th>NNHC cluster</th>
<th>Distance from the nearest thermo-pluviometric station (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borgo San Dalmazzo</td>
<td>1</td>
<td>E 378203.3 N 4909837.6</td>
<td>655</td>
<td>ENE</td>
<td>Typic Hapludalf</td>
<td>40</td>
<td>85.0</td>
<td>A</td>
<td>6.17</td>
</tr>
<tr>
<td>Boves</td>
<td>2</td>
<td>E 385186.1 N 4907245.0</td>
<td>783</td>
<td>E</td>
<td>Typic Hapludalf</td>
<td>120</td>
<td>69.2</td>
<td>A</td>
<td>2.98</td>
</tr>
<tr>
<td>Donato</td>
<td>3</td>
<td>E 414851.2 N 5043995.9</td>
<td>1011</td>
<td>SSW</td>
<td>Typic Dystrudept</td>
<td>120</td>
<td>55.0</td>
<td>–</td>
<td>2.32</td>
</tr>
<tr>
<td>Donnas</td>
<td>4</td>
<td>E 402474.5 N 5048801.2</td>
<td>848</td>
<td>SE</td>
<td>n.a.*</td>
<td>37</td>
<td>59.5</td>
<td>–</td>
<td>8.86</td>
</tr>
<tr>
<td>Envie</td>
<td>5</td>
<td>E 371375.2 N 4950168.6</td>
<td>285</td>
<td>flat</td>
<td>Typic Hapludalf</td>
<td>80</td>
<td>77.5</td>
<td>B</td>
<td>10.51</td>
</tr>
<tr>
<td>Mattie</td>
<td>6</td>
<td>E 351141.2 N 4995572.5</td>
<td>1170</td>
<td>ENE</td>
<td>Typic Dystrudept</td>
<td>40</td>
<td>20.0</td>
<td>C</td>
<td>6.50</td>
</tr>
<tr>
<td>Monteu Roero</td>
<td>7</td>
<td>E 414064.5 N 4960599.5</td>
<td>350</td>
<td>NE</td>
<td>Psammentic Haplustalf</td>
<td>46</td>
<td>93.5</td>
<td>–</td>
<td>4.53</td>
</tr>
<tr>
<td>Peveragno</td>
<td>8</td>
<td>E 389871.2 N 4907514.9</td>
<td>680</td>
<td>NNW</td>
<td>Typic Hapludalf</td>
<td>40</td>
<td>80.0</td>
<td>A</td>
<td>2.18</td>
</tr>
<tr>
<td>Robilante</td>
<td>9</td>
<td>E 381773.9 N 4904511.4</td>
<td>695</td>
<td>NNE</td>
<td>Typic Hapludalf</td>
<td>40</td>
<td>75.0</td>
<td>A</td>
<td>2.26</td>
</tr>
<tr>
<td>Sanfront</td>
<td>10</td>
<td>E 365472.8 N 4944613.2</td>
<td>607</td>
<td>SW</td>
<td>Typic Dystrudept</td>
<td>40</td>
<td>42.5</td>
<td>B</td>
<td>3.87</td>
</tr>
<tr>
<td>Torre Pellice</td>
<td>11</td>
<td>E 357449.6 N 4965227.1</td>
<td>725</td>
<td>SSW</td>
<td>Typic Hapludalf</td>
<td>40</td>
<td>65.0</td>
<td>–</td>
<td>3.85</td>
</tr>
<tr>
<td>Villar Focchiardo</td>
<td>12</td>
<td>E 359474.5 N 4995073.5</td>
<td>1150</td>
<td>WNW</td>
<td>Typic Dystrudept</td>
<td>40</td>
<td>45.0</td>
<td>C</td>
<td>3.48</td>
</tr>
</tbody>
</table>

* not available
Table 2. Main characteristics of validation set sites sampled from 2007 to 2013 for the assessment of the incidence of *G. castanea* and for the external validation of the *GnoMods*.

<table>
<thead>
<tr>
<th>Site name</th>
<th>UTM WGS84 coordinates (m)</th>
<th>Altitude (m a.s.l)</th>
<th>Exposure</th>
<th>Soil type (Soil Taxonomy)</th>
<th>Number of sampled nuts</th>
<th>Sampling year</th>
<th>G. castanea incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bastianetti (Italy)</td>
<td>E 420752.2, N 4896438.9</td>
<td>608</td>
<td>SSE</td>
<td>Typic Hapludalf</td>
<td>40</td>
<td>2012</td>
<td>35.0</td>
</tr>
<tr>
<td>Boves (Italy)</td>
<td>E 385186.1, N 4907245.0</td>
<td>783</td>
<td>E</td>
<td>Typic Hapludalf</td>
<td>40</td>
<td>2007</td>
<td>80.0</td>
</tr>
<tr>
<td>Gaiola (Italy)</td>
<td>E 371742.5, N 4910445.3</td>
<td>815</td>
<td>ESE</td>
<td>Typic Hapludalf</td>
<td>40</td>
<td>2012</td>
<td>32.5</td>
</tr>
<tr>
<td>Peveragno (Italy)</td>
<td>E 389871.2, N 4907514.9</td>
<td>680</td>
<td>NNW</td>
<td>Typic Hapludalf</td>
<td>102</td>
<td>2007</td>
<td>69.6</td>
</tr>
<tr>
<td>Robilante (Italy)</td>
<td>E 381773.9, N 4904511.4</td>
<td>695</td>
<td>NNE</td>
<td>Typic Hapludalf</td>
<td>37</td>
<td>2008</td>
<td>59.5</td>
</tr>
<tr>
<td>San Giorio di Susa (Italy)</td>
<td>E 357285.4, N 4997786.6</td>
<td>544</td>
<td>NNE</td>
<td>Typic Dystrudept</td>
<td>40</td>
<td>2013</td>
<td>10.0</td>
</tr>
<tr>
<td>Saint Auban (France)</td>
<td>E 315409.7, N 4855943.8</td>
<td>1240</td>
<td>N</td>
<td>n.a.*</td>
<td>40</td>
<td>2011</td>
<td>52.5</td>
</tr>
<tr>
<td>Valdieri (Italy)</td>
<td>E 371447.2, N 4904194.7</td>
<td>886</td>
<td>E</td>
<td>Typic Dystrudept</td>
<td>60</td>
<td>2007</td>
<td>83.3</td>
</tr>
</tbody>
</table>

* not available
Table 3. Coefficients and indexes of the Partial Least Squares Regression (PLSR) models GnoMods. The β coefficients are associated with the predictors indicated in subscripts where tmax, tmed and tmin stand for monthly average maximum, mean and minimum temperatures followed by the abbreviation of the month they refer to. Next to the β coefficients their 95% confidence intervals are shown. The ΔAIC with its 95% confidence interval, the internal validation indexes Q^2, Q_{cum}^2 as well as the external ones $R_{obs\ pred}^2$, $\rho_{obs\ pred}$, 95% CI$_{dvw}$ and MSEP are reported for all models. After a coefficient or a parameter the symbol * indicates significance (P<0.05), no symbol indicates no significance (P≥0.05), while (~) indicates that no test is associated with the value. The symbol – replacing coefficients values indicates that their associated predictors were removed from the model based on the outcomes of the PLS-bootstrap analysis.
<table>
<thead>
<tr>
<th></th>
<th>GnoMod-8-23</th>
<th>GnoMod-8-19</th>
<th>GnoMod-8-16</th>
<th>GnoMod-8-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>$-7.97^* (-8.98; -6.96)$</td>
<td>$-6.92^* (-8.53; -5.32)$</td>
<td>$-6.62^* (-8.40; -4.84)$</td>
<td>$-6.92^* (-8.71; -5.13)$</td>
</tr>
<tr>
<td>$\beta_{\text{tmax-jan}}$</td>
<td>0.01 (-0.11; 0.13)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$\beta_{\text{tmax-feb}}$</td>
<td>0.10 (-0.08; 0.28)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$\beta_{\text{tmax-mar}}$</td>
<td>-0.11* (-0.17; -0.04)</td>
<td>-0.05 (-0.13; 0.03)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$\beta_{\text{tmax-apr}}$</td>
<td>-0.15* (-0.24; -0.06)</td>
<td>-0.08 (-0.23; 0.08)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$\beta_{\text{tmax-may}}$</td>
<td>0.03 (-0.02; 0.09)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$\beta_{\text{tmax-jun}}$</td>
<td>0.52* (0.46; 0.58)</td>
<td>0.52* (0.47; 0.58)</td>
<td>0.50* (0.43; 0.57)</td>
<td>0.50* (0.43; 0.57)</td>
</tr>
<tr>
<td>$\beta_{\text{tmax-jul}}$</td>
<td>0.40* (0.37; 0.43)</td>
<td>0.45* (0.39; 0.50)</td>
<td>0.46* (0.37; 0.55)</td>
<td>0.46* (0.36; 0.56)</td>
</tr>
<tr>
<td>$\beta_{\text{tmax-aug}}$</td>
<td>0.05 (-0.01; 0.11)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$\beta_{\text{tmax-sep}}$</td>
<td>0.04* (0.01; 0.08)</td>
<td>0.05* (0.01; 0.09)</td>
<td>0.04 (-0.03; 0.12)</td>
<td>-</td>
</tr>
<tr>
<td>$\beta_{\text{tmax-oct}}$</td>
<td>0.37* (0.27; 0.48)</td>
<td>0.39* (0.25; 0.54)</td>
<td>0.33* (0.17; 0.49)</td>
<td>0.36* (0.19; 0.52)</td>
</tr>
<tr>
<td>$\beta_{\text{tmed-feb}}$</td>
<td>0.32* (0.06; 0.57)</td>
<td>0.42* (0.14; 0.70)</td>
<td>0.58* (0.33; 0.84)</td>
<td>0.52* (0.27; 0.78)</td>
</tr>
<tr>
<td>$\beta_{\text{tmed-mar}}$</td>
<td>-1.20* (-1.28; -1.13)</td>
<td>-1.18* (-1.3; -1.07)</td>
<td>-1.21* (-1.35; -1.07)</td>
<td>-1.20* (-1.34; -1.06)</td>
</tr>
<tr>
<td>$\beta_{\text{tmed-apr}}$</td>
<td>-0.42* (-0.52; -0.33)</td>
<td>-0.44* (-0.54; -0.34)</td>
<td>-0.46* (-0.59; -0.33)</td>
<td>-0.46* (-0.59; -0.33)</td>
</tr>
<tr>
<td>$\beta_{\text{tmed-may}}$</td>
<td>-0.15* (-0.19; -0.11)</td>
<td>-0.14* (-0.20; -0.07)</td>
<td>-0.14* (-0.22; -0.05)</td>
<td>-0.14* (-0.23; -0.05)</td>
</tr>
<tr>
<td>$\beta_{\text{tmed-jun}}$</td>
<td>0.34* (0.23; 0.45)</td>
<td>0.30* (0.17; 0.43)</td>
<td>0.21* (0.03; 0.38)</td>
<td>0.20* (0.01; 0.40)</td>
</tr>
<tr>
<td>$\beta_{\text{tmed-jul}}$</td>
<td>-0.32* (-0.38; -0.25)</td>
<td>-0.29* (-0.37; -0.21)</td>
<td>-0.30* (-0.41; -0.19)</td>
<td>-0.31* (-0.43; -0.20)</td>
</tr>
<tr>
<td>$\beta_{\text{tmed-aug}}$</td>
<td>-0.11* (-0.19; -0.02)</td>
<td>-0.12 (-0.26; 0.03)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$\beta_{\text{tmed-sep}}$</td>
<td>-0.39* (-0.47; -0.31)</td>
<td>-0.42* (-0.54; -0.30)</td>
<td>-0.39* (-0.64; -0.15)</td>
<td>-0.35* (-0.65; -0.05)</td>
</tr>
<tr>
<td>$\beta_{\text{tmed-oct}}$</td>
<td>-1.12* (-1.21; -1.02)</td>
<td>-1.16* (-1.27; -1.06)</td>
<td>-1.23* (-1.41; -1.06)</td>
<td>-1.22* (-1.39; -1.04)</td>
</tr>
<tr>
<td>$\beta_{\text{tmin-apr}}$</td>
<td>0.54* (0.41; 0.66)</td>
<td>0.47* (0.30; 0.65)</td>
<td>0.49* (0.32; 0.66)</td>
<td>0.46* (0.28; 0.64)</td>
</tr>
<tr>
<td>$\beta_{\text{tmin-may}}$</td>
<td>0.55* (0.39; 0.71)</td>
<td>0.61* (0.42; 0.79)</td>
<td>0.57* (0.38; 0.76)</td>
<td>0.58* (0.39; 0.77)</td>
</tr>
<tr>
<td>$\beta_{\text{tmin-jun}}$</td>
<td>1.93* (1.72; 2.15)</td>
<td>1.88* (1.59; 2.16)</td>
<td>1.74* (1.45; 2.03)</td>
<td>1.79* (1.48; 2.10)</td>
</tr>
<tr>
<td>$\beta_{\text{tmin-jul}}$</td>
<td>-1.24* (-1.36; -1.11)</td>
<td>-1.22* (-1.36; -1.08)</td>
<td>-1.19* (-1.35; -1.04)</td>
<td>-1.19* (-1.35; -1.04)</td>
</tr>
<tr>
<td>ΔAIC</td>
<td>50.51* (24.26; 77.06)</td>
<td>50.66* (28.93; 72.39)</td>
<td>48.34* (31.75; 64.93)</td>
<td>48.82* (28.80; 68.84)</td>
</tr>
<tr>
<td>Q^2</td>
<td>0.99(−)</td>
<td>0.99(−)</td>
<td>0.99(−)</td>
<td>0.99(−)</td>
</tr>
<tr>
<td>Q_{cum}^2</td>
<td>0.53(−)</td>
<td>0.78(−)</td>
<td>0.79(−)</td>
<td>0.88(−)</td>
</tr>
<tr>
<td>$R_{\text{obst pred}}^2$</td>
<td>0.52*</td>
<td>0.59*</td>
<td>0.65*</td>
<td>0.63*</td>
</tr>
<tr>
<td>$R_{\text{obst pred}}$</td>
<td>0.78*</td>
<td>0.79*</td>
<td>0.72*</td>
<td>0.79*</td>
</tr>
<tr>
<td>95% CI Cl_{dvw}</td>
<td>3.21(−)</td>
<td>2.98(−)</td>
<td>2.95(−)</td>
<td>3.05(−)</td>
</tr>
<tr>
<td>MSE$^\text{P}$</td>
<td>7.68(−)</td>
<td>8.08(−)</td>
<td>5.81(−)</td>
<td>6.00(−)</td>
</tr>
</tbody>
</table>