The contribution of postural balance analysis in older adult fallers: a narrative review

This is the author’s manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1538225 since 2017-05-26T14:27:35Z

Published version:
DOI:10.1016/j.jbmt.2015.12.008

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
This is an author version of the contribution published on:
Questa è la versione dell’autore dell’opera:

The contribution of postural balance analysis in older adult fallers: A narrative review

http://dx.doi.org/10.1016/j.jbmt.2015.12.008

Pizzigalli L., Micheletti Cremasco M., Mulasso A., Rainoldi A.

The definitive version is available at:
La versione definitiva è disponibile alla URL:

http://www.bodyworkmovementtherapies.com/article/S1360-8592%2815%2900296-X/fulltext
Title: The contribution of postural balance analysis in older adult fallers: a narrative review

Running Headline: Postural balance in older adult fallers

Authors: Pizzigalli L. PhD¹, Micheletti Cremasco M. PhD², Mulasso A. MSc³, Rainoldi A. Prof.¹

Institutional Affiliation:

¹Motor Science Research Center, School of Exercise & Sport Sciences, SUISM, Department of Medical Sciences, University of Torino.

²Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy

³Department of Psychology, University of Torino, Torino, Italy

Corresponding Author:

Luisa Pizzigalli

Address: ¹Motor Science Research Center, School of Exercise & Sport Sciences, SUISM, Department of Medical Sciences, University of Torino. P.za Bernini 12 -10143-Torino, Italy

tel: +390117764708
fax: +39011748251
Email: luisa.pizzigalli@unito.it
Contact information:

Micheletti Cremasco Margherita

Address: ²Department of Life Sciences and Systems Biology, University of Torino. Via Accademia Albertina 13 – 10123- Torino, Italy

Email: margherita.micheletti@unito.it

Mulasso Anna

Address: ³Department of Psychology, University of Torino. Via Giuseppe Verdi 8 - 10124- Torino, Italy

Email: anna.mulasso@unito.it

Alberto Rainoldi

Address: ¹Motor Science Research Center, School of Exercise & Sport Sciences, SUISM, Department of Medical Sciences, University of Torino. P.za Bernini 12-10143-Torino, Italy

Email: alberto.rainoldi@unito.it
The contribution of postural balance analysis in older adult fallers: a narrative review

Abstract:

Objective. Falls are a serious health problem for older adults. Several studies have identified the decline of postural balance as one of the main risk factors for falls. Contrary to what may be believed, the capability of force platform measurements to predict falls remains uncertain. The focus of this narrative review is the identification of postural characteristics of older adults at risk of falling using both static and dynamic postural balance assessments. Methods. The literature analysis was conducted on Medline/PubMed. The search ended in May 2015. Results. Centre of pressure (CoP) path length, CoP velocity and sway in medial lateral and anterior-posterior are the variables that distinguish older adult fallers from non-fallers. Discussion. Recommendations to medical personnel on how to provide efficient balance training for older adults are offered, discussing the relevance and limitations of postural stability on static and dynamic board in falling risk prevention.

Keywords

centre of pressure, dynamic posturography, static posturography, falls, older adults.
INTRODUCTION

Falls are a serious health problem for older adults (Tinetti 1994); in fact decreasing balance with age is one of the major risk factors for falling (Piirtola & Era 2006). A great number of falls in older adults are caused by wrong and inadequate (ipometric: reduced/small sway responses and ipermetric: excessive/large sway responses) responses to the perturbations in the sagittal and frontal plane (Maki et al 1994); moreover, it is well documented that the quantification of the centre of pressure (CoP) movements during lateral perturbation could predict subsequent falls (Piirtola & Era 2006). Older adults are unaware that their performance impairments, such as their physical activity (muscular strength and resistance) and sensorial reflex capacity (increase of reaction time and sensorial deficits), determine a general decline of their motor system and autonomy (Brach & VanSwearingen 2002; Maki et al 1994). The difficulty in recognizing these physical deficits limits seniors in an adequate postural reaction to protect themselves by the impact of falling.

Objective. This review intends to offer an overview of experimental works providing a basis for the comprehension and prevention of falls and fall-related injuries in older adults. It has two goals: i) to describe the methods and equipment commonly used in measuring static and dynamic postural balance and to report their capacities to distinguish between fallers and non-fallers, ii) to detail some specific characteristics of older fallers, such as muscular strength, frailty, sensorimotor aspects, usually related in literature, to postural balance field.

METHODS
Design. The manuscript’s starting point is a joint biomechanical, physiological and functional approach, and introduces some basic concepts which constitute a background for the topic of balance measurement (static and dynamic balance assessments) in older adults. Then the relevance and limitations of postural stability on static and dynamic boards in prevention of falling risk in older adults are discussed. Finally, distinguishing characteristics of older “fallers” and “non-fallers” are assessed.

Setting. The literature analysis was conducted on Medline/PubMed. The search ended in March 2015 and is limited to works published between 1970 and 2015. The language was limited to English. The following primary search terms were entered: static balance, dynamic balance, static board, dynamic board, static platform, moving platform, older adults, aging, risk of falling, proprioception, postural control, postural coordination, postural strategy, fallers, non-fallers, dynamic posture training, fall prediction index, clinical measures of dynamic balance, clinical measures of static balance and reliability.

Articles were collected on the basis of the following criteria, studies that evaluate risk of falling and used balance platform assessment. Only studies conducted on community-dwelling healthy male and female subjects aged 65 and over were considered. Studies of institutionalized subjects were excluded. Participants with medical factors affecting balance were excluded. The scientific quality of selected papers relied on Medline and PubMed criteria.

Among the eligible studies, the papers that did not treat or report parameters in static or dynamic balance were excluded. Published abstracts, conference presentations, dissertation materials were not considered in this review.

Background

Balance measurements
Posturography, which literally refers to the description of posture, is an approach to the assessment of postural balance utilizing force platforms providing a number of parameters reflecting postural stability. Computerized balance platforms offer objective measurements of sway under different conditions in clinical settings (Grabiner et al 1993; Jarnlo & Thorngren 1993).

Essentially there are two types of clinical posturography static platform and dynamic platform posturography (Di Fabio 1995). Data thus obtained need to be generalized to provide reproducible results performing the assessment in a standardized way on reliable equipment. Few studies (Lafond et al 2004) evaluate the reliability of CoP measures in older adults during quiet standing. Moreover, results on repeatability are often incomplete or unsatisfactory, and mostly concern test-retest, inter-tester reliability (Ageberg et al 1998; Mattacola et al 1995) only of the centre of pressure minus centre of mass (CoP-CoM) measure and of the time of CoP maintenance (Corriveau et al 2000; King & Zatsiorsky 2002; Lafond et al 2004).

Recently some authors investigated postural balance in older adults using classical stabilometric measures extracted from CoP analysis in association to dynamic measures that the quantities describing the temporal structure of CoP trajectories, underlying their importance as postural signatures in this kind of population (Tallon et al 2013).

Static balance assessment

Static platform posturography involves stance or tandem stance on a fixed platform with eyes open or closed (Black & Wall 1981; Norre & Forrez 1986). This procedure is based on the Romberg tests and the outcome is quantified with respect to changes in CoP sway area, path length, or velocity (Di Fabio 1995).
In the tradition of Romberg (1853), a subject has to stay in upright position on a footboard in different stance positions (double limb, tandem or single limb) and visual condition (eyes open, eyes closed). A reduced postural sway about the central equilibrium point shows less movement, hence, greater stability control (relative to her/his age-matched peers). Optimal postural control in quiet standing therefore, is characterized by small CoP oscillations in amplitude, relatively unconstrained and irregular. Usually during balance tests the time that subjects are able to maintain a particular equilibrium position is recorded (Bogle Thorbahn & Newton 1996; Graybel & Fregly 1966) as further information for classification.

Control of posture is connected to attention and to the instructional set, therefore these parameters should be considered in testing protocols of postural control (Nishiwaki et al 2000). These authors evaluated the influence of two different instructional sets (one with the request to relax the body and the other with the request to minimize body sways). Results indicated that rigorous and clear instructions should be recommended when a stabilometric test is performed in an investigation.

In 2002 some authors (Chiari et al 2002) showed the importance of biomechanical factors on anterior-posterior and medium-lateral stabilometric variables. Particular attention was given to weight, height, base of support area, feet-opening angle and maximum foot width during between-subject comparisons. In 2004 (Rocchi et al 2004) to promote standardization in quantitative posturography, the same authors suggested that if no normalization is undertaken, it is essential to constrain the foot position in such a way as to reduce inter-subject variability of base of support measurements. Furthermore, they underlined the need to align properly the reference frame of the subject with the reference frame of the platform.
Corriveau et al. (2000) found that the variable CoP-CoM is a reliable measurement of postural stability in healthy older adults. In 2001 (Corriveau et al 2001) the same authors estimated the test-retest and inter-rater reliability of that variable (CoP-CoM) in older subjects. This was obtained using the equivalence of the test-retest and inter-rater coefficients, concluding that the measurement of the CoP-CoM is mainly related to individual variability of these measures over two separate occasions within seven days. The mean of four trials was found sufficient to assess that CoP-CoM variable potentially can be used to track clinical change in older adults.

With ageing CoP variables showed better relative repeatability (intraclass correlation coefficient) and comparable absolute reliability (standard error of the mean) except for sway area and mean velocity. These results could be useful for the interpretation of CoP based findings (Lin et al 2008). Jancovà & Tosnerovà (2007) claimed that the double narrow stance tests (heels and toes touching) with eyes open and with eyes closed are comparable especially with adults aged 65 and older.

In 2014, Jørgensen found that there is a systematic time-of-day influence on static postural balance in older adults using the Nintendo Wii (Jorgensen 2014). In particular findings have shown an increase of some postural variables (total COP sway length, confidence ellipse area, total sway area and velocity-moment) in the afternoon compared to mid-day and the morning trials.

Dynamic balance assessment

Dynamic force platforms measure the displacement of a subject’s CoP under dynamic conditions usually using four force transducers and a displacement device for moving the support surface of the platform. Using a movable support surface it is possible to assess the contribution of the visual system, the somatosensory system and the vestibular system
during individual response to balance perturbations. Dynamic platform posturography also uses Romberg’s tests, but test conditions in which the platform and visual environment are moved to reduce the subject’s ability to use visual and somatosensory information for balance were specified (Black et al 1983; Nashner & Peters 1990). Moreover, dynamic platform posturography also adopted a movable support surface to test the subject’s response to balance perturbations. Some platforms in fact, stress the vestibular system, measure the quality of the maintenance of subjects’ balance while the walls of the booth move (Cavanaugh et al 2005). Experimentally induced balance perturbations are in one or multiple directions (vertical, horizontal displacements or a combination of the two modalities) (Henry et al 1998) and also the intensity of the perturbations can vary greatly. Some authors aimed to investigate stimulus anticipation and postural control mechanisms of feed-forward using oscillatory and slow movements, whereas other investigators, (Tsai et al 2014) interested in quick postural reactions, adopted rapid, continuous and sudden movements of the balance supports. In general older adults have shown asymmetric and weaker muscle power and torque resistance compared to young subjects, and this affects their ability to restore postural control. Moreover, to produce agonist torque in an upright stance older adults require more muscle activity than young people, causing a premature fatigue process and increasing the risk of falling.

The sensitivity of posturography in therapeutic interventions varies greatly among authors and insufficient methodological details are reported in papers to reach standardized protocols (Asai et al 1993; Black & Wall 1981; Black et al 1983; Hamid et al 1991; Nashner & Peters 1990; Voorhees 1989).

Predictive models of postural control system output involve both linear and nonlinear dynamics frameworks, as described in a review article (Cavanaugh et al 2005). Linear
models are based on individual system components and study the magnitude of output signal variability. Nonlinear models are based on the time evolutionary properties of an output signal to highlight inferences about interactions within the underlying control system. Moreover, nonlinear dynamics have the capability of being adaptable and flexible in an unpredictable and ever-changing environment (Buzzi et al 2003).

Contradictory results were found in studies (Brauer et al 2002; Hsiao-Wecksler et al 2007; Luchies et al 1994; McIlroy et al 1996; Rogers et al 2001; Thelen et al 1997; Wojcic et al 1999) investigating age-related impairments in rapid "change-in-support" (stepping or grasping) balance-recovery reactions using various perturbation methods. Mansfield and Maki (2009) suggested that the variances could be provoked by several mechanical and sensory stimuli supplied by the different perturbation methods, but could also be caused by other confounding factors (e.g., differences in perturbation predictability).

Static balance and falls

Since, as just described, there is a lack of consensus about the ability of force platform measures to predict falls, the present narrative review is also aiming at describing age-related changes in postural control in relation to falls, and the balance assessment ability in identifying fallers among older adults.

Consequently “a recalled fall was the most important predictor for future falls” (Gerdhem et al 2005). However, other data could predict subsequent falls. Among the different parameters derived from signals recorded with force platforms (Baloh et al 1994), indicators of lateral balance such as mean speed of the mediolateral (ML) movement of the centre of pressure (CoP) during normal standing with and without visual inputs, mean amplitude of the ML movement of the CoP with the eyes open and closed, and the root-
mean-square value of the ML displacement of CoP are the best indicators for detecting differences between future fallers and older adults with no risk of future falls.

Increased postural sway in older adults is well documented (Hasselkus & Shambes 1975) and greater amounts of postural sway are correlated to increased risk of falling (Fernie et al 1982). Mean Sway Area in the medial-lateral, anterior-posterior directions, and Mean Sway Velocity were found to be higher in fallers (Fernie et al 1982; Maki et al 1994; Melzer et al 2004).

The postural control system adopts open-loop control mechanisms over the short-term time interval and the closed-loop control mechanisms over the long-term to maintain quiet stance. An open-loop control system is characterized by the absence of sensory feedback; on the contrary, a closed-loop control system operates with sensory feedback, such as vestibular, visual and somatosensory systems (Laughton et al 2003).

Benjuya et al (2004) compared CoP-based measures during wide base stance (feet apart) and narrow base stance (feet placed together) with both eyes open and eyes closed. They found significant differences between fallers and non-fallers in most CoP based measurements in narrow stance. Fallers showed significantly higher CoP path length, CoP velocity and the movements of the CoP in the ML direction during the eyes open test, compared to non-fallers. With eyes closed, fallers had a significantly higher CoP path length, CoP velocity, elliptical area and ML sway. Multiple regression analysis revealed that people who showed a higher ML sway had three times greater risk of falling. Lord et al (1994) and Stel et al (2003) also found that fallers had an increased ML sway in a near tandem stability test with eyes open and closed. In the same way, Maki et al (1994) concluded that lateral spontaneous sway was the best predictor of future falls. Moreover, the latter found that older adults also showed a loss of cutaneous sensation, which appears to have a fundamental role in postural control. In fact some authors
demonstrated that fallers had lower proprioception and more dependence on visual inputs. For example, Melzer et al (2004) reported that, using foamed surfaces, somatosensory input from feet of older adult fallers appears to be less important than vision in maintaining balance in narrow stance.

Narrow stance on foam provoked a reduction in somatosensory input and the non-fallers showed a 5% increase in CoP path length compared to the fallers group. So fallers seem to be less influenced by a reduction in somatosensory input from the feet. CoP path length with eyes closed compared to eyes open, increased equally (20%) in the two groups. Therefore, fallers used less somatosensory information than non-fallers and had a greater dependence on visual information. Moreover, impaired plantar cutaneous sensation in older people would delay compensatory step or grasp reaction times when a fall occurs, due to inability to detect the CoP movement under the feet.

Dynamic balance and falls

During a perturbation in anterior-posterior (AP) direction of an unstable board feet act as pistons conducting the pelvis in the same direction of the inclination while the trunk is moved in the opposite direction and ankle flexion starts before knee flexion (Fujiwara et al 2007). When a subject is on a movable platform, the postural adjustments (95-120 ms of latencies) are activated to restore the centre of gravity; these muscle responses can be measured, for instance with surface electromyography. Thanks to this technique it was shown that older adults had more antagonist muscle activation than young adults adopting “hip strategy” to restore postural balance (Manchester et al 1989).

In older people roll directions of the trunk were in the same direction of the board movements (Allum et al 2002) with a bigger latency of the postural responses in the distal muscles of the lower limbs (Tibialis anterior and Gastrocnemius). In the results on
voluntary sway older adults were found to have slower, less reliable postural reflexes that were less responsive to the demands of voluntary movement. The poorer coordination of postural reflexes with voluntary movement suggests that with advancing age there are problems with the hierarchical organization of movement (Stelmach et al 1989). Muscular activation starts from proximal muscles (hip/trunk), to distal muscles (leg/thigh) in contrast to adults (<60 y.o.). Moreover, it was shown that during aging isometric and concentric muscle strength is reduced due to atrophy, deterioration of mechanical properties and motor unit loss (Hortobagyi et al 1995). The most important characteristic of the ankle muscle strength in seniors is the dorsiflexion weakness, which is also liable to postural instability in this population (Larsson et al 1979); these are the reasons for the overuse of visual inputs and deficit in somatosensory information observed in this age group (Granacher et al, 2011).

In fact older adults loose stability and need assistance during the tests when the vestibular channel is the only one used. Findings from literature show that as long as visual and vestibular inputs are available, both young and older adults can shift easily from the use of one sensory input to another. However, when only one sensory input (the vestibular system) is available, the sway of the older adult is impaired sufficiently to cause loss of balance in many trials (Woollacott & Shumway-Cook 1990).

Wolfson et al (1994) found gender differences in healthy older adults for balance responses to platform perturbations. They demonstrated that women lost their balance more frequently than men during toes-up-and-down rotations and during repeated toes-up rotations. Women also developed smaller angular momentum than men in response to forward platform rotations. The use of a dynamic platform allowed the understanding of an important characteristic of older women - their greater frequency of falling when in stressed balance conditions.
In bipedal stance, medio-lateral swaying reflects the ability to distribute the body weight evenly between the two lower limbs. The muscles involved are the hip abductors/adductors and the ankle pronators/supinators. Antero-posterior sway, in contrast, reflects variations in the activity of the ankle flexors (Day et al 1993).

To assess age-related changes of the sensorimotor mechanisms underlying dynamic equilibrium, Nardone et al (2000) tested body segment coordination during equilibrium on a dynamic platform. From the age of 20 to 70 years such latencies increased by about 20 msec (Nardone et al 1994), possibly because of the age-related reduction in nerve fibre conduction velocity. The ability of older subjects to hold head stability during eyes open performance discounts the possibility that the less stable behaviour without visual inputs is caused by strength decline, or by reduced joint motion range or by sedentary condition. Increasing age provoked a decrease of postural performances during eyes closed condition, but did not appear to be a critical factor for the stability on dynamic platforms with translation frequency up to 0.6 Hz.

Potential factors that can change training protocols on an unstable board are fear, fatigue, pain and motivation. These factors can be balanced by providing frequent rest periods, verbal encouragements and comfortable safety precautions in the experimental setup (Gschwind et al 2013).

In his review Emery (2003) claimed that reliability and validity of dynamic standing balance measurement tools still need to be assessed for proper clinical settings. Reference values are actually provided only by producers; trials on large populations are needed to obtain normality indices.

Distinguishing characteristics of older “fallers” and “non-fallers”
In 2002 Lajoie et al compared older adult fallers and non-fallers during different tests such as postural sway, reaction time, the Berg Balance Scale and the Activities-specific Balance Confidence Scale, in order to determine reliable predictors. Findings highlighted that reaction time was the best predictor of fall status. Other authors found that the CoP displacement correlates negatively with the maximal isometric torque of ankle muscles, (Billot et al 2010) and recently the decrease in ankle muscle strength was found to be one of the marker factors for impaired postural stability in older adults. A torque value of 3.1 N·m·kg\(^{-1}\) was found to distinguish between fallers and non-fallers, suggesting that measuring ankle torque could be used in routine clinical practice to identify potential fallers (Cattagni et al 2014). Thus the loss of lateral postural control in fallers could be explained by an asymmetric muscle strength loss in their lower limbs. Good lateral postural control is essential for a protective role in response to destabilizing events (Rogers et al 2001).

When strategies are inadequate to maintain stance a stepping response is often used. Medell and Alexander (2000) demonstrated substantial declines in the ability of older adults to step maximally and rapidly. They supported the hypothesis that one leg stance ability might be differentiate between falls and fall-related injuries risk. Thelen et al (1997) found that there are substantial age-related declines in the ability to regain balance by taking a rapid step among healthy adults when the time available for recovery is short.

A number of experiments adopted different balance perturbation techniques (Pijnappels et al 2005; Van Dieen et al 2005). Hsiao-Wecksler (2007) reviewed experimental studies using the techniques of forward fall (trip) or backward fall (slip) to examine how recovery behaviour is affected by the adopted experimental protocol, and by age, gender, direction of release, instructions and constraints on recovery strategies. Strong associations between recovery ability and biomechanical parameters such as step length,
step timing and joint torques highlighted the importance of neuromuscular capacities in relation to lower extremity flexibility, reaction time and muscular strength. Therefore, the maintenance or enhancement of these abilities should be considered in the development of exercise-based intervention programmes for fall prevention in older adults.

In impending fall situations a stepping response is often used when strategies to maintain stance are weak. Older adults’ ability to recover their balance with a single backward step depends primarily on the configuration of the body (in particular the ratio between stepping angle and body lean angle) at step contact (Hsiao & Robinovitch 2001). This aspect should be considered in balance assessment and training (Hsiao-Wecksler 2008). Medell and Alexander (2000) found substantial decreases in the ability of both unimpaired and balance-impaired older adults to step maximally and to step rapidly. Stepping performance is closely related to other measures of balance and fall risk. Greater postural sway in both anterior-posterior and medio-lateral directions and trends of greater muscle activity were found in those older adults who had lower scores on clinical measures of balance (Laughton et al 2003).

The evaluation of the handgrip strength, as well as the leg extension strength, is capable of predicting recurrent falls using an easy survey and giving high reliability (Greig 1994; Merlini et al 2002), and is more effective if considered in relations to a number of fall predictors. Handgrip results significantly distinguish recurrent fallers, occasional fallers and non-fallers (Chu 2005; Rosengren 2012), since according to Pijnappels et al (2008) handgrip strength is significantly correlated with lower limb muscular strength.

Recently obesity was also identified as a factor affecting fall risk (Vincent et al 2012). Obese older adults are more likely to fall than others, but the effect of weight on the risk of falling did not appear to be linear (Pataky et al 2014). A longitudinal study by Himes and Reynolds (2012) indicates that obese older adults are more likely to fall than others;
moreover, obesity in Class 1 body mass index (BMI) 30.0-34.9 kg/m2, and Class 2 BMI 35.0-39.9 kg/m2 was related to greater likelihood of more disability after a fall, whereas in obesity Class 3 BMI ≥ 40.0 kg/m2 a protective effect was found, these people are significantly less likely to be injured in a fall than normal-weight individuals.

The above mentioned parameters (e.g., muscle strength in lower limbs, handgrip strength and body weight) were frequently included in the ageing-related literature as operational definitions of frailty (Fried 2001; Gobbens et al 2010; Studenski et al 2004). In fact, researchers reported a significant difference in terms of frailty between fallers and non-fallers among older adults. A study of Samper-Ternent et al (2012) showed the lowest rates of falls for robust (incident rate ratio, IRR 1.9), followed by pre-frail (IRR 2.6), and frail (IRR 3.2) older adults. Similarly, Ensrud et al (2007) found that pre-frail and frail women had increased age-adjusted odds of recurrent falls in comparison to robust women. Frailty and recurrent falls showed a stronger association among women older than 80 years than younger older women (69-79 years old). Moreover, Kang et al (2009), studying quantitative posturography in frail and robust older adults, found measures of CoP path length and mean power frequency statistically higher in frail subjects. Identification of pathways related to frailty and falls, and their association with the previously mentioned biomechanics, physiological and anthropometric parameters, can provide meaningful information for the early identification of older adults at risk of becoming fallers.

DISCUSSION

The fact that balance disorders can arise from a multifactorial range of causes explains the interest from a wide variety of therapists such as neurologists, otoneurologists, physical and occupational therapists. Force platforms were widely used as a tool to assess balance; however, objective and validated data on these matters is urgently needed. This
review has shown that balance evaluations are very different, both in protocols and in measurement methods, and that direct comparisons among studies and data interpretation are extremely limited. Many experimental protocols indicated that increased postural sway in older adults is well documented and research findings highlighted a correlation between postural sway and increased risk of falling not only on a static board (Baloh et al 1994; Benjuya et al 2004; Billot et al 2010; Fernie et al 1982; Hasselkus & Shambes 1975; Kang et al 2009; Lajoie et al 2002; Lord et al 1994; Maki et al 1994; Melzer et al 2004; Stel et al 2003), but also on an unstable board (Nardone et al 1994; Nardone et al 2000; Woollacott & Shumway-Cook 1990; Wolfson et al 1994; Rogers et al 2001). All these authors are in agreement that considering the measurement of balance is important for fall risk prediction and the evaluation of effectiveness of balance-training programmes in preventing falls. Precisely analyzing findings of experiments conducted with different trials such as Romberg test and one legged stance test, it is possible to conclude that older adult fallers showed significantly higher CoP path length, CoP velocity and sway in medial lateral and anterior-posterior direction in eyes open conditions (Marigold & Janice 2006; Melzer et al 2004; Prieto et al 2002). Moreover, in eyes closed conditions, a higher elliptical area was observed in fallers, in contrast to seniors without a history of falls. Fallers also demonstrated a decrease in proprioception, visual acuity, quadriceps strength and cutaneous sensation (Larsson et al 1979; Maki et al 1994; Melzer et al 2004). These older adults were thus less accustomed to use somatosensory information and showed a greater dependence on visual inputs (Granacher et al 2011).

Medial lateral sway in both the conditions (eyes open and closed) was found to be a distinguishing variable between older “fallers” and “non-fallers” in both static and dynamic narrow stance condition (Melzer et al 2004). No works showed balance training
on stabilometric and dynamic boards as a tool to reduce falls and fall-related injuries in older adults. Findings indicated that neuromuscular capacities related to lower extremity flexibility, reaction time and strength were all pivotal for balance recovery. Some works (Debra 2008; Lee et al 2013) focused on physical training programmes on balance recovery to prevent falls but no papers proposed protocol training on those dynamic platforms moving in both transverse and sagittal planes. Exercise programmes with a strong balance component have been found to be most effective in preventing falls (Campbell et al 1999; Lord et al 2003; Province et al 1995). To date few studies have used perturbations to train stepping reaction. Perturbation-based training of Change In Support (CIS) reactions, involving very rapid stepping or grasping movements of the limbs to restore balance, were adopted in scientific works. Authors (Mansfield et al 2010; Rogers et al 2003; Shimada et al 2004;) showed how to improve volitional reaction time in older adults. They did not assess the effects of the training on compensatory stepping and whether the effective benefits reduce fall risk in daily life.

In their review Maki et al (2008) described four new interventions aimed at reducing fall risk in older adults, by promoting more effective CIS reactions, using unpredictable support-surface dynamic perturbations in all four directions. They concluded that their intervention approach has the potential to counteract lateral instability. This aspect gains more importance because some authors, analyzing the non-linear behaviours of viscoelastic loading at the joints, found that the increased ML viscosity in older adults was the only predictor of falls (Kuczynski & Ostrowska 2006).

In conclusion, the variables and techniques adopted to quantify balance were different in each research (Chaudhry et al 2011). Insufficient evidence exists from well-designed, prospective, randomized, controlled trials to draw definitive conclusions about the impact of dynamic board testing on health outcomes in large populations (Tsai et al 2014). The
diagnostic utility of such a tool has not been demonstrated and any qualitative data provided by dynamic equilibrium board testing does not establish definitive findings. No studies are available to evaluate the effectiveness of dynamic equilibrium board testing with respect to standard testing methods; no findings showing that the use of this instrument would improve treatment decision-making are available. No studies have managed the balance training using protocols on a dynamic board with the subject able to move the mobile platform very easily in flex-extension and anterior-posterior positions. This freedom of movements in the four axes produces unexpected changes of equilibrium, which are useful to restore quickness and agility of lower limbs and trunk muscles.

Hence further research analyzing CoP variables needs to be undertaken and further studies are needed to assess the role of unstable postural board testing in the management of subjects with the risk of falling. Finally, since insufficient evidence exists that any screening instrument is adequate for predicting falls (Gates et al 2008), this review provides important information in order to encourage further development of novel interventions based on an integration of stabilometric measurements with functional tests in order to detect potential fallers at an early stage and assess the predictive role of a number of parameters.
REFERENCES

Chiari L, Rocchi L, Cappello A 2002. Stabilometric parameters are affected by anthropometry and foot placement. Clinical Biomechanics (Bristol, Avon), 17(9-10), 666-677. doi: S0268003302001079

Hsiao-Weckslr ET, Robinovitch SN 2001. Elderly subjects' ability to recover balance with a single backward step associates with body configuration at step contact. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 56(1), M42-47.

