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Typing Liveness in Multiparty Communicating Systems

Luca Padovani1, Vasco Thudichum Vasconcelos2, and Hugo Torres Vieira2

1 Dipartimento di Informatica, Università di Torino, Italy
2 LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Abstract. Session type systems are an effective tool to prove that communicat-
ing programs do not go wrong, ensuring that the participants of a session follow
the protocols described by the types. In a previous work we introduced a typing
discipline for the analysis of progress in binary sessions. In this paper we gen-
eralize the approach to multiparty sessions following the conversation type ap-
proach, while strengthening progress to liveness. We combine the usual session-
like fidelity analysis with the liveness analysis and devise an original treatment
of recursive types allowing us to address challenging configurations that are out
of the reach of existing approaches.

1 Introduction

The importance of error detection in the early cycles of software development, and the
consequent savings arising from it, can never be overemphasized. The problem becomes
even more acute when concurrency comes into play, for concurrency faults are notori-
ously hard to track down. This work focuses on early error detection of concurrent
message passing systems, and addresses, apart from the usual communication safety,
the static identification of states in which liveness is compromised.

The setting in which we operate is that of (multi-party) sessions [2–4, 8, 10–12]. Ses-
sions are private conversations occurring between two or more interacting participants.
Each participant behaves according to a session type that describes the messages that
the participant is supposed to send/receive and their relative order. One of the strengths
of sessions is that they provide a structuring construct on top of which complex sys-
tems can be built in a modular way. The relatively simple typing discipline imposed by
session types ensures strong properties such as liveness, that is the eventual completion
of communication operations. This point in favor of sessions is also, somewhat para-
doxically, a weakness: since session types describe only intra-session communications,
but say nothing on inter-session dependencies, it may be the case that a well-typed par-
ticipant simultaneously involved in two or more sessions finds itself in a deadlocked
situation because of mutual dependencies between sessions. We address this problem
by identifying potentially dangerous dependencies between sessions, so that liveness is
ensured also when communications on several different sessions are interleaved.

To illustrate the basic ingredients of our approach, consider the process

(νs)( recX .s?x.X | recX .s?y.X | recX .s!5.s! true.X ) (1)

describing three participants (say A, B, and C, composed in parallel) that interact within
the scope of a multiparty session s. The aim of C is to repeatedly send two messages
(here exemplified as the constants 5 and true) respectively to A and B. All participants



interact within the same session s. However, the order of the synchronizations cannot
be predicted and it may well be the case that a 5 message is received by B and a true
message is received by A or, in fact, that one of A or B does not receive any message
at all! In order to recover the linearity of communications (i.e., at most one possible
synchronization per session channel at a given moment) we tag messages with labels,
following the approach of [4]. In this way, we refine (1) to

(νs)( recX .s?lx.X | recX .s?my.X | recX .s!l5.s!m true.X ) (2)

so that l- and m-tagged messages respectively and uniquely identify synchronizations
with A and B. We are then able to characterize the overall protocol that takes place on
session s with the following type.

Ts , µα.τ l int.τ mbool.α

The type describes a conversation consisting of an infinite exchange of alternated l- and
m-tagged messages whose payload is described by the int and bool types, respectively.
The occurrences of τ in the type denote synchronizations that are supposed to occur
in a session typed by Ts. To specify the behavior of the participants involved in the
conversation, we split Ts into “slices” which we distribute among the participants. First
of all, we separate the behavior of C from the rest of the system, and obtain

Ts = TC ◦T ′ where TC , µα. !l int. !mbool.α and T ′ , µα.?l int.?mbool.α

In particular, TC says that C repeatedly sends alternated l and m messages and T ′ says
that the rest of the system should be ready to receive the very same messages, in this
order. Then, we further split T ′ in the behaviors of A and B, thus:

T ′ = TA ◦TB where TA , µα.?l int.α and TB , µα.?mbool.α

Note that this splitting is valid assuming that the environment in which A and B execute
guarantees that the synchronization on each l message occurs before the synchroniza-
tion on each m message. This is indeed guaranteed by the sequential structure of pro-
cess C. Since TA, TB, and TC match the behaviors of A, B, and C with respect to s we may
show that (2) is well typed and consequently that it enjoys communication safety (no
message with wrong type is ever sent), session fidelity (the interactions follow the pro-
tocol described by Ts), and liveness (each interaction described in Ts eventually occurs).

Of all these properties, liveness is the most delicate one, in the sense that it may
easily break up when two or more sessions are interleaved with each other. To illustrate
the issue, consider the following refinement of (2)

(νs)((νr)( recX .r?ny.s?lx.X | recX .s?my.r!ny.X ) | recX .s!l5.s!m true.X ) (3)

in which A and B are engaged in another session r, different from s, while C behaves
exactly as before. Now B forwards y in a n-tagged message to A, perhaps so that A and
B can double-check that they are given consistent information from C. Session s is still
well typed according to Ts and session r is well typed according to Tr , µα.τ nbool.α .
Yet, (3) is stuck because A waits for the message from B before having received the



message from C, but C sends its message to B only after it has successfully delivered the
message to A. So, none of the synchronizations in Ts and Tr ever happens, although the
structure of the participants in (3) agrees to these types.

One possibility for detecting the problem in (3) stems from the observation that the
two sessions s and r are mutually dependent on each other. So, one may devise a static
analysis technique that keeps track of inter-session dependencies and flags any system
that gives rise to circularities as ill typed. This approach has been pursued, for instance,
in [3, 6, 7]. The limit of this approach is that, by considering sessions as atomic units, it
is quite coarse grained when it comes to analyzing dependencies. For instance,

(νs)((νr)( recX .s?lx.r?ny.X | recX .s?my.r!ny.X ) | recX .s!l5.s!m true.X ) (4)

is a simple variation of (3) where A performs the same two inputs, but in the “correct”
order. Also in (4) there are actions on session s interleaving with actions on session
r and vice versa, so the approach based on session dependencies also flags (4) as ill
typed, which is unfortunate because (4), contrarily to (3), enjoys liveness.

The approach we pursue here is based on the idea of tracking the dependencies
between actions instead of sessions. Towards this aim, we annotate each interaction in
a type with an identifier—which we call event—and we keep track of the dependencies
between events by means of a strict partial order ≺. To get the flavor of the technique
at work, let us apply it to the sessions s and r discussed above. First of all, we annotate
the actions in the types of s and r with three events e, f , and g:

s : µα.eτ l int. f τ mbool.α r : µα.gτ nbool.α

Then, we analyze the dependencies between the actions in the participants of (3): it
must be e≺ f (read, e precedes f ) because C first sends the l-tagged message, and only
then it sends the m-tagged message; it must be g ≺ e because A waits for the n-tagged
message before waiting for the l-tagged one; finally, it must be f ≺ g by looking at the
structure of B. Overall, ≺ is not a strict partial order because of the circularity in the
relation g≺ e≺ f ≺ g between the two sessions s and r, hence (3) is ill typed.

Our approach builds on previous works [16, 22] that use analogous annotations for
reasoning on the dependencies between actions. With respect to these works, our con-
tributions are along two major axes. First of all, we show that the techniques can be
applied to sessions/conversations with an arbitrary number of participants. Second, we
support complex recursive process structures. The latter aspect requires a non-trivial
extension of the technique described in [22] because, in order to declare that a system
like (4) is well typed, we must be able to distinguish occurrences of the same event that
pertain to different iterations of a recursive process.

The next section formally describes our language. Sections 3 and 4 introduce the
notion of types, the type system and the main results. Section 5 concludes the paper
including a more detailed comparison with related work and hints on future develop-
ments. Additional material can be found in the associated technical report [18].

2 Process model

We consider an infinite set of names ranged over by x,y, . . . representing communica-
tion channels, an infinite set of process variables ranged over by X , . . . , and a set of



P,Q ::= 0 (Inaction) | x!l y.P (Output)
| P |Q (Parallel) | x?{liyi.Pi}i∈I (Input Summation)
| (νx)P (Restriction) | recX .P (Recursion)
| X (Recursion Variable)

Fig. 1. Syntax of processes

k ∈ I
x?{liyi.Pi}i∈I |x!lk z.Q→ Pk{z/yk}|Q

P→ Q
(νx)P→ (νx)Q

(R-Com,R-New)

P→ P′

P |Q→ P′ |Q
P≡ P′ P′→ Q′ Q′ ≡ Q

P→ Q
(R-Par,R-Cong)

Fig. 2. Reduction relation

message labels l, . . . . Processes, ranged over by P,Q, . . . , are the terms defined by the
grammar in Fig. 1. The language is that of TyCO [20] that extends the π-calculus [15]
by considering labeled communications. The terms 0, P |Q, and (νx)P respectively de-
note the inactive process, the parallel composition of P and Q, and the restriction of
name x to P. Terms recX .P and X are used to build recursive processes. The term
x!l y.P denotes a process that sends a message on channel x and then continues as P. A
message is made of a label l and an argument y. The term x?{liyi.Pi}i∈I denotes a pro-
cess that waits for a message from channel x and then continues as Pi according to the
label of the received message. The argument of the received message replaces the name
yi in Pi. To keep the setting as simple as possible, we have not included conditional or
non-deterministic processes. These constructs can be easily added.

The binders of the language are name restriction (νx)P, which binds the name x
in P, the input prefix x?l y.P, which binds the name y in P, and the recursion recX .P,
which binds the recursion variable X in P. The notions of free and bound names (as
well as free and bound process variables) are defined in the usual way. We identify
processes modulo renaming of bound names and of bound process variables. By con-
vention, we exclude recursive processes where unguarded recursion variables occur.

The semantics of the language is defined via a structural congruence and a reduction
relation. Structural congruence is standard, except that it includes the law recX .P ≡
P{recX .P/X } for unfolding recursive processes, where P{Q/X } denotes the capture-
avoiding substitution of the free occurrences of X by process Q in P. Reduction is
defined by the rules in Fig. 2. Rule (R-Com) describes the synchronization of two
processes exchanging a message: the sender emits a message with a label lk that is
among those accepted by the receiver and the argument z of the message replaces
the bound input parameter in the appropriate continuation Pk of the receiver. The re-
maining rules close the relation under language contexts—name restriction and parallel
composition—as well as under structural congruence.

3 Types and typing contexts

This section starts by introducing the notion of strict partial orders which allows to iden-
tify well-formed communication dependencies in processes. It then introduces types
and operations on these, most notably type split which allows to separate a type in two
disjoint “slices” of behavior.



p ::= ! | ? | τ (Polarity)
T ::= an pl T (Shared type, S)
| B≺ (Linear type, L)

Γ ::= · | Γ ,x : T (Context)
∆ ::= · | ∆ ,X : (Γ ;≺) (Recursion context)

B ::= end (Stop)
| B1 |B2 (Parallel)
| µα.B (Recursion)
| α (Variable)
| an p{li Ti.Bi}i∈I (Prefix summation)

Fig. 3. Syntax of types and typing contexts

Strict partial orders. We consider an infinite set of event identifiers E and the set of
natural numbers N, and use a,b, . . . to range over E and n,m, . . . to range over N. We
use an to denote an element in set E ×N. We further introduce a distinguished event,>,
use e, f , . . . to range over (E ×N)∪{>}, and call this set the set of events. A strict (or
irreflexive) partial order ≺ over the set of events is a binary relation that is asymmetric
(hence irreflexive) and transitive. We write e ≺ f when the pair (e, f ) is in ≺, and
supp(≺) for the support of ≺, namely the set of events that occur in ≺.

Next we define two partial operations over strict partial orders. We write e+≺ for
the strict partial order obtained by adding a least event e to ≺, provided that e does not
occur in supp(≺). Formally, e+≺ ,≺ ∪{(e, f ) | f ∈ supp(≺)}∪{(e,>)}, where we
explicitly add the pair (e,>) since ≺ may be empty (in which case e+ /0 is defined as
{(e,>)}). We write ≺1 ·∪ ≺2 for the least strict partial order that includes both ≺1 and
≺2, if it exists. We use ·∪ to gather the communication dependency structures of, e.g.,
two parallel processes.
Types. The syntax of types is given in Fig. 3. Our types are based on conversation
types [4] extended with event annotations following the approach introduced in [22].
A polarity p describes a communication capability: ! specifies an output; ? specifies an
input; and τ specifies a synchronization, i.e., a matched communication pair (cf., [4]).
At the type level we distinguish two separate categories of channels: shared (or un-
restricted) channels—ranged over by S—are used for modeling (possibly persistent)
services having a publicly known name, with which sessions can be established; linear
channels—ranged over by L—are used for modeling the private conversations within
sessions. Note that such distinction between shared and linear channels appears at the
type level only, while they are treated uniformly in the process model. For the sake of
simplicity we omit non-channel types (e.g., Int) which could be easily added.

A type an pl T describes the behavior of a shared channel via an event an, a polarity
p, a message label l and a type T describing the message argument. We associate shared
types with events to temporally relate shared communications with others, in particular
with the communications specified by the message type T .

A type B≺ captures the linear usage of a channel: B specifies the behavior of a
process w.r.t. the channel, whereas≺ specifies the ordering of events expected from the
external environment. Informally, ≺ is used in a type B≺ to represent the sequentiality
information that B admits but does not impose. For example, when typing a process that
concurrently sends messages hello and bye the type may specify that the outputs on
hello and bye actually take place one after the other if such order is imposed by the
corresponding inputs (present in the external process environment).

Behavioral types B include inaction end, parallel composition B1 |B2 of two in-
dependent behaviors B1 and B2, recursive types µα.B, recursion variables α , and (pre-



fixed) summation an p{li Ti.Bi}i∈I . Sums capture communication capabilities associated
with event an, polarity p, and a menu of synchronization options. Each entry in the menu
is identified by a distinct label li, the type of the argument of the message Ti, and the
behavior Bi that takes place after the synchronization. We say that a linear type B≺ is
well-formed if supp(≺) does not include events associated with communication actions
of polarity τ in B (since no further ordering information can be provided for such ac-
tions by the external environment). In the remainder, whenever we write B≺, we assume
that B≺ is well formed. We also identify α-equivalent (recursive) types by convention.

Following the ideas presented in [22], we associate with each linear communica-
tion an event an so as to temporally relate the communication action described by the
summation with respect to others, establishing an overall ordering of communications.
In this work, we introduce the notion of iteration, by adding to events a natural number
n, allowing to describe infinite chains of (related) events. Informally, the index allows
to capture the several “stages” of a type by means of an increment, so, for example,
µα.a1 τ lT.b1 τ mT ′.α unfolds to a1 τ lT.b1 τ mT ′.µα.a2 τ lT.b2 τ mT ′.α so as to as-
sociate the first iteration with index 1 and the second iteration with index 2 and so on
and so forth.

Operations on types. We write labels(B) for the set of labels occurring in B. We say
that B1 and B2 are behaviorally independent, and denote it by B1#B2, if labels(B1)∩
labels(B2) = /0 so that disjoint message sets ensure behavioral independence. We also
need an operation to remove part of the partial order in a type, defined as B≺

′\≺ ,
B≺
′\≺, and S\≺, S. Since linear types may contain sequentiality assumptions, we use

this operation to clear hypotheses that are proved externally.

In order to capture the several iterations of a communication that may repeat itself
in the context of recursion, we introduce an operator that increments the index associ-
ated with an event by a given factor, defined as inc(an,m) , an+m and inc(>,m) , >.
We then extend inc to strict partial orders, pointwise, and to behavior types so that
inc(an p{li Ti.Bi}i∈I ,m) , an+m p{li inc(Ti,m).inc(Bi,m)}i∈I . The increment of a be-
havior is an homomorphism for all other constructs. The increment operation on types
affects only linear types, inc(B≺,m) , inc(B,m)inc(≺,m), since events associated with
shared communications are not considered to be repeated in different stages but rather
to be repeated always at the same stage, hence inc(an pl T,m) , an pl T . Essentially,
we model shared communication repetition using replication (via recursion), so shared
replicated communication actions have the same temporal ordering, while we model
linear recursive repetition using a sequential chain of events. The index is then used to
capture repetition (without cycles) in the orderings.

To simplify the typing rules, we define a type equivalence relation ≡ that includes
commutativity, associativity and neutral end for | , as well as iso-recursive equivalence
for recursive types µα.B ≡ B{µα.inc(B,m)/α} for some m > 0, saying that the next
iteration of the behavior is captured by the increment of the events (we use any positive
m so as to support misalignment between processes and types).

We now introduce operations that capture the temporal ordering prescribed by types.
We write events(B) for the set of elements of E ×N occurring in a behavior B, not



including the events in message types. Formally:

events(B) ,


/0 if B = end or B = α

events(B1)∪ events(B2) if B = B1 |B2
{e}∪

⋃
i∈I events(Bi) if B = e p{li Ti.Bi}i∈I

{inc(e,k) | e ∈ events(B′) and k ≥ 0} if B = µα.B′

Notice that events(µα.B) includes all the events in the body of the recursion, incre-
mented zero or more times so as to capture the first and the following iterations. We
extend the operation to types, by defining events(B≺) , events(B), as we are only inter-
ested in linear types where supp(≺)⊆ events(B), and by defining events(e pl T ) , {e}.

We write B↓ for the strict partial order over E ×N induced by a type B. Notice that
B↓ is a partial operator since it uses ·∪ and + . Formally:

B↓ ,


/0 if B = end or B = α

B1↓ ·∪B2↓ if B = B1 |B2
e+( ·∪i∈I Bi↓) if B = e p{li Ti.Bi}i∈I
{(inc(e,k), inc( f ,k)) | (e, f ) ∈ B′↓ and k ≥ 0} ·∪
{(inc(e,m), inc( f ,n)) | e, f ∈ events(B′) and 0≤ m < n} if B = µα.B′

Notice that the operation adds a least event in the case of the prefix summation, and for
recursions it adds all pairs obtained from the body of the recursion (incremented zero or
more times) and all pairs that pertain to different iterations. We extend the definition to
types by taking (e pl T )↓ , (e,>) and B≺↓ , B↓\≺, where \ denotes set difference.
The definition for linear types considers the order obtained from the behavioral type
removing the ordering expected from the external environment, so B≺↓ characterizes
exclusively the ordering imposed by the type.

To identify types that characterize channels that do not depend on the external en-
vironment to evolve, and hence are “self-sustained” communication wise, we introduce
a predicate that is true for types containing no unmatched communication actions. We
say that a behavioral type B is matched if it contains no top-level (i.e., excluding mes-
sage types) input or output polarities. We extend the definition to linear types by con-
sidering matched(B≺) , matched(B) (which, by well-formedness, implies≺= /0), and
matched(e pl T ) , p = ?. A message type of polarity ? says that a shared input is avail-
able. Since we are only interested in capturing continuously available shared inputs, ?
shared types “absorb” (as will be clear from the definition of type splitting) ! shared
types, so as to capture the fact that (replicated) shared inputs are still available after
synchronization. Hence, the definition of matched() for shared types excludes solely
(unmatched) shared outputs, and considers the (infinitely available) shared inputs to be
matched (regardless whether they are used or not).
Typing contexts. The syntax of typing contexts is given in Fig. 3. We assume by con-
vention that, in a typing context Γ ,x : T and in a recursion environment ∆ ,X : (Γ ;≺),
the name x and the process variable X do not occur in Γ and in ∆ , respectively, as
usual. Also, we consider contexts up to permutations of their entries.

We denote by Γun contexts that contain only outputs on shared channels and linear
types with end behavior, that is, if x : T is in Γun, then T is either e ! l T ′ or end /0. We use
such contexts to describe systems that only use shared resources, namely to describe



B = B◦end
B1 = B′1 ◦B′′1 B2 = B′2 ◦B′′2 B1#B2

B1 |B2 = B′1 |B′2 ◦B′′1 |B′′2
(B-End,B-Par)

B = B1 ◦B2

µα.B = µα.B1 ◦µα.B2

∀i ∈ I Bi = B′i ◦B e p{li Ti.end}i∈I#B
e p{li Ti.Bi}i∈I = e p{li Ti.B′i}i∈I ◦B

(B-Rec,B-Break)

α = α ◦α

∀i ∈ I Bi = B′i ◦B′′i
eτ{li Ti.Bi}i∈I = e?{li Ti.B′i}i∈I ◦e !{li Ti.B′′i }i∈I

(B-Var,B-Sync)

Fig. 4. Behavioural type splitting

B = B1 ◦B2 ≺=≺1 \B2
≺2↓ ·∪≺2 \B1

≺1↓ ·∪ B↓\ (B1↓ ·∪ B2↓)
B≺ = B1

≺1 ◦B2
≺2

(L-Split)

Fig. 5. Linear type splitting

(the continuation of) processes that input on shared channels. We exclude shared inputs
from Γun in order to avoid “nested” shared inputs, so that inputs on shared channels
are continuously active (cf. uniform receptiveness [1, 19]). Similarly, we denote by Γlin
contexts that contain only linear types, that is, types of the form B≺.

We are interested in systems where all communications are matched, i.e., typed
against matched contexts, defined as the pointwise extension of the matched predicate
on types. We also lift the notions of type increment, inc, type equivalence,≡, and partial
order difference, \, pointwise to contexts.
Splitting and conformance. We now introduce two notions crucial to our development,
namely splitting (inspired by [2] and by the merge operation of [4]) that explains how
behaviors can be decomposed and safely distributed to distinct parts of a process (e.g.,
to the branches of a parallel composition), and conformance that captures the desired
relation between typing contexts and strict partial orders.

We say type T conforms to order ≺, noted conforms(T,≺), if T↓ ⊆ ≺. Notice that
since T↓ excludes the ordering expected from the external environment, conformance
focuses on the order imposed by the types (which is the focus of the overall ordering).
The conforms predicate is defined on typing contexts as the pointwise extension of
the predicate on types, so conforms(Γ ,≺) ensures that every communication action
specified in Γ is ordered by ≺.

Splitting is defined both on types and on typing contexts. We write T = T1 ◦T2 to
mean that type T is split in types T1 and T2, and likewise for Γ = Γ1 ◦Γ2. Behavioral
type splitting, linear type splitting, shared type splitting and context splitting are given
by the rules in Figs. 4–7 (where we omit symmetric rules).

We briefly describe the rules in Fig 4. A behavioral type may be split in itself and in
end, so as to allow, e.g., to give away the behavior completely to one branch of a parallel
composition—rule (B-End). A parallel composition B1 |B2 (where B1 and B2 are apart
#) may be split in two parallel compositions, the components of which are obtained
by decomposing B1 and B2—rule (B-Par). A recursive type is split in two recursive
types, the bodies of which are obtained by splitting the body of the incoming recursive
type—rule (B-Rec). Also, a recursion variable may be split in itself—rule (B-Var).

A prefix summation may be split in an independent (#) behavior, obtained by split-
ting (all) the continuations, and in the prefix whose continuations specify the remaining



p ∈ {?, !}
e? l T = e? l T ◦e pl T

(S-In-L)

e ! l T = e ! l T ◦e ! l T
(S-Out)

Fig. 6. Shared type splitting

·= ·◦ ·
(C-Empty)

Γ = Γ1 ◦Γ2

Γ ,x : T = Γ1,x : T ◦Γ2
(C-Left)

Γ = Γ1 ◦Γ2 T = T1 ◦T2

Γ ,x : T = Γ1,x : T1 ◦Γ2,x : T2
(C-Split)

Fig. 7. Context splitting

behavior—rule (B-Break). A synchronized (τ) prefix summation may be split in prefix
with dual polarities (? and !) whose continuations are obtained by splitting the synchro-
nized prefix continuations—rule (B-Sync).

Notice that rule (B-Break) may decompose a type in such a way that the overall
ordering is not guaranteed by the splitted types. To this end we keep track of the ordering
assumptions in the linear type splitting, defined in Fig. 5. A linear type split is defined
by the behavioral split and also by a separation of the ordering assumptions ≺, such
that everything ≺ assumes may be assumed by ≺1 or ≺2, but ≺1 and ≺2 may specify
other assumptions which are actually ensured by B2

≺2 and by B1
≺1 , respectively. Also,

≺ necessarily contains the ordering present in B (i.e., B↓) that is not supported by either
B1 or B2, hence any sequentiality information that B specifies introduced via (B-Break).

Shared type splitting (Fig. 6) decomposes shared communication capabilities in two
distinct ways, depending on whether the polarity of the incoming type is ? or !. A shared
input is split in a shared input and either in an output or another input, via rule (S-In-L).
Essentially, the latter allows for typing processes that separately offer the input capa-
bility (e.g., a service that is provided by two distinct sites), and the former allows for
typing processes that offer the dual communication capabilities (e.g., a service provider
and a service client). A shared output is split in two shared outputs—rule (S-Out)—
which allows for typing processes that offer the output capability separately (e.g., two
clients of some service). Notice type splitting preserves the message types and event as-
sociation so as to guarantee the dual communication actions agree on the type of what
is communicated and on the ordering.

Context splitting (Fig. 7) allows to divide a context in two distinct ways: context
entries either go into the left or the right outgoing contexts—(C-Left) as well as the
omitted symmetric rule—or they go in both contexts—(C-Split). The latter form lifts
the (type) behavior distribution to the context level, while the former allows to delegate
the entire behavior to a part of the process, leaving no usage at all to the other part. To
lighten notation we use Γ1 ◦Γ2 to represent any Γ such that Γ =Γ1 ◦Γ2 (if such Γ exists).
Notice that, given Γ1 and Γ2, there may be more than one Γ such that Γ = Γ1 ◦Γ2.

4 Typing system

This section introduces our typing system and the main results of the paper, namely
soundness of the type system (Theorem 1) and liveness (Theorem 2).
Typing system. The typing system characterizes processes according to typing assump-
tions for free process variables (∆ ) and for names (Γ ), as well as an overall ordering of
events (≺). We say process P is well-typed if ∆ ;Γ ;≺ ` P is derivable using the rules
in Fig. 8. We briefly comment on the rule. In rule (T-Par) the parallel composition is



∆ ;Γ1;≺1 ` P ∆ ;Γ2;≺2 ` Q
∆ ;Γ1 ◦Γ2;≺1 ·∪ ≺2 ` P |Q

∆ ;Γ ,x : T ;≺ ` P matched(T )
∆ ;Γ ;≺ ` (νx)P

(T-Par,T-New)

∆ ;Γun; /0 ` 0
∆ ,X : (inc(Γlin,n); inc(≺,n));Γlin;≺ ` P n ∈ N

∆ ;Γlin;≺ ` recX .P
(T-Inact,T-LRec)

∆ ,X : (Γ ;≺);Γ ;≺ ` P Γ = Γun,x : e? l T ≺= (e+≺′′) ·∪ ≺′ e 6∈ supp(≺′)
∆ ;Γ ;≺ ` recX .P

(T-URec)

∆(X ) = (Γ ;≺) conforms(Γ ,≺)
∆ ;Γ ;≺ `X

∆ ,Γ2;≺ ` P Γ1 ≡ Γ2

∆ ;Γ1;≺ ` P
(T-Var,T-Equiv)

∀i∈I ∆ ;Γ ,x : Bi
≺′i ,yi : Ti;≺i ` Pi

∆ ;Γ ,x : e?{li Ti.Bi}i∈I
·∪i∈I≺′i ; e+( ·∪i∈I ≺i) ` x?{liyi.Pi}i∈I

(T-LinIn)

∆ ;Γ ,x : Bk
≺′ ;≺ ` P k ∈ I

∆ ;(Γ ,x : e !{li Ti.Bi}i∈I
≺′)◦y : Tk; e+(≺ ·∪ Tk↓) ` x!lk y.P

(T-LinOut)

∆ ;Γun,x : e? l T,y : T ;e+≺ ` P
∆ ;Γun,x : e? l T ;e+≺ ` x?l y.P

Γ = (Γun,x : e ! l T )◦y : T ·; ·; /0 ` P
∆ ;Γ ;e+T↓ ` x!l y.P

(T-UIn,T-UOut)

Fig. 8. Typing rules

typed if the branches are typed in splittings (◦) of the context and a decomposition of
the order. In rule (T-New) the name restriction is typed if the process in the scope of
the restriction is typed in the same contexts together with the typing assumption for the
usage of the restricted name which must be a matched type (all communication pre-
fixes are matched). Notice that the overall ordering ≺ is preserved, hence the ordering
prescribed by name x is still present in the conclusion, even if the type T of x is not.

In rule (T-Inact) the inaction process is typed with any usage of recursion variables
(∆ ), and with only outputs on shared labels and end linear types (Γun), and an empty
overall ordering ( /0). In rule (T-LRec) a recursive process is well typed if so is the body
of the recursion in the same typing context Γlin (which only includes linear usages) and
overall ordering ≺, and in the recursion environment augmented with an assumption
for the recursion variable: the variable is assumed to have exactly the same usage and
overall ordering up to an increment (for some n) of the natural exponent of the events.
Rule (T-LRec) therefore captures, in a fairly intuitive way, subsequent iterations of a
(linear) recursion: the point of the next iteration is characterized by an increment of the
typing and ordering.

Rule (T-URec) addresses a recursive process that uses only shared resources where
no increment is involved since shared communications do not have iterations (their
repetition is considered to happen at the level of a single iteration). So the recursion
environment is augmented with the typing and ordering that types the body of the re-
cursion. The typing mentions only shared exponential resources (Γun) together with a
shared input (on x), as we intend to capture replicated shared inputs. In order to ensure
that the shared input is an immediate action of the body of the recursion, the ordering
makes e a minimal event. Given the above explanation, rule (T-Var) is straightforward:
the assumption for the variable provides the context and ordering for the process. In



rule (T-Equiv) we embed the notion of context equivalence in the type system, since we
need to unfold recursive types when typing the body of a recursion.

Communication prefixes are also typed in separate rules, depending on the type of
the subject of the communication. In rule (T-LinIn) the input on a channel x with linear
usage is typed if the continuation processes are typed with the usages for x prescribed
in the prefix summation type, together with a separation of the ordering assumptions;
also, by adding a typing assumption for the usage of the received name (according to
the corresponding message type), and a separation of the events greater than e in the
overall ordering. The e is the event associated with the prefix summation (notice that
we pick fresh events since + is undefined otherwise). The fact that events in the con-
tinuation are of greater order ensures that the communications in the continuation are
in fact prescribed to take place after the prefix itself. Notice that the overall ordering
registered in the conclusion is a tree rooted in e. Further notice that the communication
dependency structure of the received name is transparently kept in the conclusion (the
ordering prescribed by the channel usages is invariantly registered in the overall order-
ing). This allows us to type systems where communications on received channels are
interleaved with others, configurations out of reach of related approaches.

The reasoning is similar in rule (T-LinOut). The continuation is typed by consid-
ering the continuations of the prefix summation (any prefix summation containing the
only label mentioned by the process) which is uniquely associated with event e, together
with the same ordering assumptions ≺′ (as we are only interested that the environment
guarantees the order of one branch). The typing context Γ is actually the result of a split
of the context registered in the conclusion, which also mentions the usage delegated in
the communication for the sent name. Finally, the overall ordering in the conclusion
also registers the ordering (of events greater than e) prescribed by the message type.

Rules (T-UIn) and (T-UOut) explain the typing for communications on shared chan-
nels. In rule (T-UIn) the input with shared usage is typed if the continuation process
is typed adding the usage for the received name to the context. Notice that since we
type the continuation with the shared input usage, the continuation must offer again the
shared input behavior (so shared inputs can be typed only in the context of a recursion).
Notice also that the overall ordering in the conclusion is that of the premise, as expected
in a replicated process, and specifies that the event associated with the shared input is
minimal (so as to ensure it is immediately available). Furthermore, we require that the
remaining context mentions exclusively shared outputs (Γun) so that no other shared in-
puts are defined in the continuation. This would be a problem for liveness since shared
inputs on free names defined in the continuation might leave a matching output dan-
gling. However, we may freely type processes in the continuation that specify shared
inputs in restricted names (or even in the received name).

In rule (T-UOut) we type the output on a shared channel if the continuation is typed
in the empty context and empty ordering. This means that our model for shared channel
communications is an asynchronous one. There are at least two approaches to guarantee
that shared inputs are always active (uniform receptiveness): one is to exclude usage of
the shared name in the continuations of both input and output prefixes [19] (we followed
a similar approach in [22] excluding the corresponding event in the continuations); the
other relies on an asynchronous model of communication [1]—which we adopt here for



shared channels. The advantage of this approach is that it supports processes that specify
in the continuation of a shared input a matching output (intuitively, think of a recursive
“service” call). Also, looking at (T-UOut) and (T-Par) we argue that every process P that
we have used in examples in the continuation of a shared output x!l y.P can be specified
(and typed) using the parallel composition P |x!l y.0, essentially since the type delegated
in the communication is obtained via a split of the context nonetheless. Notice that rule
(T-UOut) says that the event associated with the output is minimal w.r.t. the message
type in the conclusion. Notice also that the rules for communication prefixes make no
distinction whatsoever on the type of the channel communicated.

One can now show that process (4) is well typed. Consider the following types.

Ts , µα.e1
τ l int. f 1

τ mbool.α Tr , µα.g1
τ nbool.α

Each unfolding of a type increments the indexes of the events. The splitting of these
behaviors produces

TAs , µα.e1 ?l int.α TBs , µα. f 1 ?mbool.α TCs , µα.e1 !l int. f 1 !mbool.α

TAr , µα.g1 ?nbool.α TBr , µα. f 1 !nbool.α

regarding sessions s and r. Now, looking at the structure of the participants in (4), we
realize that the following relations must hold: the structure of A requires e1 ≺ g1 ≺ e2;
the structure of B requires f 1 ≺ g1 ≺ f 2; finally, the structure of C requires e1 ≺ f 1 ≺ e2.
Overall, it is possible to find a typing derivation for the whole process by considering
the strict partial order

≺ , Ts↓ ·∪ Tr↓ ·∪ {( f i,gi),(gi,ei+1) | i ∈ N}

Results. We start by mentioning some auxiliary results, in particular that conformance
between the typing context and the overall ordering is ensured for all derivations. This
result may be viewed as a sanity check saying that the conditions imposed by our rules
are enough to keep conformance invariant in a derivation. We may also show that split
is an associative relation, in particular for behavioral types. This result in particular
ensures that the derivation (sub-)trees may be moved around, and used in the proof of
the following (standard) results.

Lemma 1 (Subject Congruence). If ∆ ;Γ ;≺ ` P and P≡ Q then ∆ ;Γ ;≺ ` Q.

Lemma 2 (Substitution). If ∆ ;Γ1,x : T ;≺`P and Γ2 =Γ1 ◦y : T then ∆ ;Γ2;≺`P{x/y}.

The proofs follow by induction on the structure of the process and on the length
of the typing derivation (respectively) along unsurprising lines. Notice that substitution
uses context splitting to characterize the context that types the resulting process, since
name y may already be used by P and the soundness of the substitution is guaranteed
by the split. Before presenting our first main result we need to introduce two auxiliary
notions that characterize reduction of contexts and of strict partial orders. As expected
from a behavioral type system, as processes evolve so must the types that characterize
the processes. The reduction relations for behavioral types and contexts are given in
Fig. 9. Note that τ-prefixed summations (in “active contexts”) may reduce and a context



k ∈ I
eτ{li Ti.Bi}i∈I → Bk

B1→ B′1
B1 |B2→ B′1 |B2

B1 ≡ B′1→ B′2 ≡ B2

B1→ B2

· → ·
B1→ B2

Γ ,x : B1
≺→ Γ ,x : B2

≺
Γ1→ Γ2

Γ1,x : T → Γ2,x : T

Fig. 9. Type and context reduction

≺→≺
e ∈ supp(≺)
≺→ ≺\ e

Γ1→ Γ2 ≺1→≺2

Γ1;≺1→ Γ2;≺2

Fig. 10. Order and typing reduction

reduces if it has an entry on a linear type prefix that reduces. Also, the empty context
reduces so as to mimic synchronizations on restricted and shared channels (embedding
reflexivity in context reduction); these synchronizations do not change the types.

Fig. 10 shows the reduction for orders and context/order pairs. Strict partial order
reduction is also reflexive to capture both shared synchronizations and communications
that depend on shared communications (as they take place repeatedly for each of the
continuation of the shared input). Reduction is also defined by removing an event of the
ordering, so as to capture one shot synchronizations (which includes infinite chains of
synchronizations). We may now present our first main result.

Theorem 1 (Preservation). If ∆ ;Γ1;≺1 ` P1 and P1 → P2 then Γ1;≺1→ Γ2;≺2 and
∆ ;Γ2;≺2 ` P2.

The proof follows by induction on the length of the derivation of P1 → P2. The
theorem says that typing is preserved under process reduction, up to a reduction in the
context and ordering. Fidelity is an immediate consequence of Theorem 1, as usual
(cf. [2]), thanks to the precise correspondence between reduction in processes and in
typing contexts. We now turn our attention to the liveness result, where we use→n to
denote a sequence of n reductions.

Theorem 2 (Liveness). Let ∆ ;Γ1;≺1 ` P1 with matched(Γ1), and let x : L1 in Γ1 with
e ∈ events(L1). Then P1→n P2 and (Γ1;≺1)→n (Γ2;≺2) and ∆ ;Γ2;≺2` P2 with x : L2
in Γ2 and e 6∈ events(L2), for some n > 0.

In words, every event e occurring in the type of a linear channel used by a well-
typed process can eventually disappear from the type environment. This means that
either e is associated with an (inter)action that can eventually be performed by the
process, or that e occurs in a branch of a choice which is not selected. This property
is akin to lock freedom [13] or progress [3, 6, 12] except that e in Theorem 2 can be
associated with an action that is arbitrarily deep within the process structure, whereas
lock freedom and progress are usually formulated for top-level actions only. The proof
invariant is that for each linear synchronization prescribed by the types there is either an
immediate corresponding synchronization in the process or there are preceding actions
which necessarily are of “lesser” order. The fact that behaviors described by linear types
have a correspondence with the communication capabilities of processes is a standard
property of linear type theories.



Notice that we are not able to characterize shared usages in the same way, as the
events associated with them are persistent. However, we may immediately conclude
that since any linear synchronization that depends on a shared synchronization takes
place then so does the shared synchronization (in fact, our proof relies on the fact that
also shared synchronizations are live, along with communications in restricted channels
with matched typings). Notice also that our type-based approach addresses processes
with “unmatched” typing, just as long as we consider them up to the composition with
any other processes for which the resulting typing is matched—in particular via rule
(T-Par) of Fig. 8. An immediate consequence of Theorem 1 and Theorem 2 combined
is that any configuration reachable from a matched typed one (as the matched predicate
is invariant under context reduction) also has the liveness property.

5 Concluding Remarks

We have presented a type system for multiparty session-based communication-centred
systems that guarantees liveness in addition to session fidelity even when multiple ses-
sions are interleaved. Compared to other models for multiparty session communication,
our approach strives to achieve minimality of both language and type features. Regard-
ing language features, we rely on message labels for preventing communication races
on linear channels, whereas other approaches make use of channel polarities [9], of dis-
tinct channel endpoints [21], or roles [3, 6]. Moreover, we do not make use of dedicated
session initialization primitives. Regarding type features, our work exploits notions in-
troduced in [2, 4] (e.g., the τ polarity and the split operator), allowing us to use the
same type language for specifying both global and local types. This is in contrast with
common multiparty session type theories such as [3, 6, 12], which introduce distinct lan-
guages for global and local types connected by a projection operation from the former
into the latter.

A number of type-based techniques guaranteeing deadlock freedom, progress, or
liveness properties have been proposed. Kobayashi [13, 14] presents type systems for
lock-free and deadlock-free processes written in the pure π-calculus. Roughly speaking,
every top-level input/output prefix in a lock-free process is guaranteed to be eventually
consumed, whereas a deadlock-free process is one that is always able to reduce, unless
it has terminated. The type systems rely on channel usages, which are behavioral types
resembling session types where actions are annotated with pairs of obligation/capability
levels, roughly denoting the time at which actions begin/are supposed to end. Top-level
actions with a finite capability level are guaranteed to succeed in a finite amount of time
(and possibly under some fairness assumption). For session-based languages, the rele-
vant works on binary sessions are [8, 16], while [3, 6] deal with multiparty sessions. The
basic idea of [3, 6, 8] is to devise a type system that detects the dependency graph be-
tween different sessions, where a dependency arises if a (blocking) action in one session
guards an action pertaining a different session. Liveness is guaranteed if the dependency
graph is acyclic. [16] leverages Kobayashi’s technique (in [13]) from channel usages to
session types showing that such technique can achieve a greater accuracy when com-
pared to [3, 6, 8]. The present work differs from these in several minor and major ways.
In particular, our process model is synchronous, while the ones in [3, 6, 16] is asyn-



chronous. Asynchrony has a non-trivial impact in the type system for progress, mainly
because output actions are non-blocking. The progress property considered in [3, 6] as-
sumes that missing session participants can eventually join the system at any time. In
practice, this assumption implies that any action on shared channels is considered non-
blocking, because it is always possible to add some (well-typed) processes that provide
for the missing messages. Also, [6] defines a syntax-directed type system and automatic
inferences are known for the systems described in [13, 14]. In our case, the definition of
a syntax-directed type system and of an inference algorithm remain open problems.

One major difference between our work and the aforementioned ones, which con-
stitutes the main technical contribution, regards the treatment of recursive types. In all
previous works, annotations such as obligation/capability levels in [13, 14], dependency
graphs [3, 6], timestamps [16] are statically associated with types, regardless of their re-
cursive structure. In our case, unfolding a recursive type has the effect to “freshen” the
events occurring therein. This significantly increases the range of well-typed processes.
In particular, none of the aforementioned works is able to prove progress for non-trivial
recursive processes interleaving (blocking) actions on different channels. For example,
the (appropriate encoding of the) (4) is ill typed according to all previous type systems.
More recently, the first author has studied a type system for deadlock and lock free-
dom which is capable of addressing non-trivial recursive process configurations, albeit
in the context of the linear π-calculus [17]. The type system in [17] can prove that a
configuration such as (4) is (dead)lock free, but only encoding the multiparty session s
in terms of several binary sessions which, in turn, can be encoded using linear channels.
In the present work instead we consider a calculus with a primitive notion of multiparty
session, addressing scenarios that cannot be compiled down to binary sessions.

Naturally a type-based approach is only relevant if it can be taken into practice, so
decidability is a fundamental property. We may argue that we can extract a decidable
type-checking procedure from our type system, if we annotate restricted names with
their types (as usual) and process recursion variables with the increment factor (together
with confining unfoldings to a “just-in-time” setting). Inference is also an important
issue as it allows to save the programmer’s effort to specify the types and increase the
probability that such advanced type system can actually be used in practice. Although
we believe these are very important questions to address, we decided to leave them to
future clarification and focus on the principles of our approach for now, so as to make
further efforts worthwhile. Furthermore, observing that types are becoming very rich
characterizations of process behavior (in our case how and when channels are used),
one may ask if it is possible to deduce processes from types (e.g., [5]) and spare the
“programmer” the effort of writing programs and just ask him to write the types.
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