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Type Reconstruction for the Linear π-Calculus
with Composite and Equi-Recursive Types

Luca Padovani – Dipartimento di Informatica, Università di Torino, Italy

Abstract. We extend the linear π-calculus with composite and equi-recursive
types in a way that enables the sharing of data containing linear values, provided
that there is no overlapping access on such values. We show that the extended type
system admits a complete type reconstruction algorithm and, as a by-product, we
solve the problem of reconstruction for equi-recursive session types.

1 Introduction

The linear π-calculus [11] is a formal model of communicating processes in which
channels are either unlimited or linear. Unlimited channels can be used without restric-
tions, while linear channels can only be used once for an input/output. Linear channels
occur frequently in actual systems, they allow optimisations and efficient implementa-
tions [6,5,11], and communications on linear channels enjoy important properties such
as interference freedom and partial confluence [13,11].

Type reconstruction is the problem of inferring the type of entities – channels in
our case – given a program using them. For the linear π-calculus this problem was
addressed in [7], although that work did not consider composite or recursive types. The
goal of this work is the definition of a type reconstruction algorithm for the linear π-
calculus extended with pairs, disjoint sums, and equi-recursive types. These constructs,
albeit standard, gain relevance and combine in non-trivial ways with the features of the
linear π-calculus. We explain why this is the case in the rest of this section.

By definition, linear channels can only be used for one-shot communications. It is
a known fact, however, that more sophisticated interactions can be implemented taking
advantage of channel mobility using a continuation-passing style [9,2]. The basic idea is
that, along with the proper payload of a communication, one can send another channel
on which the rest of the conversation takes place. This technique is illustrated below

P(x,y) def
= (νa)(x〈y,a〉 |P〈a,y+1〉) C(x) def

= x(y,z).C〈z〉 (1.1)

where a producer process P sends messages to a consumer process C. At each itera-
tion, the producer creates a new channel a, sends the payload y to the consumer on x
along with the continuation a on which subsequent communications will take place,
and iterates. In parallel, the consumer waits for the payload and the continuation from
the producer on x and then iterates. Explicit continuations are key to preserve the or-
der of produced messages. Had we modelled (1.1) re-using the same channel x at each
iteration, there would be no guarantee that messages were received in order.

Let us now assign types to the channels in (1.1) starting from x in the consumer.
There, x is used once for receiving a pair made of an integer y and another channel z.
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Say the type of z is t and note that z is used in C〈z〉 in the same place as x, meaning that
x and z must have the same type. Then, also x has type t and t must be a channel type
satisfying the equation t = [int× t]1,0 where int× t is the type of messages received
from the channel and the numbers 1 and 0, henceforth called uses, indicate that the
channel of type t is used once for input and never for output. Channel x is used once
in the producer for sending an integer y and a continuation a. Clearly, the continuation
must have type t for that is how it is used in C. Therefore, x in P has type s= [int×t]0,1

where the uses 0 and 1 indicate that x is never used for input and is used once for output.
Finally, there are two (non-binding) occurrences of a in the producer: a in x〈n,a〉 has
type t because that is how a will be used by the consumer; a in P〈a,y+ 1〉 has type s
because that is how a will be used by the producer at the next iteration. Overall, the
uses in the types of a say that a is a linear channel: it is used once by the producer for
sending the payload and once by the consumer for receiving it.

Note that linear channels, like a in (1.1), may syntactically occur multiple times
and that different occurrences of the same channel may have different yet compatible
types. In the case of (1.1), the types t and s of the non-binding occurrences of a are
compatible because corresponding uses in t and s are never 1 at the same time. The
binding occurrence of a in (νa) has type [int× t]1,1, which can be seen as the combi-
nation of t and s as defined in [11,14].

One legitimate question is whether and how the notions of type compatibility and
combination extend beyond channel types. In this respect, the existing literature lacks
definitive and satisfactory answers: the works on (type reconstruction for) the linear π-
calculus [11,7] do not consider composite or recursive types. Linear type systems with
composite types have been discussed in [5,6] for the linear π-calculus and in [15] for
a functional language. These works, however, see linearity as a “contagious” property:
every structure that contains linear values becomes linear itself (there are a few ex-
ceptions for specific types [10] or relaxed notions of linearity [8]). Such interpretation
may be appropriate in a sequential setting, but is not the only sensible one in a concur-
rent/parallel setting. In fact, it is acceptable (and desirable, for the sake of parallelism)
that several processes share the same composite data structure, provided that they ac-
cess different linear values stored therein. The problem is whether the type system is
accurate enough to capture the fact that there are no overlapping accesses to the same
linear values. To illustrate, consider the type tlist satisfying the equation

tlist = unit⊕ ([int]0,1× tlist)

which is the disjoint sum between unit and the product [int]0,1× tlist and which can
be used for typing lists of linear channels with type [int]0,1. If we follow [15,5,6], an
identifier l having type tlist can syntactically occur only once in a program, and a process
like for instance Odd〈l〉 |Even〈l〉 where l occurs twice is illegal. However, suppose that
Odd and Even are the two processes defined by

Odd(x) def
= case x of [] ⇒ 0

y: z⇒ y〈3〉 |Even〈z〉
Even(x) def

= case x of [] ⇒ 0
y: z⇒ Odd〈z〉

which walk through a list x: if x is the empty list [] they do nothing; if x has head y and
tail z, Odd sends 3 on y and continues as Even〈z〉 while Even ignores y and continues



Type Reconstruction for the Linear π-Calculus 3

as Odd〈z〉. So, Odd〈l〉 sends 3 on every odd-indexed channel in l and Even〈l〉 sends 3
on every even-indexed channel in l. The fact that Odd and Even access different linear
values of a list is reflected in the two (mutually recursive) types of x in Odd and Even:

todd = unit⊕ ([int]0,1× teven) and teven = unit⊕ ([int]0,0× todd) (1.2)

where the two 0’s in teven denote that Even does not use at all the first (and more gen-
erally every odd-indexed) element of its parameter x. The key observation is that just
like a was allowed to occur twice in (1.1) with two compatible types t and s whose
combination was [int× t]1,1, then we can allow l to occur twice in Odd〈l〉 |Even〈l〉
given that the two occurrences of l are used according to two compatible types todd and
teven whose combination is tlist. The “only” difference is that, while t and s were channel
types and their combination could be expressed simply by combining the uses in them,
todd and teven are recursive, structured types that combine to tlist in the limit.

To summarise, composite and recursive types are basic yet fundamental features
whose smooth integration in the linear π-calculus requires some care. In this work we
extend the linear π-calculus with composite and recursive types in such a way that
multiple processes can safely share structured data containing linear values and we
define a complete type reconstruction algorithm for the extended type system.

We proceed with the formal definition of the language and of the type system (Sec-
tion 2). The type reconstruction algorithm consists of a constraint generation phase
(Section 3) and a constraint solving phase (Section 4). Section 5 concludes. The full
version of the paper (with proofs) and a Haskell implementation of the algorithm are
available on the author’s home page.

2 The Linear π-Calculus

We let m, n, . . . range over integer numbers; we use a countable set of channels a, b, . . .
and a disjoint countable set of variables x, y, . . . ; names u, v, . . . are either channels or
variables. We work with the asynchronous π-calculus extended with constants, pairs,
and disjoint sums. The syntax of expressions and processes is defined below:

e ::= n
∣∣ u
∣∣ (e,e) ∣∣ inl e

∣∣ inr e
∣∣ · · ·

P ::= 0
∣∣ u(x).P

∣∣ u〈e〉
∣∣ (P |Q)

∣∣ ∗P ∣∣ (νa)P
∣∣ let x,y = e
in P

∣∣ case e of
{ inl x⇒ P,
inr y⇒ Q }

Expressions e, . . . are either integers, names, pairs (e1,e2) of expressions, or the
injection (i e) of an expression e using the constructor i ∈ {inl,inr}. Values v, w, . . .
are expressions without variables.

Processes P, Q, . . . comprise the standard constructs of the asynchronous π-calculus.
In addition to these, we include two process forms for deconstructing pairs and disjoint
sums. In particular, the process let x1,x2 = e in P evaluates e, which must result into
a pair v1,v2, binds each vi to xi, and continues as P.1 The process case e of{i xi ⇒

1 As pointed out by one reviewer, this construct is superfluous, because the type system we
are about to define allows linear pairs to be accessed more than once with the conventional
projection operators. We have added support for pair projections in the implementation, but
we keep the let construct in the formal presentation.
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Table 1. Reduction of processes.

[R-COMM]
a〈v〉 |a(x).Q a−→ Q{v/x}

[R-LET]
let x,y = (v,w) in P τ−→ P{v,w/x,y}

[R-CASE]
k ∈ {inl,inr}

case (k v) of{i xi⇒ Pi}i=inl,inr
τ−→ Pk{v/xk}

[R-PAR]

P `−→ P′

P |Q `−→ P′ |Q

[R-NEW 1]
P a−→ Q

(νa)P τ−→ (νa)Q

[R-NEW 2]

P `−→ Q ` 6= a

(νa)P `−→ (νa)Q

[R-STRUCT]

P≡ P′ P′ `−→ Q′ Q′ ≡ Q

P `−→ Q

Pi}i=inl,inr evaluates e, which must result into a value (i v) for i ∈ {inl,inr}, binds
v to xi and continues as Pi. Notions of free names fn(P) and bound names bn(P) of P
are as expected. We identify processes modulo renaming of bound names and we write
P{v/x} for the capture-avoiding substitution of v for the free occurrences of x in P.

The operational semantics of the language is defined in terms of a structural congru-
ence relation and a reduction relation, as usual. Structural congruence ≡ is completely
standard (in particular, it includes the law ∗P≡ ∗P |P). Reduction is defined in Table 1
and is also conventional, except that, like in [11], we decorate the relation with labels
` that are either channels or the special symbol τ , denoting an unobservable action: in
[R-COMM] the label is the channel a on which a message is exchanged, while in [R-LET]
and [R-CASE] it is τ to denote the fact that these are internal computations not involving
communications. Rules [R-PAR], [R-NEW 1], and [R-NEW 2] propagate labels through par-
allel compositions and restrictions. In [R-NEW 1], the label a becomes τ when it escapes
the scope of a. Rule [R-STRUCT] closes reduction under structural congruence.

The type system makes use of a countable set of type variables α , β , . . . and of uses
κ , . . . which are elements of the set {0,1,ω}. Types t, s, . . . are defined by

t ::= int
∣∣ α

∣∣ t× t
∣∣ t⊕ t

∣∣ [t]κ,κ ∣∣ µα.t

and include the type of integers int, products t1× t2 typing values of the form (v1,v2)
where vi has type ti for i = 1,2, and disjoint sums t1⊕ t2 typing values of the form
(inl v) where v has type t1 or of the form (inr v) where v has type t2. Throughout the
paper we let� stand for either× or⊕. The type [t]κ1,κ2 denotes channels for exchanging
messages of type t. The uses κ1 and κ2 respectively denote how many input and output
operations are allowed on the channel: 0 for none, 1 for a single use, and ω for any
number of uses. For example: a channel with type [t]1,1 must be used once for receiving
a message of type t and once for sending a message of type t; a channel with type [t]0,0

cannot be used; a channel with type [t]ω,ω can be used any number of times for sending
and/or receiving. Type variables and µ operators are used for building recursive types,
as usual. Notions of free and bound type variables are as expected. We assume that every
bound type variable is guarded by a constructor to avoid meaningless terms such as
µα.α . We identify types modulo renaming of bound type variables and if their infinite
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unfoldings are the same (regular) tree [1]. In particular, we let µα.t = t{µα.t/α}where
t{s/α} is the capture-avoiding substitution of the free occurrences of α in t with s.

We now define some key relations on uses and types. In particular, ≤ is the least
partial order such that 0≤ κ and compatibility � is the least relation such that

0� κ κ � 0 ω � ω (2.1)

In what follow we will write κ1 < κ2 if κ1 ≤ κ2 and κ1 6= κ2 and κ1 ∨ κ2 for the
least upper bound of κ1 and κ2, when it is defined. Note that 1 6≤ ω does not hold.
Compatibility determines whether the least upper bound of two uses expresses their
combination without any loss of precision. For example, 0� 1 because the combination
of 0 uses and 1 use is 0∨ 1 = 1 use. On the contrary, 1 6� 1 because there is no 2 use
that expresses the combination of 1 and 1 and ω is less precise than 2. Similarly, 1 6� ω

because there is no use expressing the fact that a channel is used at least once.
Every binary relation Ruse on uses induces a corresponding relation Rtype on types,

defined coinductively by the following rules:

int Rtype int
κ1 Ruse κ3 κ2 Ruse κ4

[t]κ1,κ2 Rtype [t]κ3,κ4

t1 Rtype s1 t2 Rtype s2

t1� t2 Rtype s1� s2
(2.2)

Similarly, the partial operation ∨ on uses coinductively induces one on types so that
t ∨ s is the least upper bound of t and s, if it is defined. Note that ≤ is antisymmetric,
in particular t = s if and only if t ≤ s and t ≥ s. Note also that [t]κ1,κ2 Rtype [s]κ3,κ4

implies t = s regardless of Rtype. The relation t � t is particularly interesting, because
it characterises unlimited types, those typing values that must not or need not be used.
Linear types, on the other hand, denote values that must be used:

Definition 2.1. We say that t is unlimited if t � t. We say that t is linear otherwise.

Channel types are either limited or unlimited depending on their uses. So, [t]1,0,
[t]0,1, and [t]1,1 are all linear types whereas [t]0,0 and [t]ω,ω are both unlimited. Other
types are linear or unlimited according to the channel types occurring in them. For
example, [t]0,0× [t]1,0 is linear while [t]0,0× [t]ω,0 is unlimited. Recursion does not affect
the classification of types into linear and unlimited. For example, µα.[int×α]1,0 is a
linear type that denotes a channel that must be used once for receiving a pair made of
an integer and another channel with the same type.

We type check expressions and processes in type environments Γ , . . . , which are
finite maps from names to types that we write as u1 : t1, . . . ,un : tn. We identify type
environments modulo the order of their bindings, we denote the empty environment
with /0, we write dom(Γ) for the domain of Γ , namely the set of names for which there
is a binding in Γ , and Γ1,Γ2 for the union of Γ1 and Γ2 when dom(Γ1)∩dom(Γ2) = /0. We
extend the relation � between types pointwise to type environments:

Γ1 + Γ2
def
= Γ1,Γ2 if dom(Γ1)∩dom(Γ2) = /0

(Γ1,u : t)+(Γ2,u : s) def
= (Γ1 + Γ2),u : t ∨ s if t � s

(2.3)

The operator + generalises type combination in [11] and the ] operator in [14]. Note
that Γ1 + Γ2 is undefined if there is u ∈ dom(Γ1)∩dom(Γ2) and Γ1(u) 6� Γ2(u) and that
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Table 2. Type rules for expressions and processes.

Expressions

[T-CONST]
Γ � Γ

Γ ` n : int

[T-NAME]
Γ � Γ

Γ ,u : t ` u : t

[T-PAIR]
Γ ` e : t Γ ′ ` e′ : s

Γ + Γ ′ ` (e,e′) : t× s

[T-INL]
Γ ` e : t

Γ ` inl e : t⊕ s

[T-INR]
Γ ` e : s

Γ ` inr e : t⊕ s

Processes

[T-IDLE]
Γ � Γ

Γ ` 0

[T-IN]
Γ ,x : t ` P 0 < κ

Γ +u : [t]κ,0 ` u(x).P

[T-OUT]
Γ ` e : t 0 < κ

Γ +u : [t]0,κ ` u〈e〉

[T-PAR]
Γi ` Pi

(i=1,2)

Γ1 + Γ2 ` P1 |P2

[T-REP]
Γ ` P Γ � Γ

Γ ` ∗P

[T-NEW]
Γ ,a : [t]κ,κ ` P

Γ ` (νa)P

[T-LET]
Γ ` e : t× s Γ ′,x : t,y : s ` P

Γ + Γ ′ ` let x,y = e in P

[T-CASE]
Γ ` e : t⊕ s Γ ′,xi : t ` Pi

(i=inl,inr)

Γ + Γ ′ ` case e of{i xi⇒ Pi}i=inl,inr

dom(Γ1+Γ2) = dom(Γ1)∪dom(Γ2). Thinking of type environments as of specifications
of the resources used by expressions/processes, Γ1 + Γ2 expresses the combined use
of the resources specified in Γ1 and Γ2. Any resource occurring in only one of these
environments occurs in Γ1 + Γ2; any resource occurring in both Γ1 and Γ2 must be used
according to compatible types, and its type in Γ1 + Γ2 is their least upper bound. For
example, if a channel is used by a process for sending a message of type int, it has
type [int]0,1 in that process; if it is used by another process for receiving a message of
type int, it has type [int]1,0 in that process. Overall, the two processes in parallel use
the channel according to the type [int]0,1∨ [int]1,0 = [int]1,1.

Type rules for expressions and processes are presented in Table 2. These rules are
basically the same as those found in the literature [11,7], and the additional flexibility
enabled by our typing discipline is actually a consequence of our notion of type com-
bination ∨. The rules for expressions are unremarkable. Just observe that the part of
the type environment that is not used in the expression must be unlimited (Γ � Γ ). The
idle process does nothing, so it is well typed only in an unlimited environment. Input
and output processes require a strictly positive use of the corresponding operation in
the type of the channel u used for communication. Rule [T-REP] states that a replicated
process ∗P is well typed in the environment Γ provided that P is well typed in Γ and
that Γ is unlimited. The rationale for this is that ∗P stands for an unbounded number
of copies of P composed in parallel, hence it cannot contain (free) linear channels. The
rules [T-PAR], [T-LET], and [T-CASE] are conventional. Finally, rule [T-NEW] states that
(νa)P is well typed if so is P, where P has visibility of a. We require the type of a to
have the same uses for input and output. This is not necessary for the soundness of the
type system, although it is a sensible choice in practice.

The type system is sound and the results in Section 4.3 of [11] can be formulated in
our setting. In particular, the operations on a channel never exceed the uses in its type. It
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is possible to establish other basic safety properties, for instance that closed, well-typed
let’s and case’s always reduce. The long version of the paper gives more details.

Example 2.1. We model a recursive process definition using unlimited channels: a repli-
cated input on the channel represents the definition, while an output on the channel
represents an invocation of the definition. For example, for Odd and Even we have

∗a(x).case x of
inl y1 ⇒ 0
inr y2 ⇒ let y,z = y2 in y〈3〉 |b〈z〉

∗b(x).case x of
inl y1 ⇒ 0
inr y2 ⇒ let y,z = y2 in a〈z〉

and we assume that inl 0 represents the empty list [] and inr (y,z) represents the non-
empty list y: z with head y and tail z. Below is a derivation showing that Odd encoded
as shown above is well typed, where we take todd and teven defined in (1.2):

[T-IDLE]
y1 : int ` 0

[T-OUT]
y : [int]0,1 ` y〈3〉

[T-OUT]
b : [teven]

0,ω ,z : teven ` b〈z〉
[T-PAR]

b : [teven]
0,ω ,y : [int]0,1,z : teven ` y〈3〉 |b〈z〉

[T-LET]
b : [teven]

0,ω ,y2 : [int]0,1× teven ` let y,z = y2 in · · ·
[T-CASE]

b : [teven]
0,ω ,x : todd ` case x of · · ·

[T-IN]
a : [todd]

ω,0,b : [teven]
0,ω ` a(x).case x of · · ·

[T-REP]
a : [todd]

ω,0,b : [teven]
0,ω ` ∗a(x).case x of · · ·

Note that a and b must be unlimited channels because they occur free in a replicated
process, for which rule [T-REP] requires an unlimited environment. A similar deriva-
tion shows that Even is well typed in an environment where the types of a and b have
swapped uses

a : [todd]
0,ω ,b : [teven]

ω,0 ` ∗b(x).case x of · · ·

so the combined types of a and b are [todd]
ω,ω and [teven]

ω,ω respectively. We conclude

a : [todd]
ω,ω ,b : [teven]

ω,ω , l : tlist ` a〈l〉 |b〈l〉

because todd � teven and todd ∨ teven = tlist. �

3 Constraint Generation

We can formalise the problem of type reconstruction as follows: given a process P, find
a type environment Γ such that Γ ` P, provided there is one. In general we also want
to maximise the number of linear types in Γ . The rules shown in Table 2 rely on a fair
amount of guessing that concerns the structure of types in the type environment, how
they are split/combined using ∨, and the uses occurring in them. So, these rules cannot
be easily turned into a type reconstruction algorithm. The way we follow to define one
is rather conventional: we give an alternative set of syntax-directed rules that compute
constraints on types and uses and then we search for a solution of such constraints.
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The novelty is that we need constraints expressing not only the equality between types
and uses, but also the order ≤ and compatibility �, which affect the solution phase in
non-trivial ways.

To get started, we generalise uses to use expressions, which are either uses or use
variables ρ , . . . that denote an unknown use. We also define type expressions as types
without µ’s and where we admit use expressions wherever uses can occur. We keep κ

and t for ranging over use and type expressions, respectively, and we say that t is proper
if it is not a type variable. Constraints ϕ , . . . have one of these forms:

ϕ ::= κ1 Rc κ2 | t1 Rc t2

where R ∈ {≤,<,�,∼} and ∼ is the trivial relation such that κ1 ∼ κ2 holds for all
κ1 and κ2. We call κ1 Rc κ2 a use constraint and t1 Rc t2 a type constraint. The sub-
script ·c reminds us that κ1 Rc κ2 and t1 Rc t2 are just triples made of two use or type
expressions and a symbol Rc denoting a relation. Equality constraints =c can be ex-
pressed as the conjunction of two constraints≤c and≥c, given that≤ is antisymmetric.
Constraints with the strict order <c will be generated only for use expressions. Com-
patibility constraints �c will be generated for ensuring type and use combination, as
well as for expressing the assumption that a type/use is unlimited (see e.g. the premise
of [T-IDLE]). Finally, ∼c constraints relate types that must be structurally coherent. For
example, [t]κ1,κ2 ∼ [t]κ3,κ4 holds regardless of κ1, κ2, κ3, and κ4 (but note that according
to (2.2) there must be the same t in the two types). We will see in Section 4 the role of
these constraints.

We let C , . . . range over finite sets of constraints. The domain of C , written dom(C ),
is the (finite) set of use and type expressions occurring in the constraints in C . We let σ

range over finite maps from type variables to types and from use variables to uses. The
application of σ replaces use variables ρ and type variables α with the corresponding
uses σ(ρ) and types σ(α). We write σκ and σt for the application of σ to κ and t,
respectively. We say that σ is a solution of C if σt R σs for every t Rc s ∈ C and
σκ1 R σκ2 for every κ1 Rc κ2 ∈ C . We extend the ≤ relation pointwise to solutions
and we say that a solution σ for C is minimal if every solution σ ′ ≤ σ for C is such
that σ ≤ σ ′. We say that C is satisfiable if it has a solution. We say that C1 and C2 are
equivalent if they have the same solutions.

We need two operators for combining and merging type environments in the re-
construction algorithm. They take two type environments Γ1 and Γ2 and produce a pair
consisting of another type environment Γ and a set of constraints C :

dom(Γ1)∩dom(Γ2) = /0
Γ1t Γ2 Γ1,Γ2; /0

Γ1t Γ2 Γ ;C α fresh
(Γ1,u : t)t (Γ2,u : s) Γ ,u : α;C ∪{t �c s, t ≤c α,s≤c α}

/0u /0 /0; /0
Γ1u Γ2 Γ ;C

(Γ1,u : t)u (Γ2,u : s) Γ ,u : t;C ∪{t =c s}

The relation Γ1 t Γ2  Γ ;C combines the type environments Γ1 and Γ2 into Γ when
the names in dom(Γ1)∪ dom(Γ2) are used both as specified in Γ1 and also in Γ2, so
t is analogous to + in (2.3). When Γ1 and Γ2 have disjoint domains, their combina-
tion is just their union and no constraints are generated. Any name u that occurs in
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Table 3. Constraint generation for expressions and processes.

Expressions
[I-INT]
n : int. /0; /0

[I-NAME]
u : α .u : α; /0

[I-PAIR]
ei : ti . Γi;Ci

(i=1,2) Γ1t Γ2 Γ ;C3

(e1,e2) : t1× t2 . Γ ;C1∪C2∪C3

[I-INL]
e : t . Γ ;C

inl e : t⊕α . Γ ;C

[I-INR]
e : t . Γ ;C

inr e : α⊕ t . Γ ;C

Processes

[I-IDLE]
0. /0; /0

[I-IN]
P. Γ ,x : t;C Γ tu : [t]ρ,0 Γ ′;C ′

u(x).P. Γ ′;C ∪C ′∪{0 <c ρ}

[I-OUT]
e : t . Γ ;C Γ tu : [t]0,ρ  Γ ′;C ′

u〈e〉. Γ ′;C ′∪{0 <c ρ}

[I-PAR]
Pi . Γi;Ci

(i=1,2) Γ1t Γ2 Γ ;C3

P1 |P2 . Γ ;C1∪C2∪C3

[I-REP]
P. Γ ;C Γ t Γ  Γ ′;C ′

∗P. Γ ′;C ∪C ′

[I-WEAK]
P. Γ ;C

P. Γ ,u : α;C ∪{α �c α}

[I-NEW]
P. Γ ,a : t;C

(νa)P. Γ ;C ∪{t =c [α]ρ,ρ}

[I-LET]
e : t . Γ1;C1 P. Γ2,x : t1,y : t2;C2 Γ1t Γ2 Γ ;C3

let x,y = e in P. Γ ;C1∪C2∪C3∪{t =c t1× t2}

[I-CASE]
e : t . Γ1;C1 Pi . Γi,xi : ti;Ci

(i=inl,inr) Γinlu Γinr Γ2;C2 Γ1t Γ2 Γ3;C3

case e of{i xi⇒ Pi}i=inl,inr . Γ3;C1∪C2∪C3∪Cinl∪Cinr∪{t =c tinl⊕ tinr}

dom(Γ1)∩ dom(Γ2) must be used according to compatible types Γ1(u) � Γ2(u) and its
type must be an upper bound of both Γ1(u) and Γ2(u). In general Γ1(u) and Γ2(u) are
type expressions with free type variables, hence these relations cannot be checked right
away. Rather, they are symbolically recorded in the set of constraints C . Note in partic-
ular that the combined type of u is unknown and is represented by a fresh type variable
that is an upper bound of Γ1(u) and Γ2(u). The relation Γ1u Γ2 Γ ;C merges the type
environments Γ1 and Γ2 into Γ when the names in dom(Γ1)∪ dom(Γ2) are used in al-
ternative branches of a case construct. Note that Γ1 u Γ2  Γ ;C holds if and only if
Γ1(u) = Γ2(u) for every u ∈ dom(Γ1) = dom(Γ2). This corresponds to the fact that in
[T-CASE] we use the same type environment Γ ′ for typing the two branches of the case.

The rules to reconstruct type environments and to generate constraints are presented
in Table 3 and derive judgements of the form e : t . Γ ;C for expressions and P . Γ ;C
for processes. They closely correspond to those in Table 2; for this and space reasons
we will not describe them in detail. In general, unknown uses and types become fresh
use and type variables (all variables introduced by the rules are assumed to be fresh),
every application of + in Table 2 becomes an application of t in Table 3, and every
assumption on uses and types becomes a constraint. Constraints accumulate from the
premises to the conclusion of each rule. In rules [I-INL] and [I-INR] the type of the
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disjoint sum which was guessed in [T-INL] and [T-INR] becomes a fresh type variable. In
rules [I-IN] and [I-OUT] it is not known whether the used channel u is linear or unlimited,
so the constraint 0 <c ρ records the fact that ρ must be either 1 or ω . Rule [I-NEW]
requires a to have a channel type with equal uses by having the same use variable
ρ twice. There is also a rule [I-WEAK] that has no correspondence in Table 2. It is
necessary because [I-IN], [I-NEW], [I-LET], and [I-CASE], which correspond to the binding
constructs of the calculus, assume that the bound names occur in the premises on these
rules. This may not be the case if a bound name is never used. With rule [I-WEAK] we can
introduce missing names in type environments wherever is convenient. Of course, an
unused name must have a type α that is unlimited, which is recorded by the constraint
α �c α . Strictly speaking, with [I-WEAK] this set of rules is not syntax directed, which
in principle is a problem if we want to obtain an algorithm. In practice, the places where
[I-WEAK] may be necessary are easy to spot (in the premises of all the aforementioned
rules for the binding constructs). What we gain with [I-WEAK] is a simpler presentation
of the rules for constraint generation.

There is a tight correspondence between the type system and constraint generation.
Every satisfiable set of constraints generated from P corresponds to a typing for P.

Theorem 3.1. If P. Γ ;C and σ is a minimal solution for C , then σΓ ` P.

In fact, when P.Γ ;C we can think of Γ ;C as the principal typing of P, because any
type environment Γ ′ such that Γ ′ ` P can be obtained by applying a solution for C to Γ .

Theorem 3.2. If Γ ′ ` P, then P. Γ ;C for some Γ , C and σ solution of C and Γ ′ = σΓ .

Example 3.1. We show the constraint set generated by two processes accessing the
same composite structure containing linear values. The Odd and Even processes in Sec-
tion 1 are too large to be discussed in here, so we focus on a simpler, artificial process
that exhibits the same phenomenon. We consider

a(x).(let y,z = x in y〈1〉 |let y,z = x in z〈2〉)

which receives a pair x of channels from a and sends 1 and 2 on them. Note that the pair
x is deconstructed twice, but every time only one of its components is used. We obtain

[I-OUT]
y〈1〉. y : [int]0,ρ1 ;C1

[I-WEAK]
y〈1〉. y : [int]0,ρ1 ,z : γ;C2

[I-LET]
let y,z = x in y〈1〉. x : α1;C3

[I-OUT]
z〈2〉. z : [int]0,ρ2 ;C4

[I-WEAK]
z〈2〉. y : β ,z : [int]0,ρ2 ;C5

[I-LET]
let y,z = x in z〈2〉. x : α2;C6

[I-PAR]
let y,z = x in y〈1〉 |let y,z = x in z〈2〉. x : α;C7

[I-IN]
a(x).(let y,z = x in y〈1〉 |let y,z = x in z〈2〉).a : [α]ρ3,0;C8

where

C1
def
= {0 <c ρ1} C2

def
= C1∪{γ �c γ} C3

def
= C2∪{α1 =c [int]

0,ρ1 × γ}
C4

def
= {0 <c ρ2} C5

def
= C4∪{β �c β} C6

def
= C5∪{α2 =c β × [int]0,ρ2}

C7
def
=C3∪C6∪{α1 �c α2,α1 ≤c α,α2 ≤c α} C8

def
= C7∪{0 <c ρ3}
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Table 4. Constraint solver algorithm.

Input: a set of constraints C .
Output: either fail or a solution of C .

1. Compute C ;
2. Compute a minimal solution σuse for the use constraints in C , or fail if there is none;
3. If t ∼c s ∈ C and t,s are proper and have different topmost type constructors, then fail;
4. Let σtype = {α 7→ supC ,σuse

({α}) | α ∈ dom(C )};
5. Return σuse∪σtype.

Within each let the variable x is assigned a distinct type variable αi. Eventually,
[I-PAR] finds out that x occurs twice, so it records in C7 the fact that the two types α1
and α2 must be compatible and that the overall type α of x must be an upper bound of
both. �

4 Constraint Solving

In this section we define an algorithm that determines whether a given set of con-
straints C is satisfiable and, if this is the case, computes a solution of C . The algorithm,
sketched in Table 4, comprises 5 steps that can be roughly grouped in three phases:
saturation, verification, and synthesis. The phases are detailed in the rest of the section.

Saturation (step 1). The ≤c and �c constraints determined during constraint genera-
tion relate type expressions, but they are meant to affect the use variables occurring in
these type expressions (recall from (2.2) that every relation Rtype between types is the
extension of Ruse between uses). In order to find all constraints that must hold between
use expressions, we saturate the set C with all the constraints that are entailed by those
already in C . Entailment is expressed through a binary relation � defined as follows:

[E-REFL] {t Rc s} � {t Rc t,s Rc s} R ∈ {≤,∼}
[E-SYMM] {t Rc s} � {s Rc t} R ∈ {=,∼}
[E-TRANS] {t1 Rc t2, t2 Rc t3} � {t1 Rc t3} R ∈ {≤,∼}
[E-COMP 1] {t1 =c t2, t2 �c t3} � {t1 �c t3}
[E-COMP 2] {t1 ≤c t2, t2 �c t3} � {t1 �c t3}
[E-OPER] {t1� t2 Rc s1� s2} � {t1 Rc s1, t2 Rc s2}
[E-CHANNEL] {[t]κ1,κ2 Rc [s]κ3,κ4} � {t =c s,κ1 Rc κ3,κ2 Rc κ4}
[E-STRUCT] {t Rc s} � {t ∼c s}

The first three rules [E-REFL], [E-SYMM], and [E-TRANS] compute the reflexive, symmet-
ric, and transitive closures of those relations that enjoy such properties. Rule [E-COMP 1]
propagates compatibility constraints across equivalent types, and [E-COMP 2] propagates
compatibility constraints “downwards” from a type to a smaller one (indeed, it is the
case that κ1 ≤ κ2 � κ3 implies κ1 � κ3). Rule [E-OPER] propagates constraints between
composite types to their components. Rule [E-CHANNEL] propagates constraints from
type to use expressions and imposes the equality of message types for related channel
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types. Finally, rule [E-STRUCT] generates∼c constraints between any pair of related type
expressions. This is necessary to make sure that all message type equality constraints
are generated by [E-CHANNEL], given that� is not transitive. We denote by C the small-
est set that includes C and that is closed by the rules [E-*] above. Observe that every
C generated by the rules in Table 3 is finite, and that the entailment rules [E-*] do not
change the domain of the set C being saturated. Therefore, C is always finite and can
be computed in finite time by a simple iterative algorithm that repeatedly applies the
entailment rules until no new constraints are discovered. We have:

Proposition 4.1. C and C are equivalent.

Verification (steps 2 and 3). In this phase the algorithm verifies whether C is satis-
fiable and fails if this is not the case. The key observation is that satisfiability of the
type constraints does not depend upon one particular solution of the use constraints
because the previous phase has computed all possible relations that must hold between
use expressions. Therefore, we can independently verify the satisfiability of use and
type constraints and fail if any of these checks fails.

Recall that there is a finite number of use constraints, which are relationships be-
tween use expressions made of a finite number of use variables ranging over a finite
domain {0,1,ω}. Therefore, there exists a complete (albeit combinatorial) verification
algorithm that determines whether or not the use constraints in C are satisfiable. It is
also possible to define an “optimal” algorithm that aims at maximising the number of
use variables that are assigned value 1 as opposed to ω . We do not discuss the issues
related to solving use constraints any further.

If the use constraints in C are satisfiable, then satisfiability of the type constraints
is granted provided that there are no constraints relating types built with different con-
structors. For example, int ≤c [α]κ1,κ2 is clearly unsatisfiable. Because of [E-STRUCT]
and [E-TRANS], for any pair of types that must be related there is a constraint t ∼c s in
C . Therefore, if there is any such constraint where t and s are not type variables and
are built using different topmost constructors, then C is for sure unsatisfiable and the
algorithm fails.

Proposition 4.2. If the algorithm fails in this phase, then C is not satisfiable.

Synthesis (steps 4 and 5). The last phase computes a solution σtype for the type con-
straints in C given any minimal solution σuse for the use constraints in C determined at
step 2 of the algorithm. To compute σtype we need the definitions below:

clsR,C (T )
def
= {s | s Rc t ∈ C for some t ∈ T and s is proper}

supC ,σ (T )
def
=


[supC ,σ ({ti}i∈I)]

∨
i∈I σκi,

∨
i∈I σκ ′i if cls≤,C (T ) = {[ti]κi,κ

′
i }i∈I 6= /0

supC ,σ ({ti}i∈I)� supC ,σ ({si}i∈I) if cls≤,C (T ) = {ti� si}i∈I 6= /0
zeroC ,σ (T ) otherwise

zeroC ,σ (T )
def
=


[supC ,σ ({ti}i∈I)]

0,0 if cls∼,C (T ) = {[ti]κi,κ
′
i }i∈I 6= /0

zeroC ,σ ({ti}i∈I)� zeroC ,σ ({si}i∈I) if cls∼,C (T ) = {ti� si}i∈I 6= /0
int otherwise
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The set clsR,C (T ) is made of the proper type expressions s such that s Rc t ∈ C
for some t ∈ T . Note that not all R’s are symmetric and that s is the type expression
on the left hand side of Rc. So, cls≤,C (T ) is the set of type expressions that are lower
bounds of some t ∈ T , while cls∼,C (T ) is the set of type expressions that share the same
topmost type constructor with some t ∈ T but have possibly different uses. Note also that
cls≤,C (T )⊆ cls∼,C (T ) because ≤⊆∼. The algorithm (Table 4) resolves each variable
α to supC ,σuse

({α}) where, supC ,σ (T ) is, roughly speaking, the least upper bound of
the types in T (even though the algorithm always invokes supC ,σ with a singleton, in
general we need to define supC ,σ over a set of type expressions that are known to be
equivalent). There are three cases that determine supC ,σ (T ): if there exists any lower
bound for some of the types in T and these lower bounds are either channel or composite
types, then supC ,σ (T ) is defined as the least upper bound of such lower bounds (first
two cases in the definition of supC ,σ ); if there is no lower bound but there exists at
least one ∼c constraint involving any of the types in T , then supC ,σ (T ) is defined as
a type that is structurally coherent with such constraints but has use 0 for all of its
topmost channel types (third case in the definition of supC ,σ and first two cases in the
definition of zeroC ,σ ); if there are no ∼c constraints involving any of the types in T , or
if some of the types in T have been determined to be structurally coherent with int,
then zeroC ,σ (T ) is defined to be int (third case in the definition of zeroC ,σ ).

Interpreting supC ,σ and zeroC ,σ as functions is appropriate for presentation (and
implementation) purposes, but formally tricky for two reasons: (1) the equations given
above are mutually dependent and (2) they are undefined for some particular T ’s (for
instance, for T = {int, [int]0,0}which contains two types with incompatible structures
or for T = {[int]ω,0, [int]1,0} which contains two types with incompatible uses). Con-
cerning (1), the formal interpretation of the equations above is as a set {αi = ti} where
each αi has the form supC ,σ (T ) or zeroC ,σ (T ), T ⊆ dom(C ), and ti is determined by the
right hand side of the equation. We know that this set is always finite because dom(C )
is finite and so is its powerset. Furthermore, zeroC ,σ always yields a proper type when
it is defined and so does supC ,σ when it is not defined in terms of zeroC ,σ . Therefore,
the equations in {αi = ti} are contractive in the sense that there is no infinite chain of
equations involving type variables only. In this case, it is known [1] that these equations
can be folded into a possibly recursive contractive term using µ’s. Concerning (2), it
turns out that, when σ is a solution of the use constraints in C , supC ,σ (T ) is defined if
T is C -composable and that zeroC ,σ (T ) is defined if T is C -compatible, where:

– T is C -composable if t ≤c s ∈ C or s≤c t ∈ C or t �c s ∈ C for every t,s ∈ T ;
– T is C -compatible if t ∼c s ∈ C for every t,s ∈ T .

Indeed observe that: cls≤,C (T ) is C -composable if so is T by [E-COMP 2]; cls∼,C (T )
is C -compatible if T is C -composable by [E-STRUCT]; if {[ti]κi,κ

′
i }i∈I is C -composable

then the least upper bounds
∨

i∈I σκi and
∨

i∈I σκ ′i are defined (consequence of the use
constraints generated by [E-CHANNEL] and the hypothesis that σ is a solution of them); if
{[ti]κi,κ

′
i }i∈I is C -compatible, then {ti}i∈I is C -composable (consequence of the =c con-

straints generated by [E-CHANNEL]); if {ti� si}i∈I is C -composable/compatible, then so
are the sets {ti}i∈I and {si}i∈I by [E-OPER]; the type expressions in C -composable/com-
patible sets are built using the same topmost constructor (check in step 3 of the algo-
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rithm). Finally, observe that a singleton {α} is always C -composable, so the invoca-
tions of supC ,σuse

in Table 4 regard well-defined equations. We conclude:

Theorem 4.1. If the algorithm returns σ , then σ is a minimal solution for C .

Each step of the algorithm terminates and if the algorithm fails it is because C has
no solution (Proposition 4.2). Therefore:

Corollary 4.1 (completeness). If C is satisfiable, the algorithm returns a solution.

Example 4.1. The saturation of the constraint set C computed in Example 3.1 con-
tains, among others, the constraints [int]0,ρ1 × γ �c β × [int]0,ρ2 and consequently
[int]0,ρ1 �c β and γ �c [int]

0,ρ2 by [E-COMP 1] and [E-COMP 2]. An optimal solution
of the use constraints in C is σuse

def
= {ρ1 7→ 1,ρ2 7→ 1,ρ3 7→ 1}. From this we obtain

supC ,σuse
({α}) = [int]0,1× [int]0,1

indicating that the pair of channels received from a is shared by the two let processes
in such a way that each of the two channels contained therein is used exactly once. �

5 Concluding Remarks

Previous works on the linear π-calculus either ignore composite types [11,7] or are
based on an interpretation of linearity that limits data sharing and parallelism [5,6]. Re-
cursive types have also been neglected, despite their prominent role for describing com-
plex interactions occurring on linear channels [2]. In this work we extend the linear π-
calculus with both composite and recursive types and we adopt a more relaxed attitude
towards linearity that fosters data sharing and parallelism while preserving complete
type reconstruction. The extension is a very natural one, as witnessed by the fact that
our type system uses essentially the same rules of previous works, the main novelty be-
ing a different type composition operator. This small change has nonetheless non-trivial
consequences on the reconstruction algorithm, which must reconcile the propagation of
constraints across composite types with the impossibility to rely on plain type unifi-
cation due to the fact that different occurrences of the same identifier may be assigned
different types and because of recursive types. Technically, we tackle these problems by
expressing type combination in previous works (which is a ternary relation t1 + t2 = t3)
in terms of two simpler binary relations, namely compatibility t1 � t2 and order ti ≤ t3,
and by seeking for minimal solutions of the constraint set. Our extension also gives
renewed relevance to types like [t]0,0. In previous works these types were admitted but
essentially useless: channels with such types could only be passed around in messages
without actually ever being used. That is, they could be erased without affecting pro-
cesses. In our type system, it is the existence of these types that enables the sharing of
structured data (see the decomposition of tlist into teven and todd in Section 1).

Given that sessions [3,4] can be fully encoded into the linear π-calculus [9,2], we
also indirectly provide a complete reconstruction algorithm for equi-recursive session
types without subtyping. Interestingly, the concept of duality, which is a source of sig-
nificant complication of the type reconstruction algorithm for finite session types [12],
is simplified by the encoding, where it reduces to compatibility.
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To assess the feasibility of the approach, we have developed a prototype based on the
naı̈ve constraint saturation and combinatorial verification of use expressions described
in Section 4. Regarding the complexity of the reconstruction algorithm, the most critical
aspects are the solution of use constraints and the computation of the transitive closure
of type constraints. While polynomial algorithms are known for the latter, the former
problem entails, in principle, an exponential cost. Preliminary experiments with the
prototype implementation of the algorithm have shown that, in both cases, constraints
can often be partitioned into relatively small independent subsets that can be solved
in isolation (the prototype already supports such partitioning for use constraints). This
property paves the way for significant performance improvements.
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A Supplement to Section 2

In order to prove Theorem A.1 we need a series of standard auxiliary results, includ-
ing a weakening lemma (Lemma A.1), type preservation under structural congruence
(Lemma A.2), and substitution (Lemma A.3).

Lemma A.1. If Γ ` P and Γ ′ � Γ ′ and Γ + Γ ′ is defined, then Γ + Γ ′ ` P.

Proof. This is a standard induction on the derivation of Γ `P where we assume, without
loss of generality, that bn(P)∩ dom(Γ) = /0 (recall that we identify processes modulo
renaming of bound names). ut

Lemma A.2. If Γ ` P and P≡ Q, then Γ ` Q.

Proof. We show two interesting cases only.

[S-PAR 1] Then P = 0 |Q. From [T-PAR] we deduce Γ = Γ1 + Γ2 and Γ1 ` 0 and Γ2 ` Q.
From [T-IDLE] we deduce Γ1 � Γ1. We conclude by Lemma A.1.

[S-REP] Then P = ∗P′ ≡∗P′ |P′ = Q. From the hypothesis Γ ` P we deduce Γ = Γ ′+Γ ′

for some Γ ′ such that Γ ′ ` P′. We conclude with an application of [T-PAR] and observing
that Γ = Γ ′+ Γ ′ = Γ ′+ Γ ′+ Γ ′ = Γ + Γ ′. ut

Lemma A.3 (substitution). If Γ ,x : t ` P and Γ ′ ` v : t and Γ + Γ ′ is defined, then
Γ + Γ ′ ` P{v/x}.

Proof. The proof is unremarkable, except for the following property of the type system:
t � t implies Γ ′ � Γ ′, which can be easily proved by induction on the derivation of
Γ ′ ` v : t. ut

In order to state the subject reduction result we must take into account the fact that
the type of a linear channel changes whenever a synchronization occurs on it, because
the two 1 uses are reset to 0, indicating that the channel can no longer be used. To this
aim we define a reduction relation oveer type environments. In particular, let `−→ be the
least relation between type environments such that

Γ ,a : [t]1,1 a−→ Γ ,a : [t]0,0 and Γ ,a : [t]ω,ω a−→ Γ ,a : [t]ω,ω and Γ
τ−→ Γ

We say that Γ is balanced if every type [t]κ1,κ2 in the range of Γ where 0 < κ1 and
0 < κ2 is such that κ1 = κ2.

Lemma A.4. The following properties hold:

1. If Γ is balanced and Γ
`−→ Γ ′, then Γ ′ is balanced.

2. If Γ `−→ Γ ′ and Γ + Γ ′′ is defined, then Γ + Γ ′′
`−→ Γ ′+ Γ ′′.

Proof. Easy consequences of the definition of `−→ over type environments. ut

Theorem A.1 (subject reduction). Let Γ `P and Γ balanced and P `−→Q. Then Γ ′ `Q
for some Γ ′ such that Γ `−→ Γ ′.
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Proof. By induction on the derivation of P `−→ Q and by cases on the last rule applied.
We only show a few interesting cases; the others are either similar or simpler.

[R-COMM] Then P= a〈v〉|a(x).R and `= a. From [T-PAR] we deduce Γ = Γ1+Γ2 where
Γ1 ` a〈v〉 and Γ2 ` a(x).R. From [T-OUT] we deduce Γ1 = Γ ′1 + a : [t]0,κ and 0 < κ and
Γ ′1 ` v : t. From [T-IN] we deduce Γ2 = Γ ′2 +a : [t]κ,0 and Γ ′2,x : t ` R. The reason why we
know that we have the same t and κ in Γ1 and Γ2 comes from the definition of + and the
fact that these two environments were combined together in Γ which is balanced. Let

Γ0
def
=

{
a : [t]0,0 if κ = 1
a : [t]ω,ω if κ = ω

and Γ ′
def
= Γ0 + Γ ′1 + Γ ′2

and observe that Γ0 � Γ0, that Γ0 + Γ ′1 + Γ ′2 is defined and Γ
a−→ Γ ′. By Lemma A.3 and

Lemma A.1 we conclude Γ ′ ` R{v/x}.

[R-LET] Then P = let x,y = v,w in R τ−→ R{v,w/x,y}= Q. From [T-LET] we deduce
Γ = Γ1 + Γ2 and Γ1 ` v,w : t × s and Γ2,x : t,y : s ` R. From [T-PAIR] we deduce Γ1 =
Γ11 + Γ12 and Γ11 ` v : t and Γ12 ` w : s. We conclude Γ ` Q by Lemma A.3.

[R-PAR] Then P = P1 | P2 and P1
`−→ P′1 and Q = P′1 | P2. From [T-PAR] we deduce

Γ = Γ1 + Γ2 and Γi ` Pi where Γi is balanced for i ∈ {1,2}. By induction hypothesis we

deduce Γ ′1 ` P′1 for some Γ ′1 such that Γ1
`−→ Γ ′1. By Proposition A.4 we deduce that

Γ
`−→ Γ ′1 + Γ2. We conclude Γ ′ ` Q by taking Γ ′ = Γ ′1 + Γ2. ut

Note that Theorem A.1 establishes not only a subject reduction result, but also a
soundness result because it says that a channel is used no more than what is allowed by
its type. It is also possible to establish some basic safety properties, in particular that
well-typed let’s and case’s without free variables always reduce. The proof is easy,
we omit the details.

B Supplement to Section 3

Lemma B.1. If Γ1tΓ2 Γ ;C and σ is a minimal solution for C , then Γσ = Γ1σ +Γ2σ .

Proof. By induction on the derivation of Γ1t Γ2 Γ ;C .

dom(Γ1)∩dom(Γ2) = /0 Then Γ = Γ1,Γ2 and we conclude Γσ =(Γ1,Γ2)σ = Γ1σ ,Γ2σ =

Γ1σ + Γ2σ .

Γ1 = Γ ′1,u : t and Γ2 = Γ ′2,u : s Then Γ ′1 t Γ ′2  Γ ′;C ′ and Γ = Γ ′,u : α and C = C ′ ∪
{t �c s, t ≤c α,s≤c α}where α is fresh. Since σ is a minimal solution for C , we deduce
σ(α) = tσ ∨ sσ . Also, σ is a minimal solution for C ′ because α is fresh, hence it does
not occur in C ′. By induction hypothesis we deduce Γ ′σ = Γ ′1σ + Γ ′2σ . We conclude
Γσ = (Γ ′,u : α)σ = Γ ′σ ,u : σ(α) = (Γ ′1σ + Γ ′2σ),u : tσ ∨ sσ = Γ1σ + Γ2σ . ut

Lemma B.2. If Γ1u Γ2 Γ ;C and σ is a solution for C , then Γσ = Γ1σ = Γ2σ .
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Proof. Straightforward consequence of the definition of Γ1u Γ2 Γ ;C . ut

Lemma B.3. If e : t . Γ ;C and σ is a minimal solution of C , then Γσ ` e : tσ .

Proof. By induction on the derivation of e : t .Γ ;C and by cases on the last rule applied.
We only show two significant cases.

[I-NAME] Then e = u and t = α fresh and Γ = u : α and C = /0. We have Γσ = u : σ(α)

and tσ = σ(α), hence we conclude Γσ ` e : tσ .

[I-PAIR] Then e= e1,e2 and t = t1×t2 and C =C1∪C2∪C3 where Γ1tΓ2 Γ ;C3 and
ei : ti . Γi;Ci for i = 1,2. Since every distinct derivation introduces fresh type variables
we know that σ is a minimal solution for both Γ1 and Γ2. By induction hypothesis we
deduce Γiσ ` e : tiσ for i = 1,2. From Lemma B.1 we obtain Γσ = Γ1σ + Γ2σ . We
conclude with an application of [T-PAIR]. ut

Theorem B.1 (Theorem 3.1). If P.Γ ;C and σ is a minimal solution for C , then Γσ `
P.

Proof. By induction on the derivation of P. Γ ;C and by cases on the last rule applied.

[I-IDLE] Then P= 0 and Γ = /0 and C = /0. We conclude with an application of [T-IDLE].

[I-IN] Then P = u(x).Q and Q . Γ ′,x : t;C1 and Γ ′ t u : [t]ρ,0  Γ ;C2 and C = C1 ∪
C2∪{0 <c ρ}. By induction hypothesis we deduce Γ ′σ ,x : tσ ` Q. By Lemma B.1 we
deduce Γσ = Γ ′σ + u : [tσ ]σ(ρ),0. From the hypothesis that σ is a solution for C0 we
know 0 < σ(ρ). We conclude with an application of [T-IN].

[I-OUT] Then P = u〈e〉 and e : t . Γ ′;C1 and Γ ′tu : [t]0,ρ  Γ ;C2 and C = C1∪C2∪
{0 <c ρ}. From Lemma B.3 we deduce Γ ′σ ` e : tσ . From Lemma B.1 we deduce
Γσ = Γ ′σ + u : [tσ ]0,σ(ρ). From the hypothesis that σ is a solution of C0 we know
0 < σ(ρ). We conclude with an application of [T-OUT].

[I-PAR] Then P = P1 |P2 and Pi . Γi;Ci for i = 1,2 and Γ1 t Γ2 Γ ;C3 and C = C1 ∪
C2 ∪C3. By induction hypothesis we deduce Γiσ ` Pi for i = 1,2. By Lemma B.1 we
deduce Γσ = Γ1σ + Γ2σ . We conclude with an application of [T-PAR].

[I-REP] Then P = ∗Q and Q . Γ ′;C1 and Γ ′ t Γ ′ Γ ;C2 and C = C1 ∪C2. By induc-
tion hypothesis we deduce Γ ′σ ` Q. By Lemma B.1 we deduce Γσ = Γ ′σ + Γ ′σ . We
conclude with an application of [T-REP].

[I-NEW] Then P = (νa)Q and Q . Γ ,a : [t]κ1,κ2 ;C ′ and C = C ′ ∪{κ1 =c κ2}. By in-
duction hypothesis we deduce Γσ ,a : [tσ ]κ1σ ,κ2σ ` Q. Since σ is a solution of C0 we
know that κ1σ = κ2σ . We conclude with an application of [T-NEW].

[I-WEAK] Then Γ = Γ ′,u : α and C = C ′∪{α �c α} where α is fresh and P. Γ ′;C ′.
By induction hypothesis we deduce Γ ′σ ` P. Since σ is a solution of C0 we know
that σ(α) � σ(α). Since u 6∈ dom(Γ ′) we know that Γ ′σ + u : σ(α) is defined. By
Lemma A.1 we conclude Γ ′σ ,u : σ(α) ` P.

[I-LET] Then P = let x,y = e in Q and e : t . Γ1;C1 and Q . Γ2,x : t1,y : t2;C2 and
Γ1 t Γ2  Γ ;C3 and C = C1 ∪C2 ∪C3 ∪ {t =c t1 × t2}. By Lemma B.3 we deduce
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Γ1σ ` e : tσ . By induction hypothesis we deduce Γ2σ ,x : t1σ ,y : t2σ ` Q. Since σ is a
solution of C we know that tσ = t1σ×t2σ . We conclude with an application of [T-LET].

[I-CASE] Then P = case e of{i xi⇒ Pi}i=inl,inr and e : t . Γ1;C1 and Pi . Γi,xi : ti;Ci
for i = inl,inr and Γinlu Γinr Γ2;C2 and Γ1t Γ2 Γ ;C3 and C = C1∪C2∪C3∪
{t =c tinl⊕ tinr}. By Lemma B.3 we deduce Γ1σ ` e : tσ . By induction hypothesis we
deduce Γiσ ` Pi for i = inl,inr. By Lemma B.2 we deduce Γinlσ = Γinrσ = Γ2σ . By
Lemma B.1 we deduce Γσ = Γ1σ + Γ2σ . We conclude with an application of [T-CASE].

ut

Lemma B.4. If Γ1σ + Γ2σ is defined, then there exist Γ , C , and σ ′ ⊇ σ such that Γ1t
Γ2 Γ ;C and Γσ ′ = Γ1σ ′+ Γ2σ ′ and σ ′ is solution of C .

Proof. By induction on Γ1 and Γ2.

dom(Γ1)∩dom(Γ2) = /0 We conclude by taking Γ = Γ1,Γ2 and C = /0 and σ ′ = σ and
by observing that Γ1t Γ2 Γ ; /0.

Γ1 = Γ ′1,u : t and Γ2 = Γ ′2,u : s Since Γ1σ + Γ2σ is defined, we know that Γ ′1σ + Γ ′2σ

is also defined and furthermore tσ � sσ and (Γ1σ + Γ2σ)(u) = tσ ∨ sσ . By induction
hypothesis we deduce that there exist Γ ′, C ′, and σ ′′ ⊇ σ such that Γ ′1 t Γ ′2  Γ ′;C ′

and Γ ′σ ′′ = Γ ′1σ ′′+ Γ ′2σ ′′ and σ ′′ is a solution of C ′. Take Γ = Γ ′,u : α where α is
fresh, C = C ′ ∪{t �c s, t ≤c α,s ≤c α} and σ ′ = σ ′′ ∪{α 7→ tσ ∨ sσ}. We conclude
by observing that σ ′ is a solution of C . ut

Theorem B.2 (Theorem 3.2). If Γ ` P, then there exist Γ0, C0 and σ that is a solution
of C0 such that P. Γ0;C0 and Γ = Γ0σ .

Proof. By induction on the derivation of Γ ` P and by cases on the last rule applied. We
only show a few cases, the others being analogous.

[T-IDLE] Then P = 0 and Γ � Γ . Let Γ = {ui : ti}i∈I where I = {1, . . . ,n}. Let Γ0 = {ui :
αi}i∈I and C0 = {αi �c αi}i∈I and σ = {αi 7→ ti}i∈I where the αi’s are all fresh vari-
ables. By repeated applications of [I-WEAK] and one application of [I-IDLE] we derive
0. Γ0;C0. We conclude by observing that σ is a solution of C0 and Γ = Γ0σ .

[T-IN] Then P = u(x).Q and Γ ′,x : t `Q and Γ = Γ ′+u : [t]κ,0 and 0 < κ . By induction
hypothesis we deduce that there exist Γ ′0, t ′0, C ′0, and σ ′ that is a solution of C ′0 and
Q . Γ ′0,x : t ′0;C ′0 and Γ ′ = Γ ′0σ ′ and t = t ′0σ ′. Let σ ′′ = σ ′ ∪{ρ 7→ κ} where ρ is fresh.
By Lemma B.4 we deduce that there exist Γ0, C , and σ ⊇ σ ′′ such that Γ ′0tu : [t ′0]

κ,0 
Γ0;C and Γ0σ = Γ ′0σ +u : [t ′0σ ]κ,0 = Γ and σ is a solution of C . We conclude P.Γ0;C0
with an application of [I-IN] by taking C0 = C ′0∪C ∪{0 <c ρ} and by observing that σ

is a solution of C0.

[T-PAR] Then P=P1 |P2 and Γi `Pi for i= 1,2 and Γ = Γ1+Γ2. By induction hypothesis
we deduce that, for every i = 1,2, there exist Γ ′i and Ci and σi that is solution of Ci
such that Pi . Γ

′
i ;Ci and Γi = Γ ′i σi. We also know that dom(σ1)∩dom(σ2) = /0 because

type/use variables are always chosen fresh. Let σ ′ = σ1∪σ2. By Lemma B.4 we deduce
that there exist Γ ′, C ′, and σ ⊇ σ ′ such that Γ1t Γ2 Γ ′;C and Γ ′σ = Γ1σ + Γ2σ and
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σ is a solution of C ′. We conclude by taking C = C1∪C2∪C ′ with an application of
[I-PAR].

[T-REP] Then P = ∗Q and Γ ′ ` Q and Γ = Γ ′+ Γ ′. By induction hypothesis we deduce
that there exist Γ ′0, C ′0, and σ ′ that is a solution of C ′0 such that Q. Γ ′0;C ′0 and Γ ′ = Γ ′0σ ′.
By Lemma B.4 we deduce that there exist Γ0, C ′, σ ⊇ σ ′ such that Γ ′0 t Γ ′0  Γ0;C ′

and Γ0σ = Γ ′0σ + Γ ′0σ = Γ and σ is a solution of C ′. We conclude P . Γ0;C with an
application of [I-REP] by taking C = C ′0∪C ′. ut

C Supplement to Section 4

Definition C.1. We say that C is closed for compatibility if for every t,s1,s2 ∈ dom(C )

and si ≤c t ∈ C for i = 1,2 we have either s1 ≤c s2 or s2 ≤c s1 or s1 �c s2.

Lemma C.1. Let C be a set of constraints generated by the reconstruction system in
Table 3. Then C is closed for compatibility.

Proof. Follows by a simple analysis of the sets of constraints generated by reconstruc-
tion system. ut

Lemma C.2. If C is closed for compatibility, then so is C .

Proof. Consequence of the hypothesis that C is closed for compatibility and the fact
that C is closed under [E-COMP 2]. ut

Lemma C.3 (Proposition 4.1). C and C are equivalent.

Proof. Follows from the saturation laws [E-*] and the fact that each Rtype is the largest
relation that satisfies (2.2) . ut

Lemma C.4. Let /0 6= T ⊆ S where S is composable. The following properties hold:

1. cls∼,C (T,C ) = cls∼,C (S,C );
2. If t,s ∈ S implies t =c s ∈ C , then clsR,C (T,C ) = clsR,C (S,C ) for every R ∈
{≤,∼}.

Proof. Easy consequences of the definition of clsR,C . ut

Lemma C.5. Let C be a saturated set of constraints that has passed the checks at steps
2 and 3 of the algorithm in Table 4 and let σ be a solution of the use constraints in C .
Then supC ,σ ({t}) R supC ,σ ({s}) for every t Rc s ∈ C .

Proof. In this proof we write T Rc S ∈ C if t Rc s ∈ C for every t ∈ T and s ∈ S. Let

C (≤) def
= {(supC ,σ (T ),supC ,σ (S)) | /0 6= T ⊆ S⊆ dom(C ) and S is composable}

∪{(zeroC ,σ (T ),supC ,σ (S)) | /0 6= T,S⊆ dom(C ) and T ∼c S and S is composable}
∪{(zeroC ,σ (T ),zeroC ,σ (S)) | /0 6= T,S⊆ dom(C ) and T ∼c S}

C (�) def
= {(supC ,σ (T ),supC ,σ (S)) | /0 6= T,S⊆ dom(C ) and T �c S ∈ C }

∪{(zeroC ,σ (T ),supC ,σ (S)) | /0 6= T,S⊆ dom(C ) and T �c S ∈ C }
∪{(supC ,σ (T ),zeroC ,σ (S)) | /0 6= T,S⊆ dom(C ) and T �c S ∈ C }
∪{(zeroC ,σ (T ),zeroC ,σ (S)) | /0 6= T,S⊆ dom(C ) and T �c S ∈ C }
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and observe that t Rc s ∈ C implies (supC ,σ ({t}),supC ,σ ({s})) ∈ C (R) by definition
of C (R). It is enough to prove that C (R)⊆R.

Regarding the case R = ≤, let (t,s) ∈ C (≤). We reason by cases on the structure
of t and s, taking into account Lemma C.4(1).

– t = [t ′]
∨

i∈I κiσ ,
∨

i∈I κ ′i σ and s = [s′]
∨

j∈J κ ′′i σ ,
∨

j∈J κ ′′′j σ where cls≤,C (T ) = {[ti]κi,κ
′
i }i∈I

and cls≤,C (S) = {[s j]
κ ′′j ,κ

′′′
j } j∈J and /0 6= I ⊆ J. We deduce

∨
i∈I κiσ ≤

∨
j∈J κ ′′j σ

and
∨

i∈I κ ′i σ ≤
∨

j∈J κ ′′′j σ . We have ti =c s j ∈C for every i∈ I and j ∈ J, therefore
t ′ = s′ by Lemma C.4(2). We conclude t ≤ s.

– t = [t ′]0,0 and s= [s′]
∨

j∈J κ ′′j σ ,
∨

j∈J κ ′′′j σ where cls∼,C (T )= {[ti]κi,κ
′
i }i∈I and cls≤,C (S)=

{[s j]
κ ′′j ,κ

′′′
j } j∈J and /0 6= I,J. We conclude t ≤ s using Lemma C.4(2) like in the pre-

vious case.
– t = [t ′]0,0 and s= [s′]0,0 where cls∼,C (T )= {[ti]κi,κ

′
i }i∈I and cls∼,C (S)= {[s j]

κ ′′j ,κ
′′′
j } j∈J

and /0 6= I,J. We conclude t = s using Lemma C.4(2) like in the previous cases.
– t = t1� t2 and s = s1� s2 where t1 = supC ,σ ({ti}i∈I) and t2 = supC ,σ ({t ′i}i∈I) and

s1 = supC ,σ ({s j} j∈J) and s2 = supC ,σ ({s′j} j∈J) and cls≤,C (T ) = {ti� t ′i}i∈I and
cls≤,C (S) = {s j� s′j} j∈J and /0 6= I ⊆ J. We conclude (t1,s1) ∈ C (≤) and (t2,s2) ∈
C (≤) by definition of C (≤).

– t = t1� t2 and s = s1�s2 where t1 = zeroC ,σ ({ti}i∈I) and t2 = zeroC ,σ ({t ′i}i∈I) and
s1 = supC ,σ ({s j} j∈J) and s2 = supC ,σ ({s′j} j∈J) and cls∼,C (T ) = {ti� t ′i}i∈I and
cls≤,C (S) = {s j� s′j} j∈J and /0 6= I,J. We conclude (t1,s1) ∈ C (≤) and (t2,s2) ∈
C (≤) by definition of C (≤).

– t = t1� t2 and s = s1�s2 where t1 = zeroC ,σ ({ti}i∈I) and t2 = zeroC ,σ ({t ′i}i∈I) and
s1 = zeroC ,σ ({s j} j∈J) and s2 = zeroC ,σ ({s′j} j∈J) and cls∼,C (T ) = {ti� t ′i}i∈I and
cls∼,C (S) = {s j� s′j} j∈J and /0 6= I,J. We conclude (t1,s1) ∈ C (≤) and (t2,s2) ∈
C (≤) by definition of C (≤).

– t = s = int. We conclude t ≤ s.

The case R = � is structurally similar. We omit the details of the proof, just ob-
serving that 0 is compatible with every use and that compatibility is closed with respect
to ≤. ut

Theorem C.1 (Theorem 4.1). If the algorithm returns σ , then σ is a minimal solution
for C .

Proof. The fact that σ is a solution for C follows from Lemma C.5. The solution is also
minimal because so is the solution of the use constraints in C picked by the algorithm
at step 2 (see Table 4) and supC ,σ computes least upper bounds of uses. ut
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