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1 Introduction

The Standard Model of elementary particles describes the strong interaction by Quantum

Chromodynamics (QCD): a non-Abelian gauge theory characterized by local SU(3) color

invariance, and with flavors of fermionic matter fields (quarks) in the fundamental rep-

resentation of the gauge group. Due to asymptotic freedom, the predictions of QCD for

processes at high energies can reliably be worked out through perturbative calculations. At

low energies, however, the running coupling becomes large; in this regime many features of

QCD are determined by non-perturbative phenomena: confinement and chiral symmetry

breaking. For this reason, the theoretical derivation of low energy QCD properties must

rely on non-perturbative methods.
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The standard non-perturbative definition of QCD is based on lattice regularization [1],

which makes the theory mathematically well-defined and amenable to analytical as well

as to numerical studies. Thanks to theoretical, algorithmic and computer-power progress,

during the last decade many large-scale dynamical lattice QCD computations have been

performed at realistic values of the physical parameters, allowing one to numerically obtain

predictions in energy regimes otherwise inaccessible to a first-principles approach, see, e.g.,

ref. [2] for a recent review.

A different non-perturbative approach to QCD is based on an expansion in powers of

1/N , i.e. in powers of the inverse of the number of color charges [3]. When the number of

colors N is taken to infinity, and the coupling g is sent to zero, keeping the product g2N

fixed, the theory reveals striking mathematical simplifications — see refs. [4, 5] for recent

reviews. One may study the physical N = 3 case expanding around the 1/N → 0 limit.

In particular, in the so-called ’t Hooft limit (in which the number of flavors nf is held

fixed), one finds that the amplitudes for physical processes are determined by a particular

subset of Feynman diagrams (planar diagrams), the low-energy spectrum consists of stable

meson and glueball states, and the scattering matrix becomes trivial. Examples of other

interesting implications of the large-N limit include those discussed, e.g., in refs. [6–10].

Another non-perturbative approach to low-energy properties of strongly coupled non-

Abelian gauge theories is based on the conjectured correspondence between gauge and

string theories [11–13]. During the last decade, many studies have employed techniques

based on this correspondence, to build models which reproduce (at least qualitatively or

semi-quantitatively) the main features of the mesonic spectrum of QCD [14]. Remark-

ably, the large-N limit plays a technically crucial role also in the context of these holo-

graphic computations: the correspondence relates the strongly coupled regime of a gauge

theory with an infinite number of colors to the classical gravity limit of a dual string

model in an anti-de Sitter spacetime, a setup that can be studied with analytical or semi-

analytical methods.

In order to understand whether predictions derived from approaches relying on the

large-N limit can be relevant also for the physical case of QCD with N = 3 colors, it

is crucial to estimate the quantitative impact of finite-N corrections. For this purpose,

recently several lattice studies investigated the dependence on N of various quantities of

interest — including string tensions for sources in different representations, the glueball

spectrum and its dependence on the θ-term, the topological susceptibility or the finite-

temperature equation of state — in different SU(N) Yang-Mills theories [15–34]. These

works revealed precocious scaling to the large-N limit: up to modest O(N−2) corrections

even the SU(3) and SU(2) theories appear to be “close” to the large-N limit. Similar

results have also been found in D = 2 + 1 dimensions [35–43].

The purpose of the present paper is to further expand this line of research, by study-

ing the light mesons in gauge theories based on different SU(N) gauge groups to explore

the connections between the different non-perturbative approaches outlined above. More

precisely, we extract the meson masses from numerical simulations and investigate their

dependence on the number of colors. We discuss the approach to the large-N limit and

compare our results to the theoretical expectations from large-N expansions and holo-

graphic computations.
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All the results that we present in this paper are obtained from quenched simulations.

A technical remark about this is in order: in theories including dynamical quarks, virtual

fermion loops are suppressed by powers of nf/N , so, in general, corrections with respect to

the large-N limit are expected to be larger than for the Yang-Mills case. However, when N

is infinite, the theory exactly reduces to a (unitary) quenched model: this justifies studying

the large-N meson spectrum neglecting dynamical fermions and, in fact, it also provides an

intuitive explanation of why the quenched approximation performs rather well even for the

N = 3 case [44]. From the practical point of view, lattice computations of meson masses

in the large-N limit in the quenched setup offer two major advantages:

1. neglecting the contribution from virtual fermion loops allows one to bypass the major

computational overhead associated with the inclusion of the Dirac operator determi-

nant in the system dynamics;

2. the convergence to the large-N limit is faster since the leading corrections due to the

finiteness of the number of colors scale quadratically (rather than linearly) in 1/N ,

enabling reliable extrapolations, even from simulations at rather small values of N .

In the past, related studies have been reported in refs. [45–49]: one of the goals of

our present work consists of improving and extending these results, by going to lighter

quark masses, larger N and larger volumes, and by increasing the statistics, the number

of interpolators included in the variational basis and of states that we investigate. We also

aim at clarifying a discrepancy between the results of refs. [45–48], which at large N found

a value of the vector meson mass close to the one of real-world QCD, and those obtained

in ref. [49], which, on the contrary, reported a value approximately twice as large.

In section 2, we define the setup of our lattice computation and, in section 3, we present

our numerical results. In section 4 we discuss discrepancies with ref. [49]. In section 5 we

compare our results to analytical predictions and finally, in section 6, we summarize our

findings and conclude.

Preliminary results of this work have been presented in ref. [50].

2 Setup of the lattice computation

In this work, we non-perturbatively study theories with SU(N) internal color symmetry

with N = 2, 3, 4, 5, 6, 7 and 17 color charges, regularized on a finite, isotropic hypercubic

lattice Λ of spacing a, in Euclidean spacetime. In the following, we denote the lattice

hypervolume as L3
s ×Lt = (N3

s ×Nt)a
4. Expectation values of observables are obtained as

statistical averages over quenched configuration ensembles, using the Wilson discretization

of the generating functional of the continuum theory detailed below:

Z =

∫ ∏
x∈Λ

4∏
µ=1

dUµ(x)e−S , (2.1)
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where dUµ(x) denotes the Haar measure for each Uµ(x) ∈ SU(N) link matrix, µ = 1, . . . , 4

and S is the “plaquette” discretization of the Yang-Mills action:

S = β
∑
x∈Λ

∑
µ<ν

[
1− 1

N
Re TrUµν(x)

]
. (2.2)

β is related to the bare lattice gauge coupling g0 via β = 2N/g2
0 and

Uµν(x) = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν (x). (2.3)

The expectation values of gauge-invariant physical observables O are defined as:

〈O〉 =
1

Z

∫ ∏
x∈Λ

4∏
µ=1

dUµ(x) O e−S (2.4)

and are numerically estimated via Monte Carlo sampling. The numerical results presented

in this work are obtained from sets of configurations generated by code based on the

Chroma suite [51], using standard local updates [52–57], which we have adapted to work

for a generic N . In the following, we denote the number of configurations used in our

computations (for each set of parameters) as nconf.

Our lattice implementation of quark propagators is based on the Wilson discretization

of the continuum Dirac operator [1]:

aM(x, y)[U ] = δx,y − κ
4∑

µ=1

[
(1− γµ)Uµ(x)δx+aµ̂,y + (1 + γµ)U †µ(y)δx−aµ̂,y

]
, (2.5)

where the hopping parameter κ is related to the bare quark mass mq via:

amq =
1

2

(
1

κ
− 1

κc

)
(2.6)

and κc denotes the critical value, corresponding to a massless quark. The additive constant

is given by κ−1
c = 8 + O(β−1) and its non-perturbative determination is discussed in

subsection 3.1.

To set the scale, we use the string tension calculations of ref. [58, 59] for N = 2, 3, 4

and 6, and those of ref. [34] for N = 5 and 7. In each case we choose the coupling

β =
2N

g2
=

2N2

λ
, (2.7)

such that the (square root of the) string tension in lattice units a
√
σ ' 0.2093 is the same

for each N .

Using the ad hoc value σ = 1 GeV/fm, our lattice spacing corresponds to a ≈ 0.093 fm

or a−1 ≈ 2.1 GeV. Strictly speaking, we can only predict ratios of dimensionful quantities.

In the real world where experiments are performed, nf > 0, N = 3 6= ∞ and even the

string tension is not well defined. This means that any absolute scale setting in physical

units will be arbitrary and is just meant as a rough guide.
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Figure 1. Λ-parameter estimates of eq. (2.8), in units of the square root of the string tension. The

errors shown are propagated from those of a
√
σ.

Fit 3 points 4 points

linear 208.45 208.16

quadratic 209.04 208.77

Table 1. Fit results for β at N = 17.

For the theory with SU(17) gauge group, there are no string tension calculations avail-

able, so we extracted a β-value from a fit of the QCD Λ-parameter in the lattice scheme:

Λ ≈ a−1 exp

[
− 1

2b0λ(a−1)

]
·
[
b0λ(a−1)

]− b1
2b20 ·

[
1 +

1

2b30

(
b21 − bL2 β0

)
λ(a−1) + . . .

]
, (2.8)

with [60, 61]

b0 =
11

3 (4π)2 , b1 =
34

3 (4π)4 , bL2 =
1

(4π)6

(
−366.2 +

1433.8

N2
− 2143

N4

)
. (2.9)

Λ/
√
σ was calculated from the data presented in [34, 58, 59] for SU(2 ≤ N ≤ 8) and is

shown in figure 1. Using the data for N = 6, 7 and 8 and a linear fit in 1/N2, we obtained

β = 208.45 for N = 17. Adding further values of N ≥ 4 or using a quadratic fit in 1/N2

changed this value by less than 0.3% (see table 1).

Table 2 summarizes the essential technical information of our computations. The

N ≤ 7 results presented in the fits and plots here are obtained from the 243 × 48 lattices,

corresponding to Ls ≈ 2.2 fm. In order to study finite size effects (FSE), we also performed

additional simulations, both using smaller and (for N = 2 and 3) larger volumes — see the

discussion in subsection 3.7. For SU(17) we employed a smaller 123× 24 volume. The cor-

responding extent Ls = 12a ≈ 2.512/
√
σ is well above the inverse critical temperature [34]

T−1
c ≈ 1.681/

√
σ . Lc.

– 5 –
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N N3
s ×Nt β λ 105κ nconf

2 163 × 32

2.4645 3.246

14581, 14827, 15008, 15096 400

243 × 48 14581, 14827, 15008, 15096, 15195.9 ,15249.6 200

323 × 64 14581, 14827, 15008, 15096, 15195.9 ,15249.6 100

3 163 × 32

6.0175 2.991

15002, 15220, 15380, 15458 200

243 × 48 15002, 15220, 15380, 15458, 15563.8, 15613 200

323 × 64 15002, 15220, 15380, 15458, 15563.8, 15613 100

4 163 × 32
11.028 2.902

15184, 15400, 15559, 15635 200

243 × 48 15184, 15400, 15559, 15635, 15717.3, 15764 200

5 163 × 32
17.535 2.851

15205, 15426, 15592, 15658 200

243 × 48 15205, 15426, 15592, 15658, 15754.8, 15835.5 200

6 163 × 32
25.452 2.829

15264, 15479, 15636, 15712 200

243 × 48 15264, 15479, 15636, 15712, 15805.1, 15884.5 200

7 163 × 32
34.8343 2.813

15281.6, 15496.7, 15654.7, 15733.9 200

243 × 48 15281.6, 15496.7, 15654.7, 15733.9, 15827.3, 15906.2 200

17 123 × 24 208.45 2.773 15298, 15521, 15684, 15755, 15853.1, 15931 80

Table 2. Parameters of the main set of lattice simulations used in this work, β denotes the

gauge action parameter, while κ is the hopping parameter appearing in the quark propagator. All

configurations were separated by 200 combined heatbath and overrelaxation Monte Carlo sweeps

and found to be effectively statistically independent. For orientation we also include the bare

’t Hooft parameter.

The κ-values were selected to keep one set of six pion masses approximately constant

across the different SU(N) theories. To achieve this, we combined the results reported in

ref. [46] for the groups studied therein with initial estimates for the groups that had not

been studied before. We vary the “pion” mass down to mπ/
√
σ ≈ 0.5 for groups with

N ≥ 5, and to mπ/
√
σ ≈ 0.75 for N < 5. We also simulated a smaller quark mass for

SU(N < 5) but found significant numbers of “exceptional configurations” [62] (up to 15 %

of the total); we leave these data out of this work. For N = 5, at the lowest quark mass,

only two exceptional configurations were encountered that we removed from the analysis.

2.1 Smearing and operators used

The meson spectrum can be extracted from zero-momentum correlators of interpolating

operators of the form:

Ok(x, t) = ψ(x, t)Γkψ(x, t), (2.10)

where different choices of Γk correspond to different physical states. We used degenerate

quark masses for the quark fields u and d, which allowed us to study the spectrum of the

particles π, ρ, a0, a1, b1 (see table 3). A generic meson correlator can then be computed as:

CΓΓ(t) =
∑
x

〈
O(x, t)O(0)

〉
= −

∑
x

Tr 〈ΓG(x, t)Γγ5G(x, t)γ5〉 , (2.11)

– 6 –
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Particle π ρ a0 a1 b1

Bilinear ūγ5d ūγid ūd ūγ5γid
1
2εijkūγiγjd

JPC 0−+ 1−− 0++ 1++ 1+−

Table 3. List of the studied channels and their bilinear operators used in the correlation functions.

where the propagator G(x, t) is obtained by inverting the Dirac operator with the stabilized

biconjugate gradient (BiCGStab) algorithm with even/odd preconditioning. The trace

indicates a sum over spin and color. In the rare cases, when the BiCGStab routine failed

to converge (which only occurred at the lowest quark masses), we reverted to the standard

Conjugate Gradient (CG) algorithm.

In our correlators, we used both point-like and extended sources and sinks, employing

several steps of Wuppertal smearing [63] which iteratively modifies a fermion field as:

ψn+1 =
1

1 + 6ω

ψn + ω
±3∑
j=±1

U ′j(x)ψn(x+ aĵ)

 , (2.12)

where n denotes the number of iterations, ω is the smearing parameter (we used ω = 0.25)

and U ′ is the gauge field smeared by 10 iterations of the spatial APE smearing routine [64]:

U ′i(x) = ProjSU(N)

[
αUi(x) +

∑
i 6=j

Uj(x)Ui(x+ aĵ)U †j (x+ aî)

+U †j (x− aî)Ui(x− aĵ)Uj(x+ aî− aĵ)
]
, (2.13)

with smearing parameter α = 2.5.

2.2 Variational method

We extracted the ground state and the first excited level using the variational analysis

discussed in ref. [65–67]. For each channel, we computed the cross-correlation matrix

Cij(t) = 〈Oi(t)Oj(0)〉, where i and j correspond to the number of iterations (0, 20, 80 or

180 steps) of Wuppertal smearing, for the sources and the sinks.

Then we solved the generalized eigenvalue problem:

C(t)vα = λα(t)C(t0)vα (2.14)

and extracted the mass m performing hyperbolic-cosine fits of the largest and second largest

eigenvalues, λ0 and λ1, in [tmin, tmax] ranges (tmax ≤ aNt/2):

λ(t) = A
(
e−mt + e−m(aNt−t)

)
. (2.15)

All statistical uncertainties were estimated using a jackknife procedure. With four different

operators Oi in many cases we were able to extract the first three states, however we regard

the second excited states as unreliable at the present statistics. Using a subset of three

operators out of the four mentioned above leads to compatible mass values within errors.

– 7 –
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Varying t0 in the range [0, 2a] gives compatible results, so we used t0 = a. To select

the best fit ranges, for each particle we first studied the effective mass defined as:

ameff = arccosh

[
λ(t+ a) + λ(t− a)

2λ(t)

]
. (2.16)

We determined tmin as the Euclidean time separation at which meff reaches a plateau

(within statistical uncertainties), so that the contribution from higher states is negligible,

while tmax is the value where meff becomes too noisy for stable fits. The signals become

more precise at larger N and lower κ-values. Typically we fit λ(t) in the range [5a, aNt/2]

for the ground states and in the range [5a, 10a] for the first excited states, adjusting those

ranges (by one or two lattice spacings) on a case-by-case basis. Fitting to eq. (2.15) with

this procedure leads to reduced χ2-values which are well below one.

The cost of inverting the propagator increases at lower quark masses, with the signal

becoming noisier at the same time. For this reason we focused only on the ground states

for the lowest two quark masses of each SU(N) group and instead of using the variational

method we computed the two point functions using only 80 steps of smearing for the

sources/sinks. We then applied the same analysis for λ(t) directly to the correlator C(t).

3 Numerical results

3.1 The PCAC mass and the critical hopping parameter κc

Our non-perturbative determination of κc is based on the partially conserved axial current

(PCAC) relation, ∑
~r

〈0|∂µAµ(~r, t)|π〉 = 2mPCAC(t)
∑
~r

〈0|P (~r, t)|π〉, (3.1)

where Aµ(~r, t) = ū(~r, t)γµγ5d(~r, t), P (~r, t) = ū(~r, t)γ5d(~r, t) and mPCAC =

limt→∞mPCAC(t). On the lattice we compute mPCAC as:

amPCAC(t) =
Cγ0γ5,γ5(t+ a)− Cγ0γ5,γ5(t− a)

4Cγ5,γ5(t)
, (3.2)

where the pion sources are smeared, and fit this to a constant. This quantity, which is not

affected by chiral logarithms, is related to the vector quark mass amq defined in eq. (2.6)

by renormalization constants:

mPCAC =
ZP
ZAZS

mq. (3.3)

Taking into account the leading lattice corrections (1+bXam) to renormalization constants

ZX , we can fit our lattice results to the expression:

amPCAC =
ZP
ZAZS

(1 +AamPCAC + . . . )
1

2

(
1

κ
− 1

κc

)
, (3.4)

from which we extract κc, ZP /(ZAZS) and A (see table 8 of appendix B ). The fits are

plotted in figure 2.
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The (unrenormalized) PCAC mass can be determined very precisely (see tables 10–16),

so we will expand every meson mass as a function of this variable.

We expect the parameters A,ZP /(ZAZS) and κc to have O(1/N2) corrections, hence

we fit them to

α1 +
α2

N2
, (3.5)

as shown in figure 2. With this analysis, we obtain good fits for A and ZP /(ZAZS),

with values of the reduced χ2 close to 1, while for κc, although qualitatively the behavior

looks very promising, we get a χ2 per d.o.f. of 300, indicating that uncertainties in our

data are underestimated. In fact κc can be considered a function of β only, which was

chosen to match the string tension among the different groups. This process introduces a

systematic error which propagates to κc. A qualitative way to estimate this propagation is

to consider finite differences between the values of κc, β and a
√
σ from refs. [34, 45, 58, 59]

and to compute

δκc =
∆κc
∆β

∆β

∆(a
√
σ)
δ(a
√
σ). (3.6)

The r.h.s. factors of the equation above are listed in table 9, together with δκc for the

groups available in refs. [45, 46]. These systematic uncertainties due to the matching of β

are ten to twenty times larger than the statistical ones and, since they are approximately

constant across the N -values, we used the same errors for the remaining groups. Taking

this into account, the reduced χ2-value of the κc fit becomes 1.6.

The 1/N2 fit results are:

ZP
ZAZS

= 0.8291(20)− 0.699(45)

N2
, (3.7)

A = 0.390(13) +
2.73(26)

N2
, (3.8)

κc = 0.1598555(33)(447)− 0.028242(68)(394)

N2
, (3.9)

where in the κc-case the second error is the systematic one, due to the slight mismatch

in the string tension, detailed above. We find the ratio ZP /(ZAZS) to vary between 0.68

(N = 2) and 0.83 (N = 17), with the SU(3)-value 0.75, which is consistent with the

non-perturbative result 0.82(11) [68] obtained at β = 6.0, close to our value β = 6.0175.

3.2 The pion mass

The pion masses are shown in figure 3 and presented in tables 10–16 of appendix B as

dimensionless ratios, dividing them by the square root of the string tension
√
σ. Quenched

chiral perturbation theory [69] predicts

(amπ)2 = A (amq)
1

1+δ + . . . , (3.10)

where the exponent δ is due to the presence of chiral logarithms. The theory predicts δ to

be positive, O(10−1) for SU(3), and suppressed as 1/N at large N . However, it is known

that data in the region where mπ/
√
σ > 1 are not very sensitive to chiral logarithms [70],

– 9 –
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Figure 2. Fit of the PCAC mass to eq. (3.4) (left), together with the 1/N2 fit of the parameters

A, ZP (ZAZS)
−1

and κc (right). We plot systematic errors for κc.

and fitting larger pion masses according to eq. (3.10) would lead to values of δ with even the

wrong sign. For this reason, we included a subleading term of the quark mass expansion,

performing fits according to:

m2
π

σ
= A

(
mPCAC√

σ

) 1
1+δ

+B
m2

PCAC

σ
. (3.11)

In these fits, the δ exponent is, essentially, determined by the lowest pion masses — which,

unfortunately, are the points with the largest uncertainties. This leads to rather large

relative errors for δ. Nevertheless, we found clear evidence that δ gets smaller when N is

increasing. Within our precision limits, δ is found to be consistent with zero for all N ≥ 6.

In fact, for larger N one can omit δ completely from the formula and still obtain a good

fit. Conversely, for N ≤ 3 we find O(10−1) values of δ, where for SU(3) we get results

consistent with those reported in ref. [71], in which Wilson and clover actions were used,

and also consistent with table 3 of ref. [70], where different values of δ were calculated,

using different actions. This suggests a small 1/N coefficient and thus we include a higher

order term into the 1/N fit.

The N dependence of δ and the expansion of A and B in powers of 1/N2 (see figure 3)

give a χ2 per degree of freedom close to 2 and read:

A = 11.99(0.10)− 8.7(1.6)

N2
, (3.12)

B = 2.05(0.13) +
5.0(2.2)

N2
, (3.13)

δ =
0.056(19)

N
+

0.94(21)

N3
. (3.14)

In order to assess the systematics on the exponent δ, we performed a combined fit

(mPCAC, N) of our data to eq. (3.11), using all the N -values at once and excluding the

two highest masses for each group. Since the Wilson action explicitly breaks the chiral

symmetry, we include in the fit also a constant term which however is found to be consistent
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Figure 3. Fit of the squared pion mass, in units of the string tension, to eq. (3.11) (left panel), N

dependence of the fit parameters eqs. (3.12)–(3.14) (right).

with zero. The resulting curve has χ2/d.o.f. = 1.6 and reads,

m2
π

σ
= 0.0015(36) +

(
11.67(15)− 8.1(5.4)

N2

)(
mPCAC√

σ

) 1
1+δ

+

+

(
2.95(42)− 1(15)

N2

)
m2

PCAC

σ
(3.15)

δ =
0.093(27)

N
+

1.00(52)

N3
. (3.16)

Note that the m2
PCAC term is now less well determined, due to the exclusion of high

mass points. However, the δ-parametrisation is consistent with the one of eq. (3.14).

In figure 4 we plot for each group the pion mass according to eq. (3.15) divided by

the PCAC mass, in order to emphasise the deviations from a linear behaviour, due to the

exponent δ.

Below, we expand all the remaining meson masses as functions of mPCAC. These can

easily be translated into dependencies on m2
π through eq. (3.11) above.

3.3 The ρ mass

Quenched chiral perturbation theory predicts a dependence of mρ on the square root of

the quark mass mq [72], in contrast to the unquenched theory, where the leading behavior

is linear in mq. Thus the expansion of mρ takes the form:

mρ = mρ,0 + C1/2m
1/2
q + C1mq + C3/2m

3/2
q + . . . , (3.17)

where the C1/2 coefficient is expected to be negative and to vanish as 1/N in the large-N

limit [72], restoring the linear behavior.

The masses of the ρ states are listed in tables 10 to 16 and plotted in figure 5 against

the PCAC mass. For each group we fit:

mρ√
σ

= A+B

(
mPCAC√

σ

)1/2

+ C
mPCAC√

σ
+D

(
mPCAC√

σ

)3/2

, (3.18)
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each N .

and then expand A, C and D in powers of 1/N2, while fitting B linearly in 1/N . Note

that D should vanish like 1/N2 in the large-N limit. The parameter B is found to be

compatible with zero for N > 5 while the parameter D has unexpectedly a finite value:

this effect is due to contamination from higher orders in the quark mass, as we show below.

The large-N expansion of the parameters reads:

mρ√
σ

=

(
1.504(51) +

2.19(75)

N2

)
− 2.47(94)

N

(
mPCAC√

σ

)1/2

(3.19)

+

(
3.08(53) +

16.8(8.2)

N2

)(
mPCAC√

σ

)
+

(
−0.84(31)− 9.4(4.8)

N2

)(
mPCAC√

σ

)3/2

.

To address the question of the non-vanishing large-N value of D, we interpolated the

data with an alternative fit (figure 6) of the form:

mρ√
σ

=

(
1.5382(65) +

0.51(11)

N2

)
+

(
2.970(34)− 3.39(55)

N2

)(
mPCAC√

σ

)
+

(
−0.706(43) +

3.00(68)

N2

)(
mPCAC√

σ

)2

. (3.20)

Although the 1/N counting of eq. (3.20) is not consistent, because of the missing square root

term, one should notice that eq. (3.19) and eq. (3.20) share the same N → ∞ behaviour.

In fact the N =∞ coefficients of eq. (3.19) agree within the errors with those of eq. (3.20).

In particular, we stress that the non-vanishing term 0.84(31) (mPCAC/
√
σ)

3/2
is consistent

with 0.706(43) (mPCAC/
√
σ)

2
, for the range of mPCAC studied. In principle one should

introduce a quadratic term into eq. (3.19), in practice however, such a fit to six points with

five free parameters becomes unstable and does not allow us to study the 1/N behaviour

of the coefficients.
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Figure 6. Quadratic fit of the ρ mass in units of the square root of the string tension, according

to eq. (3.20).

A possible solution is to fit the data for all groups at once using a combined fit, where

we fix the (mPCAC, N) functional form up to the second order term in the quark mass

(figure 7). With this approach we obtain:

mρ√
σ

=

(
1.5395(83) +

0.92(21)

N2

)
− 0.06(14)

N

(
mPCAC√

σ

)1/2

+

(
2.994(44)− 13.9(48)

N2

)(
mPCAC√

σ

)
+

(
27(11)

N2

)(
mPCAC√

σ

)3/2

+

(
−0.739(50)− 15.1(73)

N2

)(
mPCAC√

σ

)2

, (3.21)

with a χ2/d.o.f. = 2. The drawback of this approach is that data at small (mq, N) have

less weight in the combined fit, leading to a smaller coefficient for the m
1/2
PCAC term.

In order to compare our results with the holographic prediction (see section 5.1) it

is useful to study mρ as a function of the pion mass, paying particular attention to the

linear term of mρ(m
2
π). Since the results of eqs. (3.19)–(3.21) tend to agree in the large-N

limit and considering that our extrapolation relies on small N , which might be affected by

– 13 –



J
H
E
P
0
6
(
2
0
1
3
)
0
7
1

0 0.1 0.2 0.3 0.4 0.5

m
pcac

/√σ

1.6

1.8

2

2.2

2.4

2.6

2.8

3

m
ρ
/√

σ

SU(2)

SU(3)

SU(4)

SU(5)

SU(6)

SU(7)

SU(17)

SU(∞)

0.5 1 1.5 1.75 2 2.25 2.5 2.75

m
π
/√σ

(N=3)

1.6

1.8

2

2.2

2.4

2.6

2.8

3

m
ρ
/√

σ

Figure 7. Combined fit of the ρ mass in units of the square root of the string tension. The solid

curves are calculated from eq. (3.21) for the different N .

quenched deviations, we quote eq. (3.19) as our best phenomenological parametrization of

the data. To avoid further propagation of errors, we fit for each N the ρ data directly to

the π masses using the fit form of eq. (3.19), with the substitution mPCAC → m2
π. Then we

extrapolate the fitted slope to N →∞, obtaining:

mρ(mπ)

mρ(0)
= 1 + 0.360(64)

(
mπ

mρ(0)

)2

+ . . . . (3.22)

As a consistency check, we can omit the data corresponding to the largest quark masses

and repeat the analysis using only the smallest three masses and a simple linear fit. This

leads to:
mlin
ρ (mπ)

mρ(0)
= 1 + 0.317(2)

(
mπ

mρ(0)

)2

+ . . . , (3.23)

where the smaller error may be unreliable because the fit has two free parameters for only

three data points. We quote eq. (3.22) as our final result. As already pointed out in

ref. [46], the results for the slope are close to the holographic prediction obtained in the

context of the model presented in ref. [73] (see ref. [14] for a detailed discussion).

3.4 The scalar particle

The analysis of the scalar mesons a0 requires special attention. In the quenched theory, in

which η′ also becomes a Goldstone boson violating unitarity, the scalar correlator shows

a long-range negative contribution, in addition to the standard short-range exponential

decay. In ref. [74] it was shown that this effect, which is dominant and clearly visible only

at the lowest quark masses, is caused by loop diagrams corresponding to an intermediate

η′ − π state, which is light and has negative norm in the quenched approximation. Our

approach consists in fitting the a0 two-point functions as:

C(t) = C0e
−ma0 t − C1e

−µt, (3.24)

where the “unphysical” quantities C1 and µ are fixed using the values at large t only.

This approach works very well for N ≥ 5, where the noise in the central region of the
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Notice that the smallest PCAC mass for SU(3, 4) is approximately twice the one for SU(5, 6, 7)

(mPCAC/
√
σ ≈ 0.04 vs. 0.02, see tables 10–16). Right: the amplitudes of the negative long range

contribution, C1(N,mPCAC), normalised to C(t = 1) for each group at the lowest quark masses.

The solid curves represent their expectation according to the fit of eq. (3.26) for mPCAC/
√
σ = 0.02

and for mPCAC/
√
σ = 0.04.

correlator is smaller. For similar smearing/normalization we expect the amplitudes Ci to

be proportional to N , with 1/N2 corrections,

Ci ≈ N
(
ai +

bi
N2

+ . . .

)
. (3.25)

In particular, we expect the ratio C1/C0 to be zero at N =∞, i.e. a1 = 0 and C1 ∝ N−1.

Indeed we find no evidence of negative contributions at N = 17 for the values of the quark

masses studied. Moreover, the negative contributions get smaller at higher masses, meaning

that C1 is at least suppressed like m−1
PCAC (and vanishes for ma0 > 2mπ). (Un)fortunately

this behaviour is visible only at the very lowest quark mass for each of the groups studied,

shown in figure 8 (left), so we cannot analyse in detail the amplitude C1 as a function of

mPCAC. The best strategy to give a qualitative estimate of C1 is to employ a combined

(mPCAC, N) fit, where we use data points from all group (figure 8 — right). This leads to

the preliminary estimate

C1

C(t = a)
= −0.0269(53)

√
σ

N ·mPCAC

, (3.26)

with a reduced χ2 of 1.4. Note that for SU(2) (not shown in the figure) we were unable to

obtain meaningful results.

The a0 masses, calculated according to eq. (3.24), are listed in tables 10–16 and their

1/N2 expansion (plotted in figure 9) reads,

ma0√
σ

=

(
2.402(34) +

4.25(62)

N2

)
+

(
2.721(53)− 6.84(96)

N2

)
mPCAC√

σ
. (3.27)
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3.5 The remaining mesons

The ground state energies for the remaining states are listed in tables 10–16. The corre-

sponding fits are shown in figures 15–16 of appendix B; in these cases, our fits do not include

quadratic terms, because of the larger uncertainties of the data. We fit the remaining states

to the form,

mX√
σ

=

(
AX,1 +

AX,2
N2

)
+

(
BX,1 +

BX,2
N2

)
mPCAC√

σ
(3.28)

and list the results for AX,1, AX,2, BX,1 and BX,2 in table 24.

As discussed above, the variational method allows us to extract the first excited states

in each channel, although the results for these masses are much noisier than the corre-

sponding ground states. We list the masses in tables 17–23 and plot in figures 17 to 21

their quark mass dependences and the 1/N2 dependences of the respective fit parameters.

The excited states are also fitted to eq. (3.28) and the results are listed in table 24.

3.6 Decay constants

We define the lattice meson decay constants1 F lat
π and f lat

ρ as

〈0|A4|π〉 =
√

2mπF
lat
π , (3.29)

〈0|Vk|ρλ〉 = mρf
lat
ρ ek(p, λ), (3.30)

where A4 = ūγ4γ5d and Vk = ūγkd are the non-singlet axial and vector currents, respec-

tively, while ek(p, λ) denotes a polarization vector.

1Throughout the paper we use the notation Fπ = fπ/
√

2 ≈ 92 MeV to indicate the pion decay constant

and F lat
π to address the same quantity calculated on the lattice up to the renormalization factor ZA, i.e.

Fπ = ZAF
lat
π .
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We fit the pion and the axial correlators for large t as:

〈A4(t)πα(0)〉 ' 1

2mπ
〈0|A4|π〉〈π|π†α|0〉e−tmπ ≡ CA4e

−tmπ (3.31)

〈πα(t)πα(0)〉 ' 1

2mπ
〈0|πα|π〉〈π|π†α|0〉e−tmπ ≡ Cπe−tmπ (3.32)

(where πα is one of the four differently smeared pion interpolators) and then compute

F lat
π as:

F lat
π = CA4

√
1

mπCπ
. (3.33)

In order to better compare large-N to N = 3 results, we choose to normalize the decay

constants as:

F̂π = Fπ

√
3

N
, f̂ρ = fρ

√
3

N
. (3.34)

For the SU(3) theory, we find results which are consistent with ref. [75], while for larger

gauge groups our measurements show that the expected
√
N scaling behavior is well sat-

isfied, see figure 10 and tables 25–31.

The 1/N2 expansion of the (rescaled) pion decay constant reads:

F̂ lat
π√
σ

=

(
0.2619(37)− 0.121(56)

N2

)
+

(
0.506(24)− 0.29(30)

N2

)
mPCAC√

σ

+

(
−0.320(31) +

0.28(37)

N2

)
m2

PCAC

σ
. (3.35)

In the case of f lat
ρ , we use a similar approach — the main difference being due to presence

of the polarization vector ek(p, λ). This satisfies the relation∑
λ

eµ(p, λ)eν(p, λ) = gµν −
pµpν
p2

, (3.36)

so that for zero momentum and for a fixed direction µ = ν the above expression becomes

one, and the computation is identical to the previous one (up to a
√

2 factor). To improve

the statistical precision, we averaged the results over the three spatial directions. We plot

the ρ decay constants for different N in figure 11; the 1/N2 fits can be summarized as:

f̂ lat
ρ√
σ

=

(
0.8173(70) +

0.00(11)

N2

)
+

(
0.582(44)− 1.57(63)

N2

)
mPCAC√

σ
(3.37)

+

(
−0.467(57) +

1.45(80)

N2

)
m2

PCAC

σ
.

The decay constants computed on the lattice are related to the ones in the continuum by

the renormalization constants ZA and ZV ,

F̂π = ZAF̂
lat
π , f̂ρ = ZV f̂

lat
ρ . (3.38)

ZA and ZV have been determined non perturbatively only for N = 3 [68, 76] while two-loop

perturbative results are known [77, 78] to converge slowly. In appendix A we detail our

strategy to obtain estimates of ZA and ZV for N 6= 3 and of their systematics. The results

for F̂π and f̂ρ are listed in tables 25–31.
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3.7 Finite volume effects

Due to the Eguchi-Kawai volume reduction [79], finite size effects (FSE) are expected to

be zero at infinite N , as long as all lattice dimensions (in physical units) are kept larger

than a critical length Lc [80], so that center symmetry is not spontaneously broken.

At finite N , FSE become larger for smaller quark masses and for smaller N [81, 82]:

mπ(L) = mπ(∞) [1 +B exp(−mπ(∞)L))], (3.39)

where the parameter B vanishes in the large-N limit. For N = 2 and 3, we carried out

simulations at three volumes and fitted the pion masses to eq. (3.39), obtaining the results

displayed in figure 12. As one can see from these plots, FSE are drastically reduced going

from 2 to 3 colors, where the data can already be fitted to a constant. For larger N -values

we carried out simulations at two volumes only, unsurprisingly, without any evidence of

FSE. While one may also carry out a similar analysis for the other particles, their finite
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Figure 12. Fit of mπ(L)/mπ(∞) according to eq. (3.39) for the SU(2) (left) and SU(3) theory

(right).

size corrections are expected to be smaller than for the pion, and thus negligible within

our statistical uncertainties.

3.8 Finite cut-off effects

Before comparing our results to theoretical continuum predictions, it is important to discuss

the potential impact of discretization effects on our lattice results. Strictly speaking, since

our simulations were performed only at one value of the lattice spacing, it is not possible to

perform a continuum extrapolation. However, following the discussion in ref. [46] (a study

carried out at values of a very close to ours), one can nevertheless get an estimate of the

systematic uncertainty induced by the finite lattice cut-off, by comparing the results with

those obtained at a different, coarser, lattice spacing in ref. [45]. In particular, in ref. [46] it

was shown that, in spite of the 60% difference between the two lattice spacings used in the

two studies, the ρ meson masses obtained are very close to each other (up to differences of

the order of 5%). Since our simulations employ unimproved Wilson fermions, the leading

lattice artefacts are expected to scale like a (the same holds for refs. [45–47] where the same

action was used and ref. [48] where HYP-smeared clover-Wilson fermions with tree-level

coefficient were employed, resulting in O(αa) lattice artefacts). For the ρ meson mass, the

analysis carried out in ref. [46] showed that, by extrapolating their results and those from

ref. [45] either linearly or quadratically in a, one obtains estimates of the continuum-limit

value which are about 2% to 5% off from the result obtained at a ' 0.09 fm. In the absence

of analogous data for the other states investigated in the present study, it is reasonable to

take these numbers as a rough, order-of-magnitude estimate of the systematic finite cut-off

errors affecting our results.

As a final remark, we observe that while taking the continuum limit can lead to a slight

quantitative change in our results for physical quantities, it should not dramatically affect

their (mild) dependence on N . In principle, interchanging the order of the continuum and

large-N limits of a lattice model may involve some subtleties (see ref. [83] for a discussion).

However, the results of previous studies indicate that, for lattice gauge theories and for the

observables discussed here, the two limits commute [4, 5].
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3.9 Large-N spectrum

To conclude this section, we display in table 4 the results for the meson spectrum extrap-

olated to infinite N at different quark masses. The results are listed in units of
√
σ and in

units of the (normalized) pion decay constant in the chiral limit,

F̂∞ =

√
3

N
Fπ(mq = 0)

∣∣∣∣∣
N→∞

, (3.40)

which should be particularly useful for chiral perturbation theory (χPT) applica-

tions [84–87] (see section 5.2).

Of phenomenological interest is not only the spectrum at mq = 0 (figure 13) but are

also the spectra at mq = mud and at mq = ms (figure 14) where mud and ms denote the

physical (isospin-averaged) light quark and strange quark masses, respectively. We fix the

former imposing at N =∞ the values [88]:

F̂∞ = 85.9 MeV, (3.41)

mπ(mud) = 138 MeV. (3.42)

F̂∞ fixes the lattice spacing to a = 0.10 fm and the string tension to σ = (395 MeV)2. This

value leads to a better agreement between the large-N meson spectrum and the experi-

mental masses than the previously used estimate σ = (444 MeV)2 (see figure 14 — left).

We find the ratio

F̂π(mud)

F̂π(0)
= 1.020(20) , (3.43)

where the renormalization constants cancel, to be compared to the value Fπ(mud)/Fπ(0) =

1.073(15) for N = 3 QCD with sea quarks [88]. In the large-N limit the mass-dependence

of Fπ appears to be reduced.

The strange quark mass is obtained by fixing at N = ∞ the mass of a (fictitious)

strange-antistrange pion to the value

mπ(ms) = (m2
K± +m2

K0 −m2
π±)1/2 ≈ 686.9 MeV. (3.44)

The large-N meson spectrum at mq = ms is shown in figure 14 (right).

Note that our way of fixing mud and ms is arbitrary and different choices of input

observables of real N = 3 QCD may give values that differ by O(1/N) corrections. In fact

the procedure of adjusting the quark masses described here differs from that of ref. [50].

Setting the scale from F̂∞ = 85.9 MeV and fixing the quark masses as detailed above,

we find the values mρ = 619(9) MeV at mq = mud and 876(13) MeV at mq = ms, to

be compared to mρ = 775 MeV and mφ = 1019 MeV in QCD. For the scalar mesons we

find ma0 = 959(18) MeV and 1208(22) MeV for light and strange quarks, respectively.

Note that the errors stated do not include an overall scale uncertainty of 8%, due to the

renormalization of the pion decay constant.
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Figure 13. The meson spectrum for different N in the chiral limit. The masses and the decay

constants are given in units of the square root of the string tension for each group SU(N) and the

extrapolated N →∞ values are shown as horizontal bands.
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N = 3 masses for the two values of the string tension: σ = (395 MeV)2, obtained from imposing

F̂∞ = 85.9 MeV, and the ad hoc value σ = (444 MeV)2. The pion mass is taken as input to set

mq = mud. Right: the large-N meson spectrum at the mq = ms scale.

4 Comparison with other lattice studies

The mass of the ρ meson has generated some controversies in the literature: refs. [45–48]

find a value that is close to the one measured in SU(3), while ref. [49] finds a mass approx-

imately twice as large. In this work, we confirm the results of refs. [45–48]. Nevertheless,

the discrepancy with ref. [49] needs to be taken very seriously and properly addressed, since

the results of ref. [49] question not only the value of the ρ mass, but (indirectly) the whole

meson spectrum obtained in this work. The issue is not straightforward to settle, since the

method used to address the problem in ref. [49] is different from the one in refs. [45–48].
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m∞/
√
σ m∞/F̂∞

Particle JPC mq = 0 mq = mud mq = ms mq = 0 mq = mud mq = ms

π 0−+ 0 0.35 1.74 0 1.61 8.00

ρ 1−− 1.5382(65) 1.5683(65) 2.216(11) 7.08(10) 7.21(10) 10.20(15)

a0 0++ 2.401(31) 2.428(31) 3.059(33) 11.04(21) 11.17(21) 14.07(25)

a1 1++ 2.860(21) 2.883(21) 3.414(23) 13.16(21) 13.26(21) 15.71(24)

b1 1+− 2.901(23) 2.924(23) 3.452(24) 13.35(21) 13.45(22) 15.88(25)

π? 0−+ 3.392(57) 3.413(57) 3.887(60) 15.61(34) 15.70(34) 17.88(37)

ρ? 1−− 3.696(54) 3.714(54) 4.127(56) 17.00(34) 17.08(34) 18.99(37)

a?0 0++ 4.356(65) 4.375(65) 4.816(69) 20.04(41) 20.13(41) 22.16(44)

a?1 1++ 4.587(75) 4.605(75) 5.012(81) 21.10(46) 21.18(46) 23.06(49)

b?1 1+− 4.609(99) 4.628(99) 5.06(11) 21.20(54) 21.29(55) 23.29(58)

F̂π - 0.2174(30) 0.2216(30) 0.3035(58) 1 1.020(20) 1.396(33)

f̂ρ - 0.5721(49) 0.5762(49) 0.6516(93) 2.632(43) 2.651(44) 2.998(60)

Table 4. The N = ∞ meson spectrum and decay constants in units of the square root of the

string tension
√
σ and in units of the (normalized) chiral pion decay constant F̂∞ = Fπ(0)

√
3/N

in the chiral limit, for three different values of the quark mass which are set using the pion masses

as inputs. We also display F̂π = Fπ
√

3/N and f̂ρ = fρ
√

3/N in the last rows of the table. The

results have not been extrapolated to the continuum limit. To account for this, based on [46], a

systematic error of 5% should be associated to all values. Regarding the pion decay constant, due

to the lack of non-perturbative renormalization at N =∞, an error of 8% should be associated to

the values in units of F̂∞ and to the decay constants in units of the string tension.

Another related issue concerns Fπ(N =∞) [89–92] that was used in [49] to set the physical

scale. Our result, indicated in table 4, is

F̂∞/
√
σ = 0.2174(30) , (4.1)

while from [89] one infers

F̂∞/
√
σ = 0.277(12) , (4.2)

where the known value [34] Tc/
√
σ = 0.5949(17) has been used to convert the original

results (provided in units of the deconfinement critical temperature Tc) into units of
√
σ.

Note that in both estimates we have considered only the statistical error. When also the

systematic errors related to the finite lattice spacing and (for the calculation described

in this work) to the renormalization constant are taken into account, the results agree

within two standard deviations, showing an acceptable level of consistency. Instead, the

discrepancy of the results for the mass of the ρ meson demands a thorough inspection of the

numerical techniques and of the calculations that lead to the conflicting numerical values.

Refs. [45–48] use the conventional techniques we described in section 2 to extract the

mass of the ρ from the long-distance behavior of correlators of fermion bilinears carrying
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the quantum numbers of the state of interest, at relatively low N (up to 7); this method

has been well tested in standard QCD calculations. On the other hand, the authors of [49]

extract the mass at larger N (N = 17 and N = 19), but using smaller lattice sizes, from

momentum space correlators which are obtained injecting allowed discrete momenta in the

lattice configurations. Although the quenched momentum technique used in [49] is less

well tested, one cannot exclude the possibility that it gives better results at large N . Also

note that the fermion discretizations differ: Wilson fermions were employed in [45–47] and

in the present work, clover Wilson fermions in [48] and overlap fermions in [49].

Taking the technical differences into account, in principle the discrepancy may have

several interpretations:

• it may be due to large artifacts in either of the lattice computations (which are

performed at finite quark masses and lattice spacings, and use different discretizations

for the Dirac operator — characterized, in particular, by different chiral properties);

• the quenched momentum computation in refs. [49] is based on an expected cancella-

tion of finite-volume effects in the large-N limit. If such cancellation is not complete,

the numerical results could have been contaminated by the associated systematic

effect.2 A (possibly related) issue could be the mixing with some excited state(s),

given that ref. [49] extracts the meson spectrum by computing quark propagators at

a small number of low momenta;

• large-N gauge theories have a complicated phase structure [80], which might create

metastabilities. It is hence possible that the two calculations are in different phases,

with (possibly) only one being in the phase connected with the infinite volume limit;

• the discrepancy may actually indicate a “physical” effect: the results reported

in ref. [49] are obtained at much larger values of N than those investigated in

refs. [45–48], and it may happen that, for a moderate number of colors, the finite-N

correction coefficients conspire to hide the deviations from the large-N limit, which

might become visible only for much larger values of N . This interpretation, however,

is at odds with the very smooth N -dependence of all other observables that have

been investigated so far.

Since it is of paramount importance to resolve the root causes of the discrepancy, we per-

formed a dedicated SU(17) calculation at values of the parameters that are very similar to

those of ref. [49] (β = 208.45 vs. β = 208.08), to enable a direct comparison. Interestingly,

setting the scale by the string tension, it turns out that refs. [46, 48] and the present study

use a similar lattice spacing as [49]. From this data set, we obtained values of the ρ mass

that are compatible with our results at lower N . Finally, we have monitored the average

local value of the Polyakov loop and of the plaquette in the four directions, to check that

the whole lattice is in the phase relevant for the continuum limit of the large-N theory.

One might object that since fluctuations are reduced at large N , extracting masses with

2Although, as we have already discussed, we do find some level of consistency for F̂∞, it is possible that

the technique has different systematics depending on the quantum numbers of the meson.
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connected correlators might not be the correct strategy. This issue has been addressed

in [46], where it has been shown that for mesons the relative precision of the mass in fact

improves as N increases.

As a consequence of this analysis, where we find N = 17 results to be in good agreement

with N ≤ 7, the possible sources of the discrepancy can be narrowed down to the different

fermion discretization, the different method for extracting the mass and the influence of the

bulk phase on the numerical results. Concerning this last point, we remark that while in our

calculation we have kept fixed a physical scale (provided in our case by the string tension),

in [49, 89] β is varied across the gauge groups using the large-N perturbative β-function.

This might underestimate the value of β at which the bulk is present at large-N (one can

compare the β used in [89] with the investigation of the bulk phase reported in [58] to realise

that there could be an influence of this unwanted phase on some of the results of [89]).

This could be the source of the small difference in F̂∞. In fact, it was noticed already

in [49] that b = β/(2N2) = 0.35, which was crucial for obtaining the value of F̂∞ in [89],

gives a variation of the mass of the ρ of around 30% with respect to the value obtained at

b = 0.36 (β = 208.08), and this variation was ascribed to bulk effects. It is then reasonable

to assume that the same effects might have influenced the extraction of F̂∞ in [89].

To sum up, while the techniques described in this work are well established, with

known systematic effects (which we have discussed in detail), those of [49, 89] are new

and further work is needed before the reliability of the corresponding results can be fully

assessed. Should future investigations confirm them, clearing the doubts raised in this

paper, the implications will be instructive and a new intriguing picture of the relationship

between QCD and the large-N limit might emerge. In the absence of such an analysis

and supported by the numerical results for N = 17 obtained in this work, the numerical

evidence that we have presented shows a large-N meson spectrum and decay constants that

are close to the SU(3) ones, with the N = 3 values described by modest 1/N2 corrections

to the observables at N =∞.

5 Comparison with analytical predictions

In this section, we relate our numerical results to analytical predictions. We mainly focus

on calculations derived in the context of gauge/gravity models (subsection 5.1), and briefly

mention some of those in chiral perturbation theory (subsection 5.2). In the literature

there exist also analytical large-N studies of the spectrum of mesons with different radial

and/or spin quantum numbers (e.g. ref. [93]). However, our numerical results are limited

to ground states and first radial excitations.

5.1 Holographic models

Part of the motivation for studying the meson spectrum in the large-N limit comes from

the Maldacena conjecture [11–13], namely from the expectation that gauge theories admit

a dual description in terms of string theories, defined in a higher-dimensional spacetime.

In particular, the “holographic dictionary” relating quantities between the two types of

theories states that, when the number of color charges in the gauge theory tends to infinity,
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the string coupling gs in the dual string theory tends to zero. Under these conditions, loop

effects on the string side of the correspondence can be neglected, i.e. the theory reduces

to its “classical string” limit. (In addition, the limit in which the gauge theory is strongly

coupled corresponds to the limit in which the string length tends to zero. Hence, if the

gauge theory has a large number of colors and is strongly coupled, its string dual reduces to

a classical gravity theory, in an appropriate, curved, higher-dimensional spacetime, opening

up the possibility of analytical treatment).

The first explicit version of this conjecture was formulated by studying a system of

N D3 branes (i.e. 3 + 1-dimensional hyperplanes) in type IIB string theory, defined in a

ten-dimensional spacetime given by the direct product of a five dimensional anti-de Sitter

spacetime with a five-dimensional sphere, AdS5 × S5: it was realized that the low-energy

dynamics of such a system can be equivalently described in terms of supersymmetric Yang-

Mills (SYM) theory, with U(N) gauge group and N = 4 supercharges, and that the two

theories share the same global symmetries. The parameters of the gauge theory (the

number of colors N and the ’t Hooft coupling λ) are mapped to those of the string theory

(the string coupling gs, and the ratio of the string length ls to the radius of the space R) as:

λ/N = 4πgs, λ = (ls/R)−4. (5.1)

For the N = 4 SYM theory, the validity of the gauge/string correspondence is sup-

ported by many pieces of mathematical evidence, and no counter-examples to it have ever

been found (although a general proof has not been formulated yet). If the correspondence

is indeed true, and generic (i.e., if any gauge theory admits a holographic description in

terms of a string model), then it would be possible to study the strong-coupling regime of

gauge theories (at least of those with a large number of colors) via simple, “classical” cal-

culations on the string theory side. This possibility has motivated a huge theoretical effort,

aimed at extending the holographic correspondence to theories which are more “QCD-like”

— including, in particular, theories with matter fields in the fundamental representation

of the gauge group, exhibiting a non-trivial running coupling, with a spectrum of confined

states and spontaneous chiral symmetry breaking at low energies. This topic is extensively

discussed in ref. [14]; in the following, we summarize the main issues relevant for our present

discussion, and for a comparison with lattice results.

Before reviewing the holographic approach to meson spectra in the large-N limit, how-

ever, we would like to warn the reader that, while conceptually extremely interesting, these

types of computations are not yet at a level of accuracy which enables precise comparison

with lattice results (or with experimental data). Although the gauge/string correspondence

has led to dramatic theoretical progress in several aspects of strongly coupled field theories,

its application to quantitatively address questions of a direct, phenomenological relevance

is still limited. For these reasons, it should be understood that the theoretical predictions

discussed in this context have to be taken cum grano salis.

First of all, it is worth emphasizing that the N = 4 SYM theory, at least at zero or low

temperatures, is qualitatively very different from QCD: in particular, it is non-confining, it

does not have a chiral condensate nor a discrete spectrum, it is maximally supersymmetric,
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conformally invariant, and it does not have elementary fields in the fundamental repre-

sentation of the gauge group. One possible way to modify the AdS/CFT correspondence,

in order to obtain a gauge theory with features closer to those of QCD is based on the

so-called “top-down” approach, i.e., on a deformation of the original AdS/CFT setup with

the addition of extra ingredients. In particular, in order to have a gauge theory with fields

in the fundamental representation of the gauge group, one can modify the dual string

model by adding a set of nf “flavor” D7 branes [94] (see also, e.g., ref. [95] for a discussion):

open strings stretching from the original D3 branes to one of these D7 branes correspond to

fundamental matter fields in the gauge theory, with a mass proportional to the separation

between the D7 branes and the D3 branes. This reduces the supersymmetry of the cor-

responding gauge theory down to N = 2, and leads to a global U(nf ) “flavor” symmetry

(which is the remnant of the gauge symmetry on the D7-branes). On the other hand, open

strings that connect two D7 branes are interpreted as the holographic duals of “mesons”.

In this context, “mesons” denote tightly bound states of a quark and its antiquark.

Assuming that the number nf of D7 branes remains finite, and hence much smaller

than the number N of D3 branes (which is taken to infinity), one can work in the so-called

“probe approximation” [94], in which the D7 branes do not affect the geometry of the space-

time in which the string theory is defined. It is interesting to note that, in the dual gauge

theory, this corresponds to a “quenched approximation” (which, historically, has been used

for a long time also in numerical simulations of lattice QCD [44]), in which quarks are prop-

agating in a background generated by the gauge fields only. This approximation becomes

exact in the ’t Hooft limit, in which the 1/N suppression of virtual quark loops leads to a

unitary, quenched theory, whose dynamics is purely determined by planar gluon loops.

Within the probe approximation in holography, one can easily derive the structure of

the meson spectrum: for quarks of non-vanishing mass mq (that is, for a non-vanishing

separation between the D3 and the D7 branes), one finds the spectrum to be [96]:

M (n) = 4πmq

√
(n+ 1)(n+ 2)

λ
, (5.2)

where n denotes the quantum number describing the radial excitation of the meson. Some

observations are in order:

1. eq. (5.2) shows that, in the limit of light quarks, the meson mass vanishes — and

it does so linearly in mq. This is in contrast to the situation in QCD, where, in

general, in the chiral limit mesons remain massive (due to the existence of a mass

gap) or, in the case of pseudoscalar mesons which are the Nambu-Goldstone bosons

associated with the spontaneous breakdown of chiral symmetry, with masses that

vanish like
√
mq;

2. the dependence of M (n) on n described by eq. (5.2) is different from the one char-

acteristic of Regge trajectories (M (n) ∝
√
n): in principle, the correct functional

dependence characterizing the spectrum in the large-N limit could unambiguously

be identified through lattice calculations. In practice however it turns out that the
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lattice determination of even the first few excited states is a technically very demand-

ing task (see ref. [97] and references therein for a discussion), hence in this paper we

do not attempt a systematic computation in this direction, and limit our investigation

to the first excited state in some channels only;

3. at finite quark mass and finite but large ’t Hooft coupling λ, eq. (5.2) implies that

the mass of the lightest meson is finite, but parametrically suppressed with respect

to mq:

m(0)
π = 4πmq

√
2

λ
, (5.3)

and, hence, that the constituent quark and antiquark form a tightly bound state.

With the caveats mentioned above, it is nevertheless possible to consider a quantitative

comparison of our results with holographic predictions in the probe approximation. As an

example, we consider the dependence of the ρ vector meson mass on the mass of the pion,

which can be compared with the prediction derived in ref. [95] in a setup involving a

background with a non-constant dilaton [73]:

mρ(mπ)

mρ(0)
' 1 + 0.307

[
mπ

mρ(0)

]2

. (5.4)

Our numerical result for the same quantity in the large-N limit, reported in eq. (3.22), is

remarkably close to the above expectation.

The inclusion of backreaction effects of the D7 branes on the spacetime geometry makes

the meson spectrum computation more complicated, but it is still possible to study the

meson mass dependence for a probe brane in a background which includes curvature effects

due to the flavor branes. The result reads:

M2 ∝ (n+ 1)(n+ 2)m2
q ln

(
m2
q

)
. (5.5)

Various authors have proposed different constructions, characterized by less super-

symmetry — see, e.g., refs. [98–103]. In particular, ref. [101] discusses a setup involving a set

of D4, D8 and D8 branes, with a compactified direction of radius inversely proportional to

a characteristic Kaluza-Klein scale, and derives a dual description featuring massless pions

and interesting predictions for other meson masses. According to this construction, the

ratio between the squared masses of the states with the quantum numbers corresponding

to the a1(1260) and the ρ mesons turns out to be:

m2
a1(1260)

m2
ρ

' 2.4, (5.6)

which is compatible with the experimental unquenched N = 3 value 2.5(1) [104]. This

value can also be compared to our result for this quantity, extrapolated to the chiral and

large-N limits, which is 3.6(3).
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An even less favorable comparison holds for the ratio of the fundamental and first

excited states in the vector channel:

m2
ρ(1450)

m2
ρ

' 4.3. (5.7)

While the experimentally observed value for this quantity is 3.57(12) [104], our N = ∞
result reads 6.0(4). Regarding the (isovector) scalar channel, the prediction of this model

for the squared ratio of the lightest state mass to the lightest vector reads:

m2
a0(1450)

m2
ρ

' 4.9, (5.8)

to be compared with the real-world value3 3.61(9) [104]. Our result, extrapolated to van-

ishing quark mass and for N →∞, is 8.4(6).

Finally, we mention that a different type of strategy for holographic studies was

pioneered in refs. [105–107]: it goes under the name of “AdS/QCD”, and consists of

constructing a gravity dual in a curved higher-dimensional (typically: five-dimensional)

space, reproducing the known features of QCD (a related approach has been discussed

in refs. [108–113]). Contrary to the constructions mentioned above, here one fol-

lows a “bottom-up” approach, which would be related to a non-critical string theory

setup [114, 115]. An important caveat in such constructions, however, is that string correc-

tions may be quantitatively non-negligible at finite values of the ’t Hooft coupling, hence in

this case the gravity approximation could be unjustified. However, these effective models

appear to capture salient features of QCD, including, in particular, confinement and chi-

ral symmetry breaking, and typically yield quantitatively rather accurate predictions for

certain physical quantities (or ratios thereof). The quantitative predictions of the model

proposed in ref. [105] were worked out using two different methods. One possibility is to

fix the values of the free parameters of the model, by setting the masses of π and ρ, and

the pion decay constant to their physical values. This led to the predictions:

ma1(1260) = 1363 MeV, F̃ρ = (329 MeV)2 (5.9)

(note that, upon conversion to our notations, this corresponds to fρ = 198 MeV). Alter-

natively, one can perform the best fit for all of the seven parameters simultaneously, which

results in:

mπ = 141 MeV, mρ = 832 MeV, ma1(1260) = 1220 MeV,

Fπ = 84 MeV, F̃ρ = (353 MeV)2 (5.10)

(which, in our conventions, would correspond to fρ = 212 MeV).

3Strictly speaking, the lightest experimentally measured state with quantum numbers IG(JPC) =

1−(0++) is the a0(980), rather than the a0(1450). However, the correct identification of scalar mesons

is a particularly challenging problem, and the identification of the a0(980) as a genuine meson is somewhat

controversial: most likely, the a0(980) wave function has a large KK component [104], and hence this state

could be interpreted as a two-meson resonance or a tetraquark.
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In principle, these values can also be compared to our results extrapolated to the

large-N limit. Note, however, that, given that the parameters of this model involve input

from experimental data, the values obtained for N → ∞ are not necessarily expected

to be in better agreement than those for N = 3. However, our lattice computations at

different values of N can provide helpful insights into the consistency of the model: since the

holographic construction is a gravitational one, i.e. it is based on the approximation of an

infinite number of colors, the lattice results can reveal the quantitative impact of corrections

due to the finiteness of N , and therefore provide a non-trivial test of the validity of the

model. Our results reveal that, in most cases, the finite-N corrections evaluated at N = 3

amount for relative corrections well below 10%.

Another AdS/QCD model was discussed in refs. [116, 117]: its effective action includes

an open-string tachyon, which is responsible for chiral symmetry breaking in the dual gauge

theory. The authors of these works were able to reproduce the experimentally observed

masses of several low-spin mesons to precisions around 10% to 15%.

5.2 Chiral perturbation theory

As is well-known, chiral perturbation theory [118–123] is an effective low-energy theory de-

scribing the dynamics of the lightest mesons in QCD. It relies on the parametric separation

of the chiral symmetry breaking scale ∼ 4πFπ and the (nearly) zero mass of the (pseudo-)

Goldstone bosons. In the case of a QCD-like theory with nf flavors of light quarks, χPT

describes the fields associated with the light mesons, in terms of the components of a field

taking values in U(nf ). Its dynamics is governed by an effective Lagrangian (constrained by

the symmetries of the theory), which can be organized in a systematic expansion, according

to the number of derivatives and of factors involving a possible explicit mass term, in which

the coefficients of the different terms are low-energy constants (LECs), whose numerical

values can be fixed using phenomenological input, and compared with the expectations

from large-N counting rules. In particular, inspection of the terms contributing to the low-

est order shows that the effective Lagrangian is proportional to the square of the pion decay

constant, i.e. to N . Essentially, this implies that, for N →∞, the effective theory for light

mesons becomes exact at tree level. However, we should point out that the construction of

χPT for large-N QCD (and the constraints that can be derived from it) is a topic which

involves some subtleties: the interested reader can find a clear exposition of this subject in

ref. [124]. In addition, there exist studies of large-N χPT for the baryonic sector [125], too.

While a systematic comparison of large-N χPT predictions with lattice results (in-

cluding, in particular, the study of the N -scaling of various LEC’s) is a task that would

go way beyond the scope of the present work, for our present purposes it is worthwhile

mentioning refs. [84–87], in which the N -dependence of the masses for some of the mesons

presented here was investigated in χPT. These studies address the full theory with sea

quarks. In this case meson masses tended to increase with the number of colors relative to

F̂ =
√

3/NFπ(0), as opposed to our quenched results. The present work and χPT results

can be compared by studying ratios of quantities defined at N = ∞, where both theories

are quenched. Comparing our results shown in table 4 with those in refs. [84–87] we find a

discrepancy of order 30%, however the systematics of their approach are hard to estimate,
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in particular because experimental data are only available for N = 3. In the future our

N =∞ results could be used to constrain effective field theory predictions.

6 Conclusions

We have computed decay constants as well as the ground and first excited state masses of

mesons in the large-N limit of QCD by lattice simulations of the N = 2, 3, 4, 5, 6, 7 and 17

quenched theories. In all channels but the scalar the dependence on the number of colors

for N ≥ 3 is mild. The corrections are well parameterised by an expansion in 1/N2.

We detect statistically significant quenched chiral logarithms of the pion mass for

N ≤ 4 which can be described by a δ-parameter [70]: m2
π ∝ m

1/(1+δ)
q as mq → 0. The

observed rapid decay of δ towards large N -values suggests in this case the subleading

1/N3 contribution to dominate over the leading 1/N contribution at N = 3 where we find

δ(N = 3) = 0.069(14).

Extrapolating our quenched results to the large-N limit (which is unitary and the same

as that of QCD with sea quarks), we determine the meson spectrum in the chiral limit as

well as at physical light and strange quark masses. We find the scalar to be about 1.5 times

heavier than the vector particle at quark masses smaller than that of the strange quark.

This is of particular relevance to the phenomenology of scalar mesons [84–87].

We also clarified a discrepancy among previous studies: our results for the ρ meson

mass for SU(17) are compatible with the large-N extrapolation of studies carried out for

smaller values of N [45–48], and are in contrast to the findings obtained in ref. [49] at

N = 17, 19 using different techniques. This suggests that the disagreement with the rest

of the literature may be due to some technical aspect of ref. [49].

Finally, we compared our numerical results with analytical predictions, including, in

particular, some of those derived from holographic models, finding qualitative (and semi-

quantitative) agreement. Our results for the masses of various states (expressed in units

of the ρ meson mass) exhibit a systematic tendency towards values which are larger than

those obtained from holographic computations. Expressed in units of the string tension

(or of the pion decay constant normalized by
√
N), we find meson masses to decrease with

an increasing number of colors. This may be different in QCD with sea quarks.
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A Renormalization constants

The perturbative expansions for the non-singlet renormalization constants ZA and ZV are

known to order λ2. As discussed above, in this work we considered two definitions of the

quark mass, namely:

mq =
1

2a

(
1

κ
− 1

κc

)
=

1

2aκ
−mc, (A.1)

and the definition through the axial Ward identity:

mPCAC =
〈0|∂µAµ(x)|π〉
2 〈0|P (x)|π〉

, (A.2)

where Aµ = q̄γµγ5q and P = q̄γ5q are the non-singlet axial and pseudoscalar local currents

for a quark of mass mq.

Converting the lattice results to the MS scheme at a scale µ = π/a amounts to:

mMS(π/a) =
1

ZS
mq =

ZA
ZP

mPCAC, (A.3)

with the renormalization constants [77, 78]:

ZS =1−0.515360027(4)

(
1− 1

N2

)
λ

4π
−
(

0.6155(2)− 0.7325(2)

N2

)(
1− 1

N2

)(
λ

4π

)2

, (A.4)

ZP = 1−0.580734161(4)

(
1− 1

N2

)
λ

4π
−
(

0.8420(2)− 0.9284(2)

N2

)(
1− 1

N2

)(
λ

4π

)2

, (A.5)

ZV =1− 0.8203561429(3)

(
1− 1

N2

)
λ

4π
−
(

1.01790(5)− 0.85455(2)

N2

)(
1− 1

N2

)(
λ

4π

)2

,

(A.6)

ZA =1− 0.4693595879(2)

(
1− 1

N2

)
λ

4π
−
(

0.09173(5)− 0.15084(2)

N2

)(
1− 1

N2

)(
λ

4π

)2

, (A.7)

where λ = 2N2/β is the ’t Hooft coupling in the lattice scheme. ZS and ZP above are

defined at the lattice cut-off scale µ = π/a, while ZV and ZA are scale-independent. The

scale dependence also cancels from the ratio ZS/ZP . For the sake of completeness, we also

quote the expansion of mc = 1/(2aκc) [126, 127]:

mc = 4− 2.046522156925001893

(
1− 1

N2

)
λ

4π

−
(

2.7691775(3)− 2.6160500(3)

N2

)(
1− 1

N2

)(
λ

4π

)2

. (A.8)

As is well-known, lattice perturbation theory converges slowly, but the convergence

can usually be boosted, using an improved definition of the expansion parameter, e.g.,

λMS(π/a), taking the latter value from a lattice computation. Alternatively, one can replace

the bare lattice coupling with a value computed from a lattice observable [128, 129].

Expanding the average plaquette

U� = 1− c1λ− c2λ
2 + . . . (A.9)
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N β U2 λ λ
(1)
E λ

(2)
E

2 2.4645 0.644718(3) 3.246 4.682 3.101

3 6.0175 0.595595(3) 2.991 4.664 2.718

4 11.0280 0.578794(2) 2.902 4.666 2.586

5 17.5350 0.573069(2) 2.851 4.640 2.522

6 25.4520 0.568682(2) 2.829 4.644 2.490

7 34.8343 0.566504(2) 2.813 4.641 2.471

17 208.45 0.562729(4) 2.773 4.616 2.423

Table 5. Plaquette values, and ’t Hooft couplings: one- and two-loop improved (E).

leads to one- and two-loop improved couplings of the form

λ
(1)
E = −d1 lnU2, (A.10)

λ
(2)
E = λ

(1)
E − d1d2 (lnU2)2 , (A.11)

where [130, 131]:

d1 =
1

c1
= 8

(
1− 1

N2

)
, (A.12)

d2 =
1

2
+
c2

c2
1

=
0.826844N2 − 1

N2 − 1
. (A.13)

The resulting values are displayed in table 5. To first and second order accuracy in per-

turbation theory, λ
(1)
E and λ

(2)
E agree with λ, respectively.

In order to obtain improved O(λ) results, we replace λ by λ
(1)
E in eqs. (A.4)–(A.7)

above, while for improved O(λ2) renormalization constants we replace λ by λ
(2)
E and λ2 by

λ
(1)
E

2
, for consistency to this order in perturbation theory.

In table 6, we display the resulting perturbative renormalization constants and critical

hopping parameters. Our non-perturbative results on κc can be found in table 8. The one-

loop improved ZA- and ZV -factors seem to be closest to the corresponding non-perturbative

results [68, 76] (see tables 6, 7) obtained for N = 3 at a similar coupling (λ = 3.0 vs. our

λ = 2.991). In the absence of non-perturbative results for N 6= 3, we use these “1-loop E”

ZA- and ZV -factors also for the other SU(N) groups, opting for a conservative 8% estimate

of their relative uncertainties. Note that the differences at N = 3 to the non-perturbative

results are 7.5 % and 6.5 %, respectively.

The quantity ZP /(ZAZS), needed to relate the quark to the PCAC mass, is listed

as well in table 6. We find a huge difference between our perturbative expectations and

the non-perturbative results for N = 3 of refs. [68, 76], obtained at λ = 3.0 and listed in

table 7. Therefore, we fix the latter ratio non-perturbatively from the fit eq. (3.7).
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N 1-loop 2-loop 1-loop E 2-loop E

ZS
2 0.9 0.879 0.856 0.86

3 0.891 0.864 0.83 0.836

4 0.888 0.86 0.821 0.827

5 0.888 0.859 0.817 0.824

6 0.887 0.858 0.815 0.822

7 0.887 0.857 0.814 0.821

17 0.887 0.857 0.811 0.819

ZP
2 0.887 0.857 0.838 0.829

3 0.877 0.84 0.808 0.798

4 0.874 0.835 0.798 0.787

5 0.873 0.834 0.794 0.783

6 0.873 0.833 0.791 0.78

7 0.873 0.832 0.79 0.778

17 0.872 0.832 0.787 0.776

ZV
2 0.841 0.801 0.771 0.764

3 0.826 0.78 0.729 0.729

4 0.822 0.774 0.714 0.717

5 0.821 0.773 0.709 0.713

6 0.82 0.771 0.705 0.71

7 0.82 0.771 0.703 0.708

17 0.82 0.77 0.7 0.706

ZA
2 0.909 0.906 0.869 0.907

3 0.901 0.897 0.845 0.901

4 0.898 0.894 0.837 0.899

5 0.898 0.894 0.834 0.898

6 0.897 0.893 0.831 0.898

7 0.897 0.893 0.83 0.898

17 0.897 0.892 0.828 0.898

κc
2 0.13875 0.14295 0.14585 0.14702

3 0.14018 0.14526 0.15038 0.15137

4 0.14057 0.145912 0.15209 0.15298

5 0.14068 0.14609 0.15269 0.15359

6 0.14076 0.14623 0.15316 0.15396

7 0.14080 0.14629 0.15339 0.15417

17 0.14085 0.14637 0.15380 0.15453

ZP
ZA·ZS

2 1.085 1.076 1.126 1.063

3 1.093 1.084 1.152 1.06

4 1.095 1.086 1.162 1.058

5 1.096 1.087 1.166 1.057

6 1.097 1.087 1.168 1.057

7 1.097 1.087 1.17 1.056

17 1.097 1.087 1.172 1.056

Table 6. Perturbative Z-factors and κ−1c : one-loop, two-loop, bare and improved (E).
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ref. ZS ZP ZA ZV ZP /(ZAZS)

[68] 0.68(1) 0.45(6) 0.81(1) 0.71(2) 0.82(11)

[76] 0.7718(16) 0.4934(24) 0.7821(9) 0.6833(8) 0.8174(44)

Table 7. Non-perturbative Z-factors from refs. [68, 76] obtained for N = 3 at λ = 3.0 (close to

our λ = 2.991).

B Additional tables and figures

This appendix includes additional tables and figures.
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Figure 15. Fit of the a1 mass to: ma1/
√
σ = A + B · mPCAC/

√
σ (left) and 1/N2 fit of the

parameters A and B (right).
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Figure 16. Same as figure 15, but for the mass of the b1 state.
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Figure 17. Same as figure 15, but for the mass of the π? state.
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Figure 18. Same as figure 15, but for the mass of the ρ? state.
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Figure 19. Same as figure 15, but for the mass of the a?1 state.
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Figure 20. Same as figure 15, but for the mass of the b?1 state.
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Figure 21. Same as figure 15, but for the mass of the a?0 state.

N ZP /(ZAZS) A κc

2 0.6831(75) 0.972(74) 0.152880(22)(81)

3 0.7519(42) 0.739(38) 0.156670(8)(86)

4 0.7812(36) 0.607(32) 0.158218(7)(87)

5 0.8050(25) 0.483(21) 0.158596(5)(87)

6 0.8098(22) 0.462(18) 0.159103(4)(87)

7 0.8133(19) 0.447(16) 0.159326(4)(87)

17 0.8286(55) 0.370(42) 0.159590(12)(87)

Table 8. Fit parameters of the PCAC mass.
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N ∆κc/∆β ∆β/∆(a
√
σ) δ(a

√
σ) δκc

2 0.0588172 1.37097 0.001 0.0000806

3 0.033977 2.54391 0.001 0.0000864

4 0.019335 4.4773 0.001 0.0000866

6 0.00891258 9.78578 0.001 0.0000872

Table 9. Systematic errors of κc and its dependencies, according to eq. (3.6).

κ N3
s ×Nt mPCAC/

√
σ mπ/

√
σ mρ/

√
σ ma1/

√
σ mb1/

√
σ ma0/

√
σ

0.14581 163 × 32 0.5786(11) 2.7042(85) 2.931(13) 4.038(50) 4.043(49) 3.952(59)

243 × 48 0.57866(90) 2.6926(56) 2.9110(82) 4.136(64) 4.115(58) 4.110(52)

323 × 64 0.5776(12) 2.6835(58) 2.9122(93) 4.133(76) 4.125(70) 4.085(76)

0.14827 163 × 32 0.3551(12) 2.131(10) 2.464(18) 3.622(72) 3.602(69) 3.565(75)

243 × 48 0.35564(84) 2.1116(61) 2.438(10) 3.730(79) 3.743(75) 3.745(72)

323 × 64 0.3548(11) 2.0968(59) 2.431(11) 3.707(92) 3.679(78) 3.71(11)

0.15008 163 × 32 0.2054(14) 1.664(12) 2.134(24) 3.33(11) 3.29(10) 3.49(11)

243 × 48 0.20732(83) 1.6322(72) 2.104(16) 3.43(11) 3.529(92) 3.65(12)

323 × 64 0.2065(10) 1.6138(63) 2.086(18) 3.40(11) 3.353(94) 3.57(20)

0.15096 163 × 32 0.1363(17) 1.400(15) 1.977(29) 3.18(16) 3.14(15) 3.97(22)

243 × 48 0.14047(88) 1.3617(89) 1.947(23) 3.27(13) 3.50(12) 3.96(15)

323 × 64 0.13964(99) 1.3444(68) 1.933(26) 3.25(14) 3.22(12) 3.68(39)

0.151959 243 × 48 0.0661(15) 0.960(15) 1.818(32) 3.24(14) 3.75(20) 1.97(36)

323 × 64 0.0660(11) 0.9558(100) 1.813(40) 3.17(16) 3.38(20) 3.67(16)

0.152496 243 × 48 0.0236(23) 0.639(39) 1.812(71) 3.29(39) 5.1(1.3)

323 × 64 0.0186(18) 0.538(30) 1.730(60) 3.18(15) 3.64(26) 2.88(32)

Table 10. Ground state meson masses of SU(2) gauge theory.
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σ

0.15002 163 × 32 0.5514(11) 2.6597(73) 2.915(11) 4.081(35) 4.090(33) 3.938(37)

243 × 48 0.55154(55) 2.6528(31) 2.9066(47) 4.068(36) 4.071(44) 3.930(27)

323 × 64 0.55138(58) 2.6513(33) 2.9033(58) 4.117(57) 4.129(54) 3.982(43)

0.1522 163 × 32 0.3555(11) 2.1186(86) 2.476(13) 3.678(42) 3.684(42) 3.512(50)

243 × 48 0.35558(52) 2.1109(32) 2.4642(57) 3.684(43) 3.674(42) 3.518(37)

323 × 64 0.35558(51) 2.1111(32) 2.4631(70) 3.739(68) 3.769(65) 3.577(67)

0.1538 163 × 32 0.2209(12) 1.669(10) 2.156(16) 3.390(55) 3.415(56) 3.266(83)

243 × 48 0.22105(49) 1.6606(36) 2.1362(76) 3.400(55) 3.386(53) 3.248(59)

323 × 64 0.22132(47) 1.6626(34) 2.1399(92) 3.464(86) 3.529(83) 3.299(91)

0.15458 163 × 32 0.1582(13) 1.418(12) 2.006(20) 3.260(68) 3.323(73) 3.25(12)

243 × 48 0.15864(48) 1.4099(40) 1.9781(98) 3.259(64) 3.242(64) 3.169(90)

323 × 64 0.15907(44) 1.4130(35) 1.979(13) 3.32(10) 3.422(98) 3.163(98)

0.155638 243 × 48 0.07741(50) 0.9993(56) 1.788(19) 3.134(62) 3.148(80) 3.51(21)

323 × 64 0.07818(42) 1.0030(39) 1.796(24) 3.064(87) 3.26(10) 3.20(26)

0.15613 243 × 48 0.03958(69) 0.7306(86) 1.710(25) 3.032(93) 3.15(18) 2.51(23)

323 × 64 0.04128(43) 0.7411(54) 1.749(26) 2.88(11) 3.23(17) 3.07(61)

Table 11. SU(3) ground state meson masses.

κ N3
s ×Nt mPCAC/

√
σ mπ/

√
σ mρ/

√
σ ma1/

√
σ mb1/

√
σ ma0/

√
σ

0.15184 163 × 32 0.52889(72) 2.6147(71) 2.882(11) 3.999(41) 4.050(44) 3.855(39)

243 × 48 0.52863(38) 2.6168(24) 2.8921(38) 4.070(28) 4.104(24) 3.914(22)

0.154 163 × 32 0.33716(70) 2.0641(83) 2.437(16) 3.575(56) 3.639(60) 3.406(56)

243 × 48 0.33710(36) 2.0665(24) 2.4513(46) 3.656(29) 3.691(30) 3.482(29)

0.15559 163 × 32 0.20413(73) 1.5965(97) 2.106(25) 3.235(80) 3.331(91) 3.137(65)

243 × 48 0.20423(35) 1.5993(25) 2.1227(64) 3.343(37) 3.363(40) 3.184(47)

0.15635 163 × 32 0.14303(77) 1.337(11) 1.954(31) 3.04(10) 3.19(13) 3.03(11)

243 × 48 0.14332(35) 1.3390(26) 1.9651(85) 3.198(46) 3.198(49) 3.095(73)

0.157173 243 × 48 0.07935(36) 1.0001(32) 1.802(13) 3.088(80) 3.009(87) 3.26(12)

0.15764 243 × 48 0.04350(39) 0.7498(40) 1.709(20) 3.03(12) 3.00(16) 3.34(26)

Table 12. SU(4) ground state meson masses.
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0.15205 163 × 32 0.55192(54) 2.6736(37) 2.9321(55) 4.070(28) 4.114(31) 3.872(30)

243 × 48 0.55112(33) 2.6680(18) 2.9331(28) 4.080(20) 4.127(23) 3.904(20)

0.15426 163 × 32 0.35403(54) 2.1156(43) 2.4774(72) 3.671(36) 3.711(43) 3.420(47)

243 × 48 0.35314(31) 2.1065(20) 2.4769(36) 3.658(25) 3.708(25) 3.446(27)

0.15592 163 × 32 0.21349(56) 1.6322(54) 2.1292(100) 3.374(54) 3.402(67) 3.095(61)

243 × 48 0.21247(29) 1.6192(22) 2.1263(54) 3.350(33) 3.411(32) 3.115(46)

0.15658 163 × 32 0.15960(58) 1.4102(61) 1.989(12) 3.257(69) 3.276(90) 3.021(98)

243 × 48 0.15852(29) 1.3954(24) 1.9851(69) 3.238(43) 3.304(37) 3.006(66)

0.157548 243 × 48 0.08158(29) 1.0017(29) 1.779(13) 3.113(60) 3.201(72) 2.96(12)

0.158355 243 × 48 0.01833(38) 0.4869(68) 1.655(32) 3.076(64) 3.49(14) 2.80(35)

Table 13. SU(5) ground state meson masses.

κ N3
s ×Nt mPCAC/

√
σ mπ/

√
σ mρ/

√
σ ma1/

√
σ mb1/

√
σ ma0/

√
σ

0.15264 163 × 32 0.54200(48) 2.6579(35) 2.9299(51) 4.064(29) 4.091(27) 3.910(29)

243 × 48 0.54185(26) 2.6574(16) 2.9279(25) 4.069(44) 4.104(17) 3.863(17)

0.15479 163 × 32 0.35056(49) 2.1079(42) 2.4868(67) 3.630(40) 3.664(38) 3.456(42)

243 × 48 0.35042(24) 2.1086(17) 2.4832(30) 3.654(21) 3.694(20) 3.388(22)

0.15636 163 × 32 0.21769(51) 1.6436(50) 2.1549(90) 3.355(39) 3.392(35) 3.127(72)

243 × 48 0.21774(23) 1.6464(18) 2.1504(42) 3.338(24) 3.387(24) 3.018(31)

0.15712 163 × 32 0.15545(53) 1.3820(57) 1.990(12) 3.206(51) 3.232(47) 3.00(11)

243 × 48 0.15570(22) 1.3867(20) 1.9864(54) 3.180(27) 3.235(29) 2.834(42)

0.158051 243 × 48 0.08177(22) 1.0013(25) 1.7819(100) 2.944(60) 3.001(76) 2.687(65)

0.158845 243 × 48 0.01948(50) 0.4989(55) 1.569(36) 2.871(65) 3.46(16) 2.39(25)

Table 14. SU(6) ground state meson masses.

κ N3
s ×Nt mPCAC/

√
σ mπ/

√
σ mρ/

√
σ ma1/

√
σ mb1/

√
σ ma0/

√
σ

0.152816 163 × 32 0.54657(39) 2.6767(31) 2.9489(47) 4.105(26) 4.117(27) 3.913(36)

243 × 48 0.54604(22) 2.6727(13) 2.9461(20) 4.117(13) 4.140(14) 3.913(15)

0.154967 163 × 32 0.35511(39) 2.1322(34) 2.5100(55) 3.689(32) 3.712(33) 3.464(25)

243 × 48 0.35455(21) 2.1242(14) 2.5009(25) 3.709(16) 3.730(17) 3.441(19)

0.156547 163 × 32 0.22147(41) 1.6689(40) 2.1781(75) 3.356(46) 3.412(51) 3.147(30)

243 × 48 0.22093(20) 1.6599(16) 2.1631(36) 3.405(20) 3.427(22) 3.070(28)

0.157339 163 × 32 0.15669(42) 1.3983(45) 2.0096(98) 3.171(61) 3.262(72) 3.013(47)

243 × 48 0.15619(20) 1.3892(17) 1.9895(48) 3.251(26) 3.272(27) 2.874(38)

0.158273 243 × 48 0.08183(20) 1.0007(19) 1.7785(81) 3.076(54) 3.026(65) 2.704(62)

0.159062 243 × 48 0.02034(24) 0.4960(40) 1.594(28) 2.917(54) 2.930(73) 3.09(30)

Table 15. SU(7) ground state meson masses.
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0.15298 123 × 24 0.55913(42) 2.7030(56) 2.9633(77) 4.122(23) 4.170(24) 3.917(24)

0.15521 123 × 24 0.35983(44) 2.1356(69) 2.499(10) 3.681(33) 3.733(34) 3.423(37)

0.15684 123 × 24 0.22114(46) 1.6545(86) 2.148(14) 3.344(46) 3.410(50) 3.016(60)

0.15755 123 × 24 0.16257(47) 1.4104(99) 1.992(17) 3.191(54) 3.277(63) 2.812(84)

0.158531 123 × 24 0.08390(68) 0.998(12) 1.776(22) 3.019(70) 3.161(97) 2.59(16)

0.15931 123 × 24 0.0212(11) 0.474(38) 1.580(66) 3.23(34) 3.20(29) 3.3(11)

Table 16. SU(17) ground state meson masses.

κ N3
s ×Nt mπ?/

√
σ mρ?/

√
σ ma?1

/
√
σ mb?1

/
√
σ ma?0

/
√
σ

0.14581 163 × 32 4.56(11) 4.67(13) 5.56(12) 5.61(11) 5.51(13)

243 × 48 4.74(15) 4.586(77) 5.59(19) 5.73(20) 5.36(12)

323 × 64 4.69(13) 4.86(14) 5.62(12) 5.84(14) 5.34(14)

0.14827 163 × 32 4.16(15) 4.35(16) 5.24(18) 5.32(14) 5.28(21)

243 × 48 4.27(19) 4.229(90) 5.11(32) 5.47(28) 4.87(18)

323 × 64 4.28(16) 4.52(17) 5.26(15) 5.61(18) 4.87(18)

0.15008 163 × 32 3.85(20) 4.20(19) 4.96(27) 5.17(19) 4.92(36)

243 × 48 3.96(27) 4.02(10) 4.82(23) 5.26(30) 4.54(34)

323 × 64 3.95(19) 4.27(18) 5.06(21) 5.31(22) 4.59(25)

0.15096 163 × 32 3.71(27) 4.16(21) 4.73(31) 5.08(24) 5.09(67)

243 × 48 3.86(30) 3.95(11) 4.68(29) 5.5(1.4) 4.87(64)

323 × 64 3.75(23) 4.14(20) 5.00(27) 5.50(34) 4.51(35)

Table 17. First excited state meson masses of SU(2) gauge theory.

κ N3
s ×Nt mπ?/

√
σ mρ?/

√
σ ma?1

/
√
σ mb?1

/
√
σ ma?0

/
√
σ

0.15002 163 × 32 4.599(78) 4.73(13) 5.666(80) 5.821(82) 5.535(95)

243 × 48 4.435(86) 4.549(95) 5.617(85) 5.639(97) 5.519(62)

323 × 64 4.417(82) 4.504(79) 5.39(11) 5.51(13) 5.134(96)

0.1522 163 × 32 4.239(98) 4.39(16) 5.43(11) 5.66(11) 5.26(14)

243 × 48 4.05(11) 4.21(12) 5.42(12) 5.35(13) 5.270(92)

323 × 64 4.07(11) 4.195(100) 5.11(16) 5.21(16) 4.70(14)

0.1538 163 × 32 3.99(13) 4.18(18) 5.33(16) 5.70(14) 5.12(24)

243 × 48 3.77(14) 3.99(14) 5.26(11) 5.20(19) 5.13(14)

323 × 64 3.81(17) 4.01(12) 4.96(16) 5.02(21) 4.34(20)

0.15458 163 × 32 3.88(15) 4.11(20) 5.35(20) 5.82(15) 5.22(37)

243 × 48 3.65(18) 3.89(15) 5.23(15) 5.16(14) 5.09(20)

323 × 64 3.68(23) 3.95(14) 4.86(20) 4.96(26) 4.44(18)

Table 18. SU(3) first excited state meson masses.
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0.15184 163 × 32 4.84(11) 4.67(17) 5.65(17) 5.72(21) 5.51(17)

243 × 48 4.576(58) 4.705(65) 5.507(80) 5.531(82) 5.418(48)

0.154 163 × 32 4.57(13) 4.39(21) 5.35(22) 5.45(27) 5.20(22)

243 × 48 4.263(74) 4.427(82) 5.19(11) 5.14(11) 5.082(66)

0.15559 163 × 32 4.37(16) 4.23(26) 5.08(27) 5.16(31) 4.92(32)

243 × 48 4.07(12) 4.26(10) 4.96(16) 4.82(14) 4.851(94)

0.15635 163 × 32 4.26(20) 4.17(30) 4.93(32) 5.00(36) 4.71(43)

243 × 48 4.02(26) 4.20(12) 4.85(20) 4.64(18) 4.75(12)

Table 19. SU(4) first excited state meson masses.

κ N3
s ×Nt mπ?/

√
σ mρ?/

√
σ ma?1

/
√
σ mb?1

/
√
σ ma?0

/
√
σ

0.15205 163 × 32 4.646(62) 4.795(71) 5.586(89) 5.671(88) 5.36(10)

243 × 48 4.505(47) 4.646(52) 5.471(58) 5.624(67) 5.344(37)

0.15426 163 × 32 4.282(79) 4.484(88) 5.32(17) 5.38(13) 4.91(17)

243 × 48 4.146(63) 4.336(68) 5.155(77) 5.300(90) 4.981(48)

0.15592 163 × 32 4.00(10) 4.28(10) 5.04(12) 5.18(12) 4.41(25)

243 × 48 3.882(90) 4.125(87) 4.96(11) 5.08(12) 4.754(66)

0.15658 163 × 32 3.88(12) 4.20(11) 4.93(15) 5.09(15) 4.10(30)

243 × 48 3.79(13) 4.05(10) 4.89(13) 5.00(15) 4.696(82)

Table 20. SU(5) first excited state meson masses.

κ N3
s ×Nt mπ?/

√
σ mρ?/

√
σ ma?1

/
√
σ mb?1

/
√
σ ma?0

/
√
σ

0.15264 163 × 32 4.494(62) 4.644(72) 5.519(52) 5.674(58) 5.22(16)

243 × 48 4.503(40) 4.634(45) 5.557(48) 5.623(54) 5.396(31)

0.15479 163 × 32 4.131(78) 4.329(91) 5.130(73) 5.291(80) 4.83(24)

243 × 48 4.136(53) 4.298(64) 5.231(68) 5.264(74) 5.028(44)

0.15636 163 × 32 3.90(10) 4.14(12) 4.846(99) 5.00(11) 4.59(12)

243 × 48 3.874(70) 4.059(92) 4.987(98) 5.00(10) 4.759(65)

0.15712 163 × 32 3.82(13) 4.08(14) 4.71(12) 4.85(13) 4.17(28)

243 × 48 3.739(75) 3.94(11) 4.85(13) 4.86(13) 4.633(85)

Table 21. SU(6) first excited state meson masses.
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0.152816 163 × 32 4.588(38) 4.743(40) 5.630(43) 5.701(52) 5.386(50)

243 × 48 4.520(36) 4.666(39) 5.585(46) 5.694(59) 5.435(27)

0.154967 163 × 32 4.181(49) 4.356(53) 5.297(57) 5.431(57) 5.024(63)

243 × 48 4.118(44) 4.315(49) 5.221(69) 5.338(69) 5.075(36)

0.156547 163 × 32 3.928(62) 4.143(64) 5.075(79) 5.190(81) 4.753(92)

243 × 48 3.803(55) 4.061(57) 4.947(83) 5.085(94) 4.839(54)

0.157339 163 × 32 3.814(75) 4.054(72) 4.972(100) 5.07(10) 4.63(12)

243 × 48 3.630(67) 3.937(63) 4.82(10) 4.98(12) 4.761(89)

Table 22. SU(7) first excited state meson masses.

κ N3
s ×Nt mπ?/

√
σ mρ?/

√
σ ma?1

/
√
σ mb?1

/
√
σ ma?0

/
√
σ

0.15298 123 × 24 4.530(48) 4.660(59) 5.56(10) 5.625(85) 5.344(53)

0.15521 123 × 24 4.137(62) 4.292(76) 5.199(64) 5.29(14) 4.949(81)

0.15684 123 × 24 3.865(82) 4.033(88) 4.976(86) 5.07(20) 4.67(12)

0.15755 123 × 24 3.76(10) 3.928(93) 4.90(10) 4.99(25) 4.57(18)

Table 23. SU(17) first excited state meson masses.

State X AX,1 AX,2 BX,1 BX,2

a0 2.402(34) 4.25(62) 2.721(53) -6.84(96)

a1 2.860(21) 0.84(36) 2.289(35) -2.02(61)

b1 2.901(23) 1.07(40) 2.273(38) -2.83(72)

π? 3.392(57) 1.0(1.1) 2.044(80) -1.2(1.6)

ρ? 3.696(54) 0.23(55) 1.782(67) -1.30(54)

a?0 4.356(65) 1.8(1.4) 1.902(98) -2.9(2.1)

a?1 4.587(75) 1.2(1.2) 1.76(12) -2.1(19)

b?1 4.609(99) 1.7(1.5) 1.87(15) -2.5(2.2)

Table 24. Coefficients for the expansion of the particle masses as mX/
√
σ =

(
AX,1 +AX,2/N

2
)

+(
BX,1 +BX,2/N

2
)
mPCAC/

√
σ.

κ N3
s ×Nt F̂ lat

π /
√
σ F̂π/

√
σ f̂ lat

ρ /
√
σ f̂ρ/

√
σ

0.14581 243 × 48 0.4033(62) 0.350(35) 0.900(14) 0.693(70)

0.14827 243 × 48 0.3598(65) 0.313(32) 0.883(15) 0.681(69)

0.15008 243 × 48 0.3159(79) 0.274(28) 0.861(17) 0.664(68)

0.15096 243 × 48 0.291(10) 0.253(27) 0.844(21) 0.650(67)

0.151959 243 × 48 0.275(20) 0.239(30) 0.845(36) 0.651(71)

0.152496 243 × 48 0.24(16) 0.21(14) 0.74(11) 0.57(10)

Table 25. Decay constants for the SU(2) theory.
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κ N3
s ×Nt F̂ lat

π /
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ρ /
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σ

0.15002 243 × 48 0.4132(58) 0.349(35) 0.9402(83) 0.686(69)

0.1522 243 × 48 0.3727(51) 0.315(32) 0.9143(85) 0.667(67)

0.1538 243 × 48 0.3325(64) 0.281(29) 0.8835(91) 0.644(65)

0.15458 243 × 48 0.3083(78) 0.261(27) 0.865(10) 0.631(64)

0.155638 243 × 48 0.2742(78) 0.232(24) 0.849(18) 0.619(63)

0.15613 243 × 48 0.246(14) 0.208(24) 0.893(55) 0.652(77)

Table 26. Decay constants for the SU(3) theory.

κ N3
s ×Nt F̂ lat

π /
√
σ F̂π/

√
σ f̂ lat

ρ /
√
σ f̂ρ/

√
σ

0.15184 243 × 48 0.4305(37) 0.360(36) 0.9807(64) 0.701(70)

0.154 243 × 48 0.3857(39) 0.323(32) 0.9526(67) 0.681(68)

0.15559 243 × 48 0.3417(46) 0.286(29) 0.9206(77) 0.658(66)

0.15635 243 × 48 0.3227(34) 0.270(27) 0.8998(92) 0.643(65)

0.157173 243 × 48 0.2934(49) 0.245(25) 0.870(14) 0.622(63)

0.15764 243 × 48 0.2710(71) 0.227(23) 0.855(25) 0.611(64)

Table 27. Decay constants for the SU(4) theory.

κ N3
s ×Nt F̂ lat

π /
√
σ F̂π/

√
σ f̂ lat

ρ /
√
σ f̂ρ/

√
σ

0.15205 243 × 48 0.4350(31) 0.363(36) 0.9702(50) 0.688(69)

0.15426 243 × 48 0.3909(32) 0.326(33) 0.9372(52) 0.665(67)

0.15592 243 × 48 0.3484(37) 0.290(29) 0.8984(57) 0.637(64)

0.15658 243 × 48 0.3291(42) 0.274(28) 0.8788(65) 0.623(62)

0.157548 243 × 48 0.2951(39) 0.246(25) 0.845(10) 0.600(60)

0.158355 243 × 48 0.269(14) 0.224(25) 0.815(55) 0.578(70)

Table 28. Decay constants for the SU(5) theory.

κ N3
s ×Nt F̂ lat

π /
√
σ F̂π/

√
σ f̂ lat

ρ /
√
σ f̂ρ/

√
σ

0.15264 243 × 48 0.4374(25) 0.364(36) 0.9903(36) 0.698(70)

0.15479 243 × 48 0.3944(26) 0.328(33) 0.9600(35) 0.677(68)

0.15636 243 × 48 0.3536(30) 0.294(30) 0.9248(37) 0.652(65)

0.15712 243 × 48 0.3302(35) 0.275(28) 0.9031(42) 0.637(64)

0.158051 243 × 48 0.2987(34) 0.248(25) 0.8458(95) 0.597(60)

0.158845 243 × 48 0.2676(91) 0.222(24) 0.776(36) 0.548(60)

Table 29. Decay constants for the SU(6) theory.
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κ N3
s ×Nt F̂ lat

π /
√
σ F̂π/

√
σ f̂ lat

ρ /
√
σ f̂ρ/

√
σ

0.152816 243 × 48 0.4386(23) 0.364(36) 0.9918(43) 0.697(70)

0.154967 243 × 48 0.3949(24) 0.328(33) 0.9592(44) 0.675(68)

0.156547 243 × 48 0.3529(27) 0.293(29) 0.9214(48) 0.648(65)

0.157339 243 × 48 0.3273(31) 0.272(27) 0.8961(55) 0.630(63)

0.158273 243 × 48 0.2906(47) 0.241(24) 0.8602(84) 0.605(61)

0.159062 243 × 48 0.249(16) 0.206(25) 0.814(28) 0.573(60)

Table 30. Decay constants for the SU(7) gauge theory.

κ N3
s ×Nt F̂ lat

π /
√
σ F̂π/

√
σ f̂ lat

ρ /
√
σ f̂ρ/

√
σ

0.15298 123 × 24 0.4456(31) 0.369(37) 1.0055(92) 0.704(71)

0.15521 123 × 24 0.4045(35) 0.335(34) 0.986(10) 0.690(69)

0.15684 123 × 24 0.3610(44) 0.299(30) 0.958(11) 0.670(68)

0.15755 123 × 24 0.3379(53) 0.280(28) 0.939(13) 0.657(66)

0.158531 123 × 24 0.307(12) 0.254(27) 0.902(17) 0.631(64)

0.15931 123 × 24 0.296(28) 0.245(34) 0.851(48) 0.595(68)

Table 31. Decay constants for the SU(17) theory.
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