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1 Introduction

The spontaneous breakdown of chiral symmetry plays a central role in the spectrum of light

hadrons. Since it is an intrinsically non-perturbative phenomenon, the only way to study

it from the first principles of QCD is via the lattice regularization. Yet, already many years

ago Nielsen and Ninomiya proved that a translationally invariant, local lattice formulation

of the QCD Dirac operator D, retaining chiral symmetry in the massless limit, and with

the correct number of physical fermionic degrees of freedom, is forbidden [4–7]. This no-

go theorem can be circumvented, by constructing lattice fermions satisfying a modified

form of chiral symmetry [8], and obeying the Ginsparg-Wilson relation [9]. Although

explicit formulations of lattice Ginsparg-Wilson fermions are known [10–12], currently their

practical use in realistic, large-scale lattice QCD simulations is still limited, due to the high

computational overhead.

The most widely-used lattice discretizations of the Dirac operator are either based on

the addition of a second-derivative term to the kinetic part of the quark action [13] to

remove (or “quench”) the unphysical “doubler” modes in the continuum limit by giving

them a mass O(a−1), or on a site-dependent spin diagonalization, which leads to the so-

called staggered formulation [14]. The former approach introduces an explicit breaking of

chiral symmetry, and, as a consequence, an additive renormalization of the quark mass,

which has to be fine-tuned. In contrast, the staggered operator preserves a remnant of chiral

symmetry (sufficient to forbid additive mass renormalization), and leads to a reduction of

the matrix size. However, the staggered formulation only removes part of the unphysical

modes, reducing the number of quark species in four (d) spacetime dimensions from 16

(2d) down to four (2d/2) “tastes”, which become degenerate [15] (and consistent with the

properties related to the global symmetries of the continuum Dirac operator [16–19]) in the

a→ 0 limit. In order to simulate QCD with two light fermions, one then has to apply the

so-called “rooting trick”, which has been a subject of debate for the last few years [20, 21].

Some recent works have discussed the idea of using a staggered kernel with a

taste-dependent mass term to obtain two (or one [3, 22, 23]) massless fermion species.
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Such formulation, which is one of the various approaches aiming at minimally doubled

fermions [24–31], could combine the advantages of the overlap construction with the com-

putational efficiency of a staggered kernel. Furthermore, this formulation appears to be

particularly attractive from the point of view of topological properties [1].

Using a staggered operator with a “flavored” mass term as the kernel in an overlap con-

struction is a very appealing idea, but the properties of such operators (with various taste-

dependent mass terms) are interesting on their own. In fact, while the overlap construction

completely removes the need for fine tuning to achieve massless fermions, it still leads to a

considerable computational overhead. In contrast, using a staggered operator with taste-

dependent mass à la Wilson requires fine tuning to obtain exactly massless modes, but,

by virtue of the reduced size of the operator, may still be a computationally competitive

alternative to the usual Wilson discretization, while avoiding the rooting prescription.

This motivation led us to address a numerical investigation of different operators of this

type that we present here (preliminary results have appeared in [22, 23]). In the following,

we present a systematic classification of the possible taste-dependent mass terms, discuss

their analytical features in the free theory, and then move on to the interacting case that

we study via numerical simulations. We perform an elementary measurement of the pion

mass on a set of quenched configurations, and verify the expected PCAC behaviour as one

approaches the chiral limit. In an appendix, we also explore the properties of the staggered

overlap operator proposed in [1], in comparison with the usual overlap based on the Wilson

kernel. In particular, we compare the locality of the operators, and the computational cost

of applying them to a vector and of solving for the quark propagator.

The structure of this paper is as follows. First, in section 2 we recall theoretical aspects

of the construction of taste-dependent mass terms, and discuss their spectral structure in

the free field case. Then, we address the interacting case, presenting our numerical studies

in section 3. We summarize our findings and discuss their implications for possible future,

large-scale applications of these operators in section 4. Finally, in the appendix A, we report

on our study of an overlap operator based on a staggered kernel, as proposed in ref. [1].

2 Theoretical formulation and general features

The staggered operator [14]

DKS =
1

2a

d∑
µ=1

ηµ

(
Vµ − V †µ

)
(2.1)

with ηµ(x) = (−1)
∑
ν<µ xν and (Vµ)x,y = Uµ(x)δx+aµ̂,y, is a computationally very efficient

way to discretize the massless QCD Dirac operator on a d-dimensional Euclidean hyper-

cubic lattice of spacing a. This operator is invariant under a global U(1) symmetry, which

can be interpreted as a remnant of chiral symmetry: in fact, DKS anticommutes with the

operator Γ55 defined by (Γ55)x,y = (−1)
∑d
ν=1 xν . In the free theory, one can easily see that

in four dimensions the operator Γ55 has γ5 ⊗ γ5 structure in spin-taste space [33–36]. The

construction of DKS is based on a local spin diagonalization, which, for the four-dimensional
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case, allows one to reduce the number of fermion components by a factor of 4 with respect

to the naive operator, and yields four tastes in the continuum limit. The degeneracy be-

tween these four tastes is explicitly broken by gauge interactions at finite lattice spacing a,

but is recovered in the continuum limit a→ 0.

Recently, various works explored the idea of using staggered operators with taste-

dependent mass terms [1, 3, 22, 23]. Following, e.g., the discussion in the classic paper by

Golterman and Smit [37], the possible matrix structures (in taste space) for a mass term

can be classified as

• 1 (“0-link”), of the form δx,y;

• γα (“1-link”), involving a sum of terms, each containing 1 link Uµ;

• σαβ (“2-link”), involving a sum of terms, each containing 2 links UµUν ;

• γ5γα (“3-link”), involving a sum of terms, each containing 3 links UµUνUρ;

• γ5 (“4-link”), involving a sum of terms, each containing 4 links UµUνUρUσ.

It is highly desirable to preserve the symmetry Γ55DΓ55 = D†, because it guarantees

that detD is real, and non-negative (in the absence of real negative eigenvalues), thus

avoiding a “sign problem” in the measure [38]. This symmetry is satisfied only if the

hermitian mass term connects sites of the same parity. Thus, we do not consider the 1-link

or a 3-link mass terms further.

This leaves three possibilities: 0-, 2- and 4-link mass terms.1 The 0-link mass term

corresponds to the usual staggered operator, with a taste-independent bare mass

D0 = DKS +m. (2.2)

The staggered operator with a 2-link mass term, which was discussed in refs. [3, 22, 23],

can be written in the form

D2 = DKS +
ρ√
3

(M12 +M13 +M14 +M23 −M24 +M34) , (2.3)

where (following the notation of ref. [3])

Mµν = iηµνCµν , (2.4)

(ηµν)x,y = −(ηνµ)x,y = (−1)
∑ν
i=µ+1 xiδx,y, for µ < ν, (2.5)

Cµν =
1

2
(CµCν + CνCµ) , (2.6)

Cµ =
1

2

(
Vµ + V †µ

)
. (2.7)

1It is also possible to consider the above matrix possibilities with an extra factor Γ55 [37]. In that

case, γ5-hermitian mass terms are obtained in the 0-, 1- and 3-link cases. However, we did not find a

continuum-like dispersion relation for the real modes in any of these cases.
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Figure 1. Left panel: spectrum of DKS in the free limit. Central panel: free spectrum of operator

D2 (eq. (2.3)), which includes a taste-dependent mass term with tensor-like structure in taste space

(i.e., a 2-link mass term). Right panel: free spectrum of operator D4 (eq. (2.8)), which includes a

taste-dependent mass term with γ5 structure in taste space (i.e., a 4-link mass term).

Finally, a staggered operator featuring a mass term with γ5 structure in taste space [1] can

be written as

D4 = DKS −
ρ

a
Γ55Γ5, (2.8)

with

Γ5 = η5C, (2.9)

where

η5(x) =
4∏

µ=1

ηµ(x), (2.10)

while C is the average of four-link parallel transporters joining sites at opposite corners of

the elementary lattice hypercubes

C =
1

4!

∑
perm

CµCνCρCσ. (2.11)

Note that the mass term appearing on the r.h.s. of eq. (2.8) is hermitian and commutes

with Γ55.

To understand the properties of these three different types of operators it is instructive

to start by discussing their spectra in the free limit. The three panels in figure 1 show the

structure of the spectrum of eigenvalues for DKS (for D0, the spectrum is just trivially

shifted by m), for D2, and for D4 in the non-interacting case.

In the free limit the eigenvalues of D0 on a lattice with Nµ sites along the µ direction

read

λ = m± i

√√√√ d∑
i=1

sin2 pµ, with: pµ =
2π

Nµ
(kµ + εµ), kµ ∈ {0, 1, 2, . . . , Lµ/2− 1},

(2.12)
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with eight degenerate eigenvalues of both signs, and where εµ = 0 (1/2) if the fermionic

field satisfies (anti-)periodic boundary conditions along the µ direction.

For D2 the free eigenvalues take the form (for ρ = 1)

λ1 = ±
√
A1 − p2 ± 2i

√
A1p2, (2.13)

and

λ2 = ±
√
A2 − p2 ± 2i

√
A2p2 (2.14)

in which the ± signs are chosen independently and the eigenvalues are doubly degenerate,

and having defined

p2 =

4∑
µ=1

sin2 pµ, (2.15)

A1 =
c21c

2
2 + c21c

2
3 + c21c

2
4 + c22c

2
3 + c22c

2
4 + c23c

2
4

3
− 2c = 0 +O(a2), (2.16)

A2 =
c21c

2
2 + c21c

2
3 + c21c

2
4 + c22c

2
3 + c22c

2
4 + c23c

2
4

3
+ 2c = 4 +O(a4), (2.17)

where cµ = cos pµ, and c = c1c2c3c4. Expanding for small momenta gives

λ1 = ±
√
−p2 = ±ip, λ2 = ±2

√
1± ip = ±2± ip, (2.18)

so that at low momenta, the eigenmodes corresponding to λ2 get a mass of ±2, while the

eigenmodes corresponding to λ1 are massless.

Finally, the free spectrum of D4 reads:

λ1 = −cρ
a
± i
√
p2, λ2 = +c

ρ

a
± i
√
p2. (2.19)

Note that, in the continuum limit, the point where the spectrum of the DKS operator

intersects the real axis corresponds to four massless modes. By contrast, D2 leads to one

mode in each of the two intersections away from the origin, and two at the origin. Finally,

for D4 one obtains two modes at each of the two intersections of the spectrum with the

real axis.

The taste chirality of the eigenmodes Ψ of D4 and D2, is given by (Ψ̄Γ55Γ5Ψ), where

Γ55 = γ5 ⊗ γ5 exactly, and Γ5 = γ5 ⊗ 1 +O(a) in spin ⊗ taste. The taste chirality of the

eigenmodes corresponding to eigenvalues λ1 is c, while that of the λ2-eigenvectors is −c.
This is also depicted in figure 2; one can see that the taste chirality of the real eigenmodes

is ±1, and is the same (+1 or −1) for all modes in a given branch of the D4 or D2 spectrum.

The implications of a well-defined taste chirality have been stressed in [2]: if Γ55Γ5 ≈ ±1,

then Γ55 ≈ ±Γ5, so that the spin chirality of the real eigenmodes can be probed by Γ55.

This is the reason why the index theorem applies to D2 and D4, while it does not for DKS

(where both the ±1 taste chiralities lay on the same single branch.)

A shift of the spectra by a real value can thus lead to chiral low-momentum zero

modes in each branch, and hence to the possibility of constructing an appropriate index.

A common way to study the index consists of looking at the flow of eigenvalues λ(m) of:

H(m) = γ5(D +m). (2.20)
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Figure 2. (Left.) Taste chirality properties of the D2 and D4 eigenvectors, as a function of (the

component of minimum modulus of) their momentum, in the free limit. On an infinite lattice,

the eigenvectors associated with real eigenvalues have vanishing momentum and a well-defined

taste chirality ±1. For eigenmodes corresponding to eigenvalue λ1, the taste chirality becomes +1,

while for λ2-eigenmodes the taste chirality approaches −1. (Right.) The taste chiralities of the

eigenmodes of the D2 operator; the size of the points corresponds to the magnitude of c, while the

color indicates the sign: blue for +c, red for −c.

In general, if (D + m) has a zero-mode |Ψ0〉 for m = m0, then, correspondingly, H has a

vanishing eigenvalue λ(m0) = 0. With a small perturbation of m away from m0, i.e. m =

m0 +δm, at leading order the eigenvalues get displaced by an amount 〈Ψ0|γ5(m−m0)|Ψ0〉,
namely one finds crossings λ(m) = ±(m−m0), if |Ψ0〉 is a chiral mode: 〈Ψ0|γ5|Ψ0〉 = ±1.

As pointed out in [39], the saturation of (Ψ̄Γ55Γ5Ψ) at value ±1 discussed above allows us

to trade Γ5 for Γ55 and use the latter in eq. (2.20).

An alternative way to look at the spectral flow was proposed in ref. [1] for the D4

operator, by studying the eigenvalues of2

Ĥ(ρ) = Γ55DKS −
ρ

a
Γ5. (2.21)

Figure 3 displays a comparison of the two different ways to define the spectral flow for

the D4 operator (see [32] for a recent related study): the plots in the top row show the

flow of eigenvalues of Ĥ as a function of ρ (eq. (2.21)), whereas those in the bottom row

refer to the “standard” definition of the flow, using eq. (2.20). In each row, the left panel

displays the results from a cold (i.e., free) configuration on a lattice of size 163 × 32, while

the central panel is obtained from a cooled configuration of topological charge Q = 1 on

a lattice of size 84, and finally the right panel displays the results from a “rough” (i.e.,

non-cooled) quenched Q = −1 configuration at β = 6/g2 = 6, on a lattice of size 124. In

2Actually, ref. [1] proposed to consider the spectral flow of (iDKS − ρ
a

Γ5). As recognized in [2], that

operator is the same as eq. (2.21) up to a redefinition of the ηµ phase factors.
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Figure 3. Comparison of the spectral flow for the D4 operator as obtained from the eigenvalues

of the operators defined in eq. (2.21) (top row panels) and eq. (2.20) (bottom panels). The three

plots (from left to right) in each row show, respectively, the eigenvalues of H̃ (or H) as a function

of ρ/a (or m) from a free configuration on a lattice of size 163 × 32, from a cooled configuration of

topological charge Q = 1 on a lattice of size 84, and from a non-cooled Q = −1 gauge configuration

at β = 6, on a lattice of size 124.

the latter case, the comparison of the two flow definitions shows that, with the standard

definition, the region around the real axis is populated by a large number of eigenvalues,

preventing one from identifying the crossing with accuracy.

Next, it is interesting to compare the identification of the index, using the spectral

flow defined from eq. (2.20), for staggered fermions with a taste-dependent mass term,

and for conventional Wilson fermions. This is shown in figure 4: the left, central and

right plot in each row show the spectral flow for D4, D2 and a standard Wilson operator,

respectively, while the three different rows, from top to bottom, refer to a cold configuration,

to a cooled Q = 1 configuration, and to a non-cooled Q = −1 quenched configuration at

β = 6. It is interesting to observe that, as expected, the spectral flow on a cooled instanton

configuration clearly reveals Nf ×Q crossings. However, one already sees that in the plots

of the β = 6 configuration the gap tends to close. This is especially the case for the D4

operator, and is related to the properties that will be discussed in section 3.

The overall message that can already be drawn from these observations (before ad-

dressing a full-fledged numerical investigation) is that the gauge field fluctuations in inter-

acting configurations reduce the width of the gap in the spectrum, and blur the distinction

between light modes and doublers.

3 Numerical investigation on interacting configurations

As we showed in the previous section, the fluctuations in typical interacting configurations

lead to a filling of the gap in the spectral flow for the various lattice Dirac operators that

we are considering, making a proper identification of the index difficult. A related effect

can also be seen directly in the spectra of the operators: the panels in figure 5 show a

comparison of the spectra of D4 (top row) and D2 (bottom row) in the free case (left), and
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Figure 4. Spectral flows for D4 (left), D2 (center) and a standard Wilson operator (right), on a

cold configuration (top), on a cooled Q = 1 configuration (middle), and on a non-cooled Q = −1

quenched configuration at β = 6 (bottom). The solid blue lines in the top row show analytic results.

in interacting configurations at β = 6 (central panels, in which different values of ρ/a or m

are used) and at β = 5.8 (right). The figure shows evidence for the superior robustness of

lattice fermions based on the D2 operator, over D4: at β = 5.8 for example, a gap remains

clearly visible for D2, while it has all but disappeared for D4.

This can be understood from the fact that, since D4 involves 4-link parallel trans-

porters, it is more sensitive to the gauge field fluctuations in interacting configurations

than D2, which involves 2-link transporters only.3

However, for practical applications in large-scale simulations, it is important to remark

that, as usual, the effect of gauge fluctuations can be considerably reduced through some

suitably optimized smearing procedure.

Next, we considered the effectiveness of these operators for spectroscopy calculations.

To this end, we performed a simple test, by studying the mass mPS of the lightest meson

in the pseudoscalar channel (the pion). We computed the quark propagator G(x, y, z, t)

from a point source, on quenched configurations at β = 6 on a lattice of size 163× 32, then

we evaluated the p = 0 correlation function

C(t) =
∑
xyz

G(x, y, z, t)Γ55G(x, y, z, t)†Γ55 =
∑
xyz

|G(x, y, z, t)|2, (3.1)

3Note that the same reason also explains the fact that the chirality of near-zero modes of the ordinary

staggered operator is typically small [40].
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Figure 5. Spectra of D4 (top) and D2 (bottom) on different types of configurations. As compared

to the free case (left), the gap in the spectrum of eigenvalues of D4 on interacting configurations

tends to close more rapidly than in the case of D2. The second and third plot in each row are

obtained from quenched configurations at β = 6 (in the third plot on the top row, symbols of

different colors correspond to different values of ρ/a). Finally, the plots on the right are obtained

from a coarser lattice, at β = 5.8 (roundoff errors cause some breaking of the complex conjugation

symmetry of the spectrum).

and extracted amPS searching for the large-time plateau in the effective mass plot, as a

function of t. Monitoring the behavior of (amPS)2 as a function of (am), one can study

the partially conserved axial current and the issues related to mass renormalization.

Figure 6 shows the correlators obtained on a free configuration, for D0 (left panel),

for D2 (central panel) and for D4 (right panel). As expected, the D2 operator leads to a

massless pion for both am = 0 and am = 2.

For an interacting configuration (at β = 6), the comparison between D2 and D4 shown

in figure 7 reveals that for D2 one obtains a massless pion at approximately am ∼ 1.15,

while for D4 the same happens for am ∼ 0.25. Comparing these numbers with the values

of the bare masses corresponding to a massless pseudoscalar state in the free limit (1 and

2 respectively), these results give an indication that the mass renormalization is more

pronounced for D4 than for D2. Quantitatively, one can observe that the renormalization

factor grows exponentially with the length of the parallel transporters used: (0.25/1)1/4 ∼
(1.15/2)1/2, in agreement with the fact that D4 involves 4-link terms, as opposed to D2, in

which the mass term is constructed from 2-link terms.

Remarkably, with the D2 operator, the pion mass shows a square-root behaviour of
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Figure 6. The exponential decay of the correlation function associated with the lightest meson in

the pseudoscalar channel for D0 (left), for D2 (center) and D4 (right panel) on a free configuration,

for different values of the bare quark mass.
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Figure 7. Tuning of the bare quark mass to obtain a light pion: the two plots show the pion mass

as a function of the bare quark mass, for D2 (left panel) and D4 (right panel) at β = 6.

three different kinds: one can approach the critical bare quark mass am0 ∼ 1.15 from the

left or from the right, i.e. from the inside or the outside of the D2 spectrum (the behaviour

is square-root-like even though the theory describes one flavour only — it is caused by the

approach to the Aoki phase). In addition, one can also approach the other critical quark

mass am = 0, corresponding to the central branch of the spectrum, which remains zero

as in the free case by symmetry of the average spectrum. The transition from one branch

to another seems rather abrupt, and the scaling of the pion mass can be observed over a

broad range of quark masses approaching zero.

The lesson is that D2 may provide a cost-effective way to simulate Nf = 2 light quark

species, without fine-tuning of the bare quark mass to approach the chiral limit.

4 Conclusions

In this work, we performed a numerical study of staggered Dirac operators with a taste-

dependent mass term. We restricted our attention to operators including mass terms

with tensor or pseudoscalar structure in taste space: their γ5-hermiticity properties are

such, that their eigenvalues come in complex conjugate pairs (as is the case for the usual

staggered Dirac operator), leading to a real fermionic determinant, which is non-negative

in the absence of negative real eigenvalues.
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Such operators were proposed by Adams [1, 2] and by Hoelbling [3]. We compared

their properties both in the free limit and on interacting configurations at typical values of

the gauge coupling.

Our results show that these operators can indeed be used to separate the low-lying

modes and reduce the number of tastes, in a way characterized by well-defined topological

properties. Our study of the spectral flow reveals that, for the 4-link operator (with a

taste-pseudoscalar mass term), the gap in the eigenvalue spectrum tends to close rather

early, obstructing an easy identification of the eigenvalue crossings, which are related to the

index. As one might have expected, the 2-link operator shows markedly more robustness

to gauge fluctuations.

We also performed an elementary study of pion propagators, which shows that the

lightest meson is rather easy to isolate without explicitly disentangling spin and taste

degrees of freedom. Approaching the chiral limit requires in general the fine-tuning of an

additive mass term, as for Wilson fermions. One important exception occurs for the 2-link

operator: if one chooses the middle branch of the spectrum, one can study a theory with

two tastes, where the additive mass renormalization vanishes due to the symmetry of the

spectrum. Therefore, no fine-tuning is needed.

Although the 2-link operator was designed to produce a single taste (with a fine-tuned

additive mass), it may well be that its most promising use is to simulate two tastes without

additive mass renormalization. Note that the heavy doubler modes do not completely

decouple in that situation. In the background of a topological charge Q, they contribute

real eigenvalues ∼ (+1/a)Q and (−1/a)Q, making the determinant negative when Q is odd.

The θ-parameter is thus equal to π. This sign (−1)Q should be removed by hand (or simply

ignored) in order to simulate the θ = 0 theory.

Finally, we studied the properties of an overlap operator with a D4 kernel (see ap-

pendix). We found that its locality properties are similar to those of the operator based on

a Wilson kernel. As it concerns the computational cost for a quark propagator calculation,

we found that, in the free limit or on very smooth gauge configurations, the inversion of

the operator based on a kernel with a four-link mass term is almost one order of magnitude

faster than using an overlap with Wilson kernel. However, we also observed a significant

loss of efficiency on interacting (quenched) configurations at β = 6, where the operator

with the D4 kernel is only approximately twice as fast as that with a Wilson kernel. The

reason for this can probably be traced back to the fact that the four-link transporters in

the mass term are more sensitive to the effect of the fluctuations in gauge configurations on

coarser lattices. Our crude assessment indicates that this new, staggered, overlap operator

does not bring a major computational advantage over a Wilson kernel, while producing

two degenerate flavors, but without the full SU(2) flavor symmetry.

Two copies of an overlap operator with a kernel based on Hoelbling’s 2-link operator

would give more flexibility, e.g. that of simulating two flavors with unequal masses, for a

similar computer effort.

Note added. After this paper was completed, a difficulty with the Hoelbling operator

D2 eq. (2.3) was pointed out by Steve Sharpe, and clarified by David Adams, during the
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Yukawa Institute Workshop “New Types of Fermions on the Lattice”. It appears that

the Hoelbling operator lacks sufficient rotational symmetry, so that fine-tuned Wilson loop

counterterms will presumably be needed to maintain hypercubic rotational symmetry in

unquenched simulations. Adams’ operator D4 eq. (2.8) does not suffer from this problem.
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A Staggered overlap operator

We also studied the properties of an overlap operator based on a staggered D4 kernel, as

originally proposed in [1]. The construction is completely standard:

Dov =
ρ

a

1 +
D4√
D†4D4

 (A.1)

and leads to two exactly massless physical fermions in the continuum limit, without fine-

tuning. As compared to a conventional overlap operator based on a Wilson kernel, the po-

tential advantages of this construction are related to the reduced kernel size (D4 is a matrix

of size four times smaller than a Wilson operator on the same lattice). We take ρ = 1.

To understand the effectiveness of an overlap operator with a D4 kernel, the first

important issue to be discussed is the locality of the operator. As is well-known, an

overlap operator is not ultra-local [41]. Its locality properties can be studied by looking

at the decay of its matrix elements between source and sink at sites x and y (which we

denote as Mx,y, where, for simplicity, we only show the indices corresponding to the site

coordinates), as a function of the distance between x and y [42]. To this end, in the two

plots at the top of figure 8 we show the decay of |Mx,y| against |x−y|1, the 1-norm distance

(or “Manhattan distance”) between the sites x and y, comparing the matrix elements of

an overlap operator obtained using a D4 kernel (left panel) or a conventional Wilson kernel

(right panel). Although the D4 kernel is less local than the Wilson kernel, the locality

properties of the corresponding overlap operators are comparable. This appears quite

clearly in the plots displayed at the bottom of the figure, in which the results for the two

operators are shown together, for a cold configuration (left panel) and for a configuration

at β = 6 (right panel).
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Figure 8. The plots at the top of the figure show the decay of the matrix elements of an overlap

operator obtained using a D4 kernel (left) or a Wilson kernel (right), as a function of the 1-norm

distance between the sites. The results from the two operators are displayed together in the two

bottom plots, for a cold (bottom left panel) and a β = 6 configuration (bottom right panel).

Another important factor in the efficiency of a lattice Dirac operator is the cost of

applying the operator to a vector. The multiplication by the kernel is about twice as

fast, if one uses D4 instead of a Wilson kernel (staggered fields do not have an explicit

spinor index but D4 has twice as many non-zero elements as the Wilson operator). In the

computation of the sign of H̃ = Γ55D4, using the conjugate gradient (CG) method, and no

deflation, the gain with respect to a conventional Wilson kernel is a factor ranging from

approximately 2-3 to about 8. However, these numbers are only gross estimates, and could

be improved, e.g., by optimizing the parameters of the D4 kernel. Similarly, an improved

form for the kinetic operator, link smearing (for the kinetic and/or the mass term), and

standard tricks related to deflation, preconditioning, etc. . . could be applied.

To discuss the computational cost of the inversion of the operator, we compared the

two overlap operators on the same pure-glue, β = 6, background on a 124 lattice, using the

same, basic, inner/outer CG algorithm. In our computation, we evaluated the propagator

as the solution of the equation:

(Dov +m)†(Dov +m)x = (Dov +m)†b (A.2)

with ma = 0.1, using a conjugate gradient (CG) iterative solver: at each iteration, sign(H)

is applied to a vector v through a 2-pass Lanczos process. One builds a tridiagonal matrix
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Figure 9. Top row: comparison of the computational costs for the overlap operator inversion at

a given level of precision, using a D4 (red points) or a Wilson (green symbols) kernel: the left

panel displays the costs related to the outer CG iteration, the central plot shows the costs of the

matrix-times-vector multiplication, and finally the right panel displays the total CPU cost. For

comparison, the plots in the bottom row show the analogous results for a free configuration.

T and takes the signs of its eigenvalues (which are representative of those of H), then

reconstructs sign(H)v, as described in ref. [45]. The results are displayed at the top of

figure 8: the three plots (from left to right) show the computational cost for the outer

CG iteration, for the matrix-times-vector multiplication, and the total CPU cost. For

comparison, we also show the analogous results in the free-field case, in the plots at the

bottom of the figure. This comparison shows that the computational advantages expected

from elementary arguments, and observed in the free limit, turn out to be dramatically

reduced in “realistic” interacting configurations. Again, this reduction points to a reduction

in the eigenvalue gap of D4.
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[8] M. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation, Phys.

Lett. B 428 (1998) 342 [arXiv:hep-lat/9802011].

[9] P.H. Ginsparg and K.G. Wilson, A remnant of chiral symmetry on the lattice, Phys. Rev. D

25 (1982) 2649 [INSPIRE].

[10] D.B. Kaplan, A method for simulating chiral fermions on the lattice, Phys. Lett. B 288

(1992) 342 [hep-lat/9206013] [INSPIRE].

[11] H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B 417 (1998) 141

[hep-lat/9707022] [INSPIRE].

[12] P. Hasenfratz, V. Laliena and F. Niedermayer, The index theorem in QCD with a finite

cutoff, Phys. Lett. B 427 (1998) 125 [hep-lat/9801021] [INSPIRE].

[13] K.G. Wilson, Quarks: from paradox to myth, in New phenomena in subnuclear physics, A.

Zichichi ed., Plenum Press, New York U.S.A. (1977).

[14] J.B. Kogut and L. Susskind, Hamiltonian Formulation of Wilson’s Lattice Gauge Theories,

Phys. Rev. D 11 (1975) 395 [INSPIRE].

[15] HPQCD Collaboration, UKQCD collaboration, E. Follana, A. Hart, C. Davies and

Q. Mason, The Low-lying Dirac spectrum of staggered quarks, Phys. Rev. D 72 (2005) 054501

[hep-lat/0507011] [INSPIRE].
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