

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Tailored properties of hematite particles with different size and shape

This is a pre print version of the following article:		
Original Citation:		
Availability:		
This version is available http://hdl.handle.net/2318/153534	since 2016-10-10T08:35:40Z	
Published version:		
DOI:10.1016/j.dyepig.2014.11.024		
Terms of use:		
Open Access		
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.		

(Article begins on next page)

1	Tailored properties of hematite particles with different size and shape
2	L. Demarchis ^{a,*} , F. Sordello ^a , M. Minella ^a , C. Minero ^a
3	
4	^a Department of Chemistry and NIS center of excellence, University of Turin, via Pietro Giuria 7, 10125, Turin (TO),
5	Italy
6	* Corresponding author: <i>E-mail address:</i> <u>luca.demarchis@unito.it;</u> <i>Phone:</i> +390116705298
7	
8	Abstract
9	
10	Cubic and spherical hematite red cool pigments with different size were synthesized following two
11	different methods. Cubic and spherical particles with larger sizes were obtained through a gel-sol
12	method using chloride and nitrilotriacetate as shape controllers, respectively, and changing the
13	starting temperature to control the final particles size. Spherical particles with smaller sizes were
14	synthesized in a faster way following a catalytic phase transformation method in which the size
15	control is obtained by varying the reagent concentration. Cool properties for the obtained particles
16	were evaluated by calculating the Solar Reflectance for all hematite samples. The cool properties
17	differ depending on the particle size and shape. By controlling the final size and morphology of
18	pigment particles it is possible to obtain pigments with the desired cool properties. Pigment color
19	properties were also evaluated using CIE XYZ and CIE xyY color spaces.
20	
21	Keywords: Hematite; Cool pigments; Solar Reflectance; Size control; Shape controlled particles
22	
23	
24	
25	

26 **1. Introduction**

27

The removal of natural vegetation and its replacement with buildings and paved surfaces [1] lead to an increase of temperature in urban city centers that in some cases can be also 10 °C higher than that of nearby rural places [2]. This phenomenon, called Urban Heat Island (UHI), has the effect of increasing the demand of energy (with a subsequent increase of energy supply costs), accelerating the formation of harmful smog and causing human thermal discomfort and health problems owing to the intensification of heat waves over cities [3-4].

34 Strategies for the mitigation of the UHI effects have been reported by Coutts et al. [5]. The development of new sustainable cities that use materials with high solar reflectance and thermal 35 36 emissivity, the so-called "cool materials" has been proposed. Usually, cool materials are used to 37 decrease the heat flow entering in a building. Their surface temperature is much lower than those of 38 typical building materials and, if used on an urban scale, they help to decrease the air temperature of 39 the urban environment reducing the harmful effects related to the UHI. Considerable interest has 40 been directed to the roofing materials [6-9]. Among these, white materials are obviously effective. Coatings with colored conventional pigments tend to absorb solar light (both Vis and NIR radiation, 41 42 which conveys more than 50% of the sunlight power) resulting in heat accumulation [10]. The 43 replacement of these conventional absorbing pigments with "cool pigments", which absorb less 44 NIR radiation, makes possible coatings with higher solar reflectance, but similar in color to that of 45 conventional or old-style roofing materials. Cool colored coatings can then be applied on roofs, 46 building envelopes and other surfaces of the urban environment, such as exterior finishes and 47 paints, or they can be used to produce building materials that reflect more sunlight than 48 conventionally pigmented products.

For this purpose, in recent years pigments of different colors with cool properties have been
commercialized. The color features of pigment materials (one or more) depend on their visible

51 absorption, on their size (which varies scattering properties), and on their composition [11]. To tune 52 the color properties of a material, pigments with different chemical composition are 53 used. Sometimes, they contains environmental unfriendly metals such V and rare earths [12], or are toxic, containing Cd or Cr. The main proposed cool pigments contain inorganic complex pigments, 54 55 such as chromium green, cobalt blue, cadmium stannate, lead chromate, cadmium yellow and 56 chromium titanate [10, 13]. Among NIR reflective pigments with promising characteristics there are 57 rare earth mixed oxides such as Me_xMnO_y (where Me = Y, Ce, Pr, Nd and Sm [12, 14]), or rare 58 earth metals - molybdenum mixed oxides such as Y₆MoO₁₂ [15]. Another approach is the use of 59 pigments with particles coated with a metallic film [16]. The main drawback of the cool pigments 60 obtained with both the described approaches is the high costs. 61 The choice of color depends on tradition and aesthetic needs, e.g. Italian traditional roofs are dark

red, while in Thailand they are green. A database with optical characteristics of a huge number of
pigments [17] is available to assist the optimization of the Solar Reflectance for industries which
operate in the building sector. In the cited database there are four red pigments based on iron
oxides.

In this work, we report the synthesis and investigation of hematite-based cool red pigments. It is known that for a given material (and for given optical constants) the optical properties depend on size, morphology and cluster aggregation of particles, so a set of syntheses was performed to obtain hematite particles with different size and shape. The optical properties of all the synthesized samples were analyzed with the aim to give insights into the relation between these properties and the morphological features of the pigment particles. We obtained different kinds of morphology suitable for cool pigment applications.

73

74 **2. Materials and methods**

78	The hematite particles were synthetized using (when needed) iron (III) chloride hexahydrate
79	(Sigma-Aldrich, > 99%), iron (II) chloride tetrahydrate (Fluka, > 99%), sodium hydroxide (Sigma-
80	Aldrich, > 99%), hydrochloric acid (Carlo Erba, 37%), nitrilotriacetic acid trisodium salt (Fluka, >
81	98%), sodium sulphate (Aldrich, > 99%) and sodium chloride (Carlo Erba, > 99,5%). For sample
82	washing, 1 M ammonia solution (Fluka, 25%) and 0.5 M sodium nitrate solution (Sigma-Aldrich, >
83	99%) were utilized. Ultra-pure water produced by a Milli-Q TM system (Millipore) was used.
84	Commercial polyacetovinyl emulsion (Vinavil NPC, Vinavil SPA) was used as dispersing medium
85	for the preparation of paints.
86	
87	2.2 Hematite syntheses
88	
89	In literature several synthetic methods to produce hematite particles are reported [18-19 and
90	references therein]. In this work, monodisperse hematite particles with different size and shape have
91	been obtained following two different procedures.
92	The first, proposed by Sugimoto [20], is a gel-sol transformation procedure which produces
93	hematite particles starting from inexpensive ferric chloride. The process involves a two-step phase
94	transformation from concentrated Fe(OH) ₃ gel via β -FeOOH (akaganeite) to α -Fe ₂ O ₃ [21]. In the
95	standard procedure 45 mL of 6 M NaOH were slowly added to 50 mL of magnetically stirred 2 M
96	FeCl ₃ solution. The slurry was then kept under stirring for additional 10 minutes. The obtained
97	Fe(OH) ₃ gel was then transferred into a tightly stoppered bottle and heated at 100°C for at least 3
98	days until the conversion occurred.
99	The second synthetic method follows the catalytic phase transformation mechanism proposed by
100	Liu and co-workers [22], in which lower conversion times are attained by the addition of Fe(II) in

101catalytic amount to the initial $Fe(OH)_3$ gel, lower conversion times are attained. The following102standard experimental procedure was followed: 6M NaOH was slowly added to 50 mL of a103magnetically stirred 2M FeCl₃ solution (unless for experiments in which [Fe(III)] was changed)104until pH 7 (typically ca. 49 mL). Then, FeCl₂ was added in the ratio [Fe(II)]/[Fe(III)] = 0.02 to the105gel and pH was readjusted to 7 adding dilute NaOH. The slurry was kept under stirring for106additional 10 minutes and then refluxed (for at least 30 minutes) until conversion to hematite107occurred.

The size of final hematite particles was modified by varying different experimental parameters such
as pH, temperature, reagents concentration and FeCl₂ amount.

110 Several anions have been shown to play a decisive role in the anisotropic growth of hematite

111 particles [23-24]. These shape controllers selectively adsorb on the surface of nuclei regulating the

112 growth of specific hematite crystal faces determining the final particle morphology. Several

113 syntheses were performed for both methods adding anions such as chloride, sulphate and

114 nitrilotriacetate to obtain hematite particles with pseudocubic, ellipsoidal and spherical morphology,

115 respectively. For this purpose, shape controllers 0,05 M were added to the initial gel of iron

116 hydroxide before the heat treatment.

117 After heat treatment, all the as-prepared hematite samples were washed with ultra pure water three

118 times, once with 1 M NH₃ and three times again with ultra pure water. The pigments were separated

119 from the supernatant with centrifugation at 1370 g. Then each sample was dried at 70°C.

120

121 2.3 Hematite characterization

122

123 The crystalline phase of the samples was identified with X-Ray Diffraction and Raman analyses. X-

124 ray powder diffraction (XRD) patterns have been recorded with a PW3050/60 X'Pert PRO MPD

125 diffractometer from PANalytical working in Bragg-Brentano configuration. The X-ray source was a

126	high power ceramic tube PW3373/10 LFF with a Cu anode and the instrument was equipped with a
127	Ni filter to attenuate Kb. Diffracted photons were collected with a real time multiple strip
128	X'celerator detector. Powder samples have been hosted on SiO ₂ amorphous sample holder. Raman
129	spectroscopy analyses were performed with a LABRAM HRVIS (Jobin Yvon), fitted with an
130	Olympus BX41 optical microscope. Raman spectra were excited using the 533 nm line of a Nd
131	solid state laser. The laser power was 100 mW. Spectra were collected over the range 80–1525 cm ⁻¹
132	at a resolution of approximately 2 cm^{-1} .
133	Size and shape of synthesized hematite particles were determined through scanning electron

155 Size and shape of synarcsized hematice particles were determined through seaming electron

134 microscopy by a Scanning Electron Microscope Zeiss model EVO-50 XVP operating at 15 kV,

135 beam current 50.0 μ A, probe intensity 50 pA.

136

137 2.4 Optical properties evaluation

138

139 Total reflectance analyses were carried out to determine scattering properties of the samples using a 140 dual-beam Varian Cary 5000 UV-VIS-NIR Spectrometer with an integrating sphere. The internal 141 walls of the sphere are coated with Polytetrafluoroethylene (PTFE) and BaSO₄ was used as 142 reference material. Light sources are a deuterium lamp in the 185–350 nm range and a halogen 143 lamp in the 350-3300 nm range. The detection is performed by means of R928 PMT (185–800 nm) 144 and Cooled PbS (800-3300 nm) detectors. The analyses were performed over the range 200-2500 nm. To estimate the solar reflectance (SR) of obtained hematite, the total reflectance data were 145 146 weighted on solar irradiance data for each sample following the equation:

147
$$SR = \frac{\int_{280}^{2500} P_{solar}(\lambda) \bullet R(\lambda)}{\int_{280}^{2500} P_{solar}(\lambda)}$$
(1)

148 in which $P_{solar}(\lambda)$ is the AM 1 solar irradiance [25]; $R(\lambda)$ is the measured total (diffuse and specular) 149 reflectance for the investigated material. *SR* varies from 0 to 1, for a total absorptive and total 150 reflective material, respectively, and represents the capability of reflecting sunlight; the higher it is, 151 the better will be the cool properties for the investigated material.

152

153 2.5 Color evaluation

154

157

155 Color measurements were performed using tristimulus analysis and the CIE XYZ 1931and CIE xyY156 color spaces.

158 Optics "SpectraSuite" software. Reflectance analyses were carried out using a Micropack ISP-50-8-

Analyses were performed recording reflectance spectra and elaborating data by means of Ocean

159 R-GT integrating sphere connected to the light source and to the detector with optical fibers.

160 Irradiation was performed using a Micropack DH-2000 UV-Vis-NIR Lightsource and the detection

161 by means of an Ocean Optics USB2000 detector. A Micropack BaSO₄ standard was used as

162 reference. Analyses were carried out on paints with a load of ca. 3% in weight of pigments. Paints

163 were prepared dispersing 0.12 g of pigments in 1 ml of ultra-pure water by sonication for 30

164 minutes; then 3 g of commercial polyacetovinyl emulsion were added to the system and additional

- 165 sonication for 30 minutes was performed. Some drops were then poured on white and black
- 166 paperboards and spread using a metallic filmographer, obtaining films of about 250 µm of
- 167 thickness. Paints were first dried for 15 minutes in air and then at 75°C for 15 minutes.
- 168
- 169 **3. Results and discussion**
- 170

171 *3.1 Shape and size control*

Figure 1 and Figure 2 show XRD patterns and Raman spectra for a selection of the pigments synthesized; similar results were obtained for all the other pigments. Analyses were carried out on samples obtained following the two synthetic procedures with different morphology and size. In both XRD and Raman analyses, all signals are relative to α -Fe₂O₃ phase, indicating that pure hematite particles were obtained. Both XRD and Raman also indicate that no other crystalline phases are formed.

Figure 3 and Figure 4 show SEM micrographs for synthesized particles in the presence of shape controllers. In the case of the catalytic phase transformation procedure, it was not possible to obtain shape control and all the samples showed a spherical morphology. Instead, different kinds of particle morphology were obtained in the case of gel-sol method. Accordingly to literature data [23-24], pseudocubic (Figure 4a), ellipsoidal (Figure 4b) and spherical-ovoidal (Figure 4c) particles are obtained by adding chloride, sulphate and nitrilotriacetate, respectively.

185 The different ability of these anions as shape controllers as a function of the adopted synthetic 186 method can be explained considering the different heat treatments and conversion rates in the two 187 methods. The catalytic phase transformation syntheses show high conversion rates and turbulent 188 motions are present in the system during the treatment. These two events hinder the attainment of 189 adsorption equilibrium of shape controllers on the surface compromising the anisotropic growth of 190 hematite nuclei, and yielding only spherical particles. Instead, in the gel-sol procedure the synthesis 191 was carried out in quiet and the conversion rate was low: hematite nuclei can grow regularly and the 192 effect of shape controllers can be maximized.

Results also show that for both synthetic methods, obtained particles show quite uniform size; only in the case of addition of sulphate in the gel-sol method is size inhomogeneity observed. Using the reported synthetic methods it was possible to obtain large quantities of hematite particles with different shapes with uniform size distribution, necessary for the study of the relation between particle morphology and SR.

The particles size control for both gel-sol and catalytic phase transformation method can be obtained varying the experimental conditions. In the case of gel-sol preparations, an appreciable variation of the final particles size is obtained varying the temperature of the system in the initial step of addition of NaOH to FeCl₃. Temperature influences the nucleation rate of iron hydroxide; increasing the temperature, a higher amount of nuclei is formed and subsequently smaller hematite particles are obtained.

Figure 5 shows the final particle diameter as a function of the synthesis temperature demonstrating
that hematite particles can be synthesized in a wide range of size, from 500 to 1300 nm. Other
syntheses were performed varying other parameters such as pH or the synthesis temperature in the
presence of Fe(II) ions, but no appreciable effect on the final size of the particles was observed
(figures S1, S2 and S3 of the supporting information, hereafter SI).
With the catalytic phase transformation method of synthesis, size control can be obtained tuning the

210 concentration of FeCl_{3} . Increasing the amount of iron chloride, bigger particles are obtained thanks 211 to the higher amount of iron suitable for the growth of hematite particles (Figure 6).

The particles are always lower in size (100 - 400 nm) compared to those obtained with the gel-sol method. This is due to the turbulent motions occurring during the heating step which limit the size of the final particles. Other parameters, such as Fe(II)/Fe(III) ratio, pH and initial temperature were investigated, but no appreciable changes in the final size were observed (see figures S4, S5 and S6 of SI).

217

218 3.2 Optical properties evaluation

Figure 7 shows the total reflectance spectrum of a synthesized hematite sample (other samples show
DR spectra with similar features, see figures S7 and S8 of SI). The materials synthesized show
absorption in the Visible part of the spectrum and reflectance > 50% above 1000 nm and >75%

above 1300 nm, being therefore promising candidates for cool applications, since high NIR
reflectance is coupled to hematite coloristic properties.

224 Using reflectance data (%R) and eq.(1), SR for hematite samples was calculated. Figure 8 shows SR 225 as a function of particle shape and size. For particle size lower than 600 nm, cubic morphology 226 shows the best SR values compared to spherical particles, whereas spherical hematite samples show 227 best cool properties for particle size larger than 600 nm. SR of cubic particles shows two maxima, 228 the first is a local maximum at particle size ca. 300 nm and the second at ca. 920 nm after which SR 229 decreases rapidly. For spherical particles, SR shows a similar trend but with the local maximum at 230 particle diameter ca. 250 nm and the second at ca. 600 nm. Note that, SR for the commercial cool 231 red pigment Ferro V-13810 is 0.316, calculated with eq.(1) and the pigment spectrum provided by 232 the producer [26]. SR values of as-synthesized hematite pigments are very close to that value and in 233 some cases even larger. 234 Solar reflectance evaluation was also performed on paints for both white and black paperboards (see

figures S9-S15 of SI for reflectance spectra and SR). Since the paints are not completely opaque in the NIR, the SR values are higher for paints on white paperboard compared to paints on black paperboard, with discrepancy up to 50%. Light scattering and absorption by paperboards interfere on the reflectance leading to unreliable results. With white papers the light is more scattered yielding to overestimated SRs, while black paperboards lead to undervalued results because of the absorption of the transmitted light. More studies will be performed to obtain completely opaque paints in order to evaluate correctly their SRs.

242

243	3.3	Color	evaluation

244

In the visible range light paints are quite opaque and the results obtained for paints spread on white paperboards are not significantly different from those of paints on black papers. Table 1 shows the results obtained from the analysis of paints on black paperboards (for white papers see table S1 of SI), while in Figure 9 the color properties of the samples synthesized are reported in a portion of the chromaticity diagram. Paints with spherical hematites show a quite constant chromaticity, except for the sample with the largest particle size that shows lowest values for both x and y. For paints with cubic particles x decreases increasing the size (from ca. 0.5 to ca. 0.39) while y remains constant around 0.35. In both cases, a decrease of brightness (Y) increasing the size is observed. A color variation from light orange-red to dark red-purple occurs increasing the pigment particle size.

255 4.Conclusions

256

257 Red cool pigments made of iron oxides can be obtained following two different procedures: i) a gel-258 sol synthesis and *ii*) a catalytic phase transformation method which should be preferred in industrial 259 application because of the reduced time of synthesis. A fine tuning of the pigment particles size and shape was obtained varying the temperature, the reagent concentration and by adding proper shape 260 261 controllers. As the optical properties of a pigment depend not only on the crystalline phase, but also 262 on the morphology of its particles, by varying size and shape of synthesized hematite we maximized 263 solar reflectance. The highest SR values were recorded with cubic particles with size 300 and 900 264 nm or spherical particles with size 250 and 600 nm. Size and shape of pigments also influence their 265 coloristic features; increasing the size of hematite particles darker color is obtained. 266 In conclusion, cool red materials for the mitigation of urban heat island can be obtained with 267 harmless inorganic pigments, synthesized from inexpensive precursors. Four different kinds of 268 hematite pigments which maximize SR, but with slightly different color properties, were obtained. 269 270 Acknowledgement

271

- 272 This research was supported by Rockwood Italia S.P.A. which financed Luca Demarchis' Ph. D.
- 273 project.L. D. is thankful to the Photonic Resonance Department of the State University of Saint
- 274 Petersburg for the help in the analyses.
- 275
- 276 Higlights
- 277
- 278 Development of pigments for the mitigation of Urban Heat Island effects.
- 279 We synthesized hematite particles with different size and shape.
- 280 We evaluated Solar Reflectance of hematite samples as a function of particle size and shape.
- 281 Color of pigments varies as a function of morphology.
- 282
- 283

284 Tables

2	0	5
L	0	J

Table 1: x, y and Y values for synthesized hematite pigments as functions of particles size

Spherical					
Dimensions (nm)	X	y	Y		
128	0.471	0.354	11.3		
147	0.472	0.348	10.6		
229	0.459	0.341	8.53		
270	0.459	0.341	8.38		
446	0.455	0.344	7.68		
583	0.446	0.340	6.98		
1687	0.390	0.334	5.25		
	Cubic				
Dimensions (nm)	X	У	Y		
250	0.492	0.356	8.18		
307	0.492	0.356	8.28		
536	0.438	0.344	5.74		
708	0.425	0.348	5.14		
921	0.447	0.355	5.86		
989	0.424	0.354	4.85		
1277	0.411	0.361	4.59		
1478	0.392	0.358	4.47		

286

288 Figures

291 Figure 1

293 Figure 2

295 Figure 3

297 Figure 4

309 Figure 9

311 Captions to figures

312 Fig. 1.. X-Ray Diffraction patterns for four different hematite samples. Samples A and B were obtained

313 following the gel-sol procedure and show spherical and pseudocubic morphology, respectively, with an average

314 size of 1000 nm. Samples C and D were obtained via the catalytic phase transformation method; they are both

315 spherical with an average size of 100 and 300 nm, respectively.

Fig. 2.. Raman spectra of four different synthesized hematites. Samples A-D have the same meaning as in Figure
1.

Fig. 3. Scanning electron micrographs for hematite particles obtained via catalytic phase transformation methodwith a) no shape controllers, b) chloride and c) nitrilotriacetate.

Fig. 4.. Scanning electron micrographs for hematite particles obtained via gel-sol method with a) chloride, b)
sulphate and c) nitrilotriacetate.

Fig. 5. Diameter of hematite cubic particles obtained via gel-sol method as a function of the initial temperature.
Chloride were used as shape controller. Other parameters were as indicated in the method reported in paragraph
2.2.

325 Fig. 6. Diameter of spherical hematite particles obtained via catalytic phase transformation method as a function

326 of FeCl₃ concentration. Other parameters were as indicated in the method reported in paragraph 2.2..

327 Fig. 7. Solar irradiance (red) [25] and total reflectance (black) spectra of synthesized cubic hematite particles

328 (1500 nm size, obtained via gel-sol synthetic method, chloride was used as shape controller, temperature 25°C.

329 Other parameters were as indicated in the method reported in paragraph 2.2.).

Fig. 8. Solar Reflectance for hematite particles as a function of their size and shape.

Fig. 9. Plots on CIE color space chromaticity diagram of x and y values of prepared hematite paints. S and C

332 mean spherical or cubic morphology, respectively, while numbers indicate particle dimensions.

334 **References**

- 336 [1] Synnefa A, Santamouris M, Apostolakis K. On the development, optical properties and thermal
- performance of cool colored coatings for the urban environment. Solar Energy 2007;81(4):488-97.
- 338 [2] Uemoto KL, Sato NMN, John VM. Estimating thermal performance of cool colored paints.
- 339 Energy Build 2010;42(1):17-22.
- 340 [3] Cartalis C, Synodinou A, Proedrou M, Tsangrassoulis A, Santamouris M. Modifications in
- 341 energy demand in urban areas as a result of climate changes: an assessment for the southeast
- 342 Mediterranean region. Energy Convers Manage 2001;42(14):1647-56.
- 343 [4] Santamouris M, Papanikolaou N, Livada I, Koronakis I, Georgakis C, Argiriou A, et al. On the
- impact of urban climate on the energy consumption of buildings. Solar Energy. 2001;70(3):201-16.
- 345 [5] Coutts A, Beringer J, Tapper N. Changing Urban Climate and CO₂ Emissions: Implications for
- the Development of Policies for Sustainable Cities. Urban Policy Res. 2010;28(1):27-47.
- 347 [6] Hildebrandt EW, Bos W, Moore R. Assessing the impacts of white roofs on building energy
- 348 loads. Proc ASHRAE Transactions1998. p. 810-8.
- 349 [7] Akbari H, Bretz S, Kurn DM, Hanford J. Peak power and cooling energy savings of high-albedo
- 350 roofs. Energy Build. 1997;25(2):117-26.
- 351 [8] Parker DS, Huang YJ, Konopacki SJ, Gartland LM, Sherwin JR, Gu L. Measured and simulated
- 352 performance of reflective roofing systems in residential buildings. Proc ASHRAE
- 353 Transactions1998. p. 963-75.
- 354 [9] Sleiman M, Kirchstetter TW, Berdahl P, Gilbert HE, Quelen S, Marlot L, et al. Soiling of
- 355 building envelope surfaces and its effect on solar reflectance Part II: Development of an
- accelerated aging method for roofing materials. Sol Energy Mater Sol Cells. 2014;122:271-81.
- 357 [10] Levinson R, Berdahl P, Akbari H. Solar spectral optical properties of pigments—Part II:
- 358 survey of common colorants. Sol Energy Mater Sol Cells. 2005;89(4):351-89.

- 359 [11] Thongkanluang T, Limsuwan P, Rakkwamsuk P. Preparation and using of high near-infrared
- 360 reflective green pigments on ceramic glaze. J Ceram Soc Jpn. 2010;118(1377):349-52.
- 361 [12] Sreeram KJ, Aby CP, Nair BU, Ramasami T. Colored cool colorants based on rare earth metal
- 362 ions. Sol Energy Mater Sol Cells. 2008;92(11):1462-7.
- 363 [13] Jeevanandam P, Mulukutla RS, Phillips M, Chaudhuri S, Erickson LE, Klabunde KJ. Near
- 364 infrared reflectance properties of metal oxide nanoparticles. J Phys Chem C. 2007;111(5):1912-8.
- 365 [14] Swiler DR, Detrie TJ, Axtell EA. Rare earth transition metal oxide pigments. US Patent2003.
- 366 [15] George G, Vishnu VS, Reddy MLP. The synthesis, characterization and optical properties of
- 367 silicon and praseodymium doped Y₆MoO₁₂ compounds: Environmentally benign inorganic
- 368 pigments with high NIR reflectance. Dyes Pigm. 2011;88(1):109-15.
- 369 [16] Sutter CR, Petelinkar RA, Reeves RE. Infrared reflective visually colored metallic
- 370 compositions. US Patent2002.
- 371 [17] Levinson R, Berdahl P, Akbari H. Lawrence Berkeley National Laboratory Pigment Database:
- 372 <u>http://coolcolors.lbl.gov/LBNL-Pigment-Database/database.html;</u> last access: 2014-10-17.
- 373 [18] Cornell RM, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurences
- and Uses. 2nd ed: Wiley, 2003.
- 375 [19] Mohapatra M, Anand S. Synthesis and applications of nano-structured iron oxides/hydroxides
- 376 a review. International Journal of Engineering, Science and Technology. 2010;2(8):127-46.
- 377 [20] Sugimoto T, Sakata K. Preparation of monodisperse pseudocubic α-Fe₂O₃ particles from
- 378 condensed ferric hydroxide gel. J Colloid Interface Sci. 1992;152(2):587-90.
- 379 [21] Sugimoto T, Sakata K, Muramatsu A. Formation Mechanism of Monodisperse Pseudocubic α-
- 380 Fe₂O₃ Particles from Condensed Ferric Hydroxide Gel. J Colloid Interface Sci. 1993;159(2):372-82.
- 381 [22] Liu H, Wei Y, Li P, Zhang Y, Sun Y. Catalytic synthesis of nanosized hematite particles in
- 382 solution. Mater Chem Phys. 2007;102(1):1-6.

- 383 [23] Itoh H, Sugimoto T. Systematic control of size, shape, structure, and magnetic properties
- 384 of uniform magnetite and maghemite particles. J Colloid Interface Sci. 2003;265(2):283-95.
- 385 [24] Sugimoto T, Wang Y, Itoh H, Muramatsu A. Systematic control of size, shape and internal
- 386 structure of monodisperse α-Fe2O3 particles. Colloids Surf, A. 1998;134(3):265-79.
- 387 [25] Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted
- 388 Surface. ASTM International; 2012.
- 389 [26] Ferro WebSite. http://www.ferro.com/NR/rdonlyres/616CDD4C-1D20-4BFF-BF6E-
- 390 <u>7C0863AE4151/2902/V13810TDS.pdf;</u> last access: 2014-10-17.