Influx and Efflux of Strigolactones are Actively Regulated and involve the Cell Trafficking System

Marcelo Fridlender, Beatrice Lace, Smadar Wininger, Anandamoy Dam, Puja Kumari, Eduard Belaurov, Hanita Tsemach, Yoram Kapulnik, Cristina Prandi, Hinri Koltai

PII: S1674-2052(15)00269-7
DOI: 10.1016/j.molp.2015.08.013
Reference: MOLP 178

To appear in: MOLECULAR PLANT
Accepted Date: 25 August 2015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

All studies published in MOLECULAR PLANT are embargoed until 3PM ET of the day they are published as corrected proofs on-line. Studies cannot be publicized as accepted manuscripts or uncorrected proofs.

Influx and Efflux of Strigolactones are Actively Regulated and involve the Cell Trafficking System

Dear Editor,

Strigolactones (SLs) are plant hormones that regulate different aspects of plant development. In roots, SLs are involved in the regulation of lateral-root formation and they induce root-hair elongation. They are also exuded from plant roots and act as stimulators of parasitic and symbiotic (e.g., arbuscular mycorrhizae) interactions. SLs are perceived in plants by a specific reception system that consists of several intersecting proteins (reviewed by Al-Babili and Bouwmeester, 2015).

A putative transporter of SLs was previously identified in petunia (Petunia hybrida): the ATP-binding cassette (ABC) protein designated PDR1. It was shown to have a key role in petunia in regulating the development of arbuscular mycorrhizas and axial branches, by functioning as a cellular SL exporter (Kretzschmar et al., 2012). pdr1 mutants were aberrant in symbiotic interactions and shoot phenotype, suggesting impaired SL allocation. In Arabidopsis thaliana overexpressing Petunia axillaris PDR1, tolerance to high concentrations of a synthetic SL was enhanced, suggesting increased export of SLs from the roots (Kretzschmar et al., 2012).

However, only little is known about the movement of SLs, their precursors or their derivatives in general, and in Arabidopsis in particular.

Herein we present new evidence for SL distribution in the plant using fluorescent SL derivatives. Among the different fluorescently tagged SL-like compounds synthesized and tested in our laboratories, fluorescent BODIPY (BP)-tagged SL analogs have the desired bioactivity and spectroscopic properties (Prandi et al., 2014). Also, the SL analog EGO10 sharing the core structure with EGO10-BP, has been shown to act on the root to increase root-hair length (Cohen et al., 2013). Therefore, we synthesized EGO10-BP which is the SL analog EGO10 functionalized with green BP as the fluorophore (Supplemental Figure 1) by means of a 3 C linker. Four different BP derivatives differing in their structure were used: EGO10A-BP (pure enantiomer A), EGO10B-BP (pure enantiomer B), EGO10-nc-BP (SL analog EGO10-BP lacking the D-ring and the enol ether bridge) and naked-BP (fluorophore only). The EGO10-BP serie presents a simplified stereochemistry with respect to natural SLs as only a stereocenter is present at the C-2' position. Using CD spectra and chiral HPLC behaviour (not shown) EGO10A-BP was established to be the
enantiomer with natural SL structures (R configuration), conforming with canonical SLs structure.

Agar cubes containing fluorescent SLs (EGO10A-BP, EGO10B-BP, or EGO10-mD-BP or naked-BP (at 10 µM concentration) were placed on Arabidopsis seedling roots (Supplemental Material and Methods and Supplemental Figure 2). Fluorescent signal was detected in the treated roots after 24 h and quantified (using IMAGER) in 9 segments of 100 µm each (Supplemental Figure 2), shoot-ward or root-ward from the agar cube placement.

The naked-BP treatment resulted in a very high signal in the root tissue (Supplemental Figure 3). The EGO10A-BP signal was significantly higher than that of EGO10B-BP or EGO10-mD-BP, both shoot-ward (Figure 1A) and root-ward (Supplemental Figure 3). Accordingly, EGO10A-BP was the most active analog for root-hair elongation in root segments above the agar cube compared to the other compounds tested (Figure 1B), similarly to the activity of EGO10A (Supplemental Figure 4). Also, placement of agar cube without any SL analog does not significantly change root-hair length in comparison to non-treated control (Supplemental Figure 4). Although shoot-ward signal was slightly higher than that of the root-ward, no significant differences between the two were detected (Supplemental Figure 3).

At the cellular level, EGO10A-BP signal was detected in the root epidermis and to a much lesser extent in root cortex and vascular tissues (Figure 1C). The naked-BP molecule signal was high in all root tissues: it was apparent mostly in the root cortex and vascular tissues, and to a relatively lesser extent in the root epidermis (Figure 1C). At the subcellular level, EGO10A-BP signal was detected in the cytoplasm, in vesicle-like bodies, in endosomal-like structures and in correspondence of nuclei, present to a smaller extent in the nucleus and labelling the nuclear envelope (Figure 1C; additional examples for images in Supplementary Fig 5). Since EGO10A-BP was biologically active (Figure 1B), it might be that the its relatively small extent in the nucleus was sufficient to acknowledge activity. The naked-BP molecule signal was distributed evenly across the cell cytoplasm (Figure 1C) and did not affect root hair elongation (Figure 1B).

Treatment with the fluorescent SLs and Antimycin A, an inhibitor of oxidative ATP production and of the electron flow in the mitochondrial respiratory chain (ATP; 10 µM) in the agar cube resulted in a significant increase in signal in the first two segments of the root (shoot-ward) for EGO10A-BP but not for EGO10B-BP or EGO10-mD-BP (Figure 1A). Only a minor significant difference between means of EGO10-mD-BP and EGO10-mD-BP + ATPi treatments were found in segment 7. A high signal for EGO10A-BP was also detected in uncut roots, in a region under the EGO10A-BP-containing agar cube (Supplemental Figure 6). Moreover, EGO10A-BP was only poorly transported shoot-ward in the EGO10A-BP + ATPi treatment in comparison to the EGO10A-BP-only treatment (slopes of -28.62 and -7.26 measured for the first three segments, respectively; Figure 1A, Supplemental Figure 7). It should be noted, however, that the ATPi effect may be restricted to the first 2 cm root segments, due to the restricted distribution of ATPi, and as a result, slopes are similar between EGO10A-BP-only and EGO10A-BP + ATPi treatments in more distant root segments (Figure 1A). In addition, treatment with ATPi resulted with loss of subcellular compartmentalization (Supplemental Figure 6B).

Next, we examined the possible involvement of the cell trafficking system in SL cellular transport. We treated the roots with brefeldin A (BFA), which leads to the formation of BFA compartments due to its interference with trafficking of certain plasma membrane (PM) proteins in the cell via the trans-Golgi network/early endosome (TGN/EER) and to a retrograde transport of Golgi membrane protein into the endoplasmic reticulum (ER) (Robinson et al., 2008 and references within). Roots were exposed to the agar cubes containing the fluorescent compound for 24 h followed by BFA treatment for 2 h (100 µM) and staining with FM4-64. In this treatment, EGO10A-BP signal was detected in both the BFA and cytoplasmic compartments (Figure 1D). As expected, because trafficking is an active process, no BFA compartments were apparent in the ATPi-treated roots (Figure 1D).

Furthermore, we have localized EGO10A-BP in two lines that express the Golgi marker ST-RFP (Teh and Moore, 2007). Despite BFA treatment in the WT (6-1) line, EGO10A-BP and Golgi (ST-RFP) were localized in separate compartments (Figure 1E). However, in the goll-2 line that is flawed in Golgi integrity (Teh and Moore, 2007), EGO10A-BP and ST-RFP were co-localized following BFA treatment to BFA bodies (in addition to the cytoplasmic EGO10A-BP localization). Following, we have localized EGO10A-BP in WT line that expresses endoplasmic reticulum (ER) marker ck-CFP (Nelson et al., 2007). Following BFA treatment and FM46-4 staining, EGO10A-BP signal was detected in the BFA (and cytoplasmic) compartments, but not co-localized with the ER (Figure 1E). Together, these results suggest that following BFA treatment EGO10A-BP is localized to BFA compartments, but not to...
The accumulation of SLs in the BFA compartment as well as in the cytoplasm suggests that formation of the cell-wall system is due to the redistribution of the ER. Moreover, the results show that EGO10A-BP, a component of the cell wall system, is distributed in the cytoplasm in the form of small vesicles. The distribution of EGO10A-BP is consistent with the findings of other studies, which have shown that the cell wall is formed by the coalescence of small vesicles. The coalescence of these vesicles results in the formation of the cell wall, which is then extruded into the intercellular space. The formation of the cell wall is a complex process that involves the coordination of multiple cellular components. The results of this study suggest that EGO10A-BP plays a crucial role in the formation of the cell wall by facilitating the coalescence of small vesicles. The coalescence of these vesicles results in the formation of the cell wall, which is then extruded into the intercellular space. The formation of the cell wall is a complex process that involves the coordination of multiple cellular components. The results of this study suggest that EGO10A-BP plays a crucial role in the formation of the cell wall by facilitating the coalescence of small vesicles.

References

Figure legends

Figure 1. (A) Signal intensity (arbitrary units) of roots treated with EGO10A-BP, EGO10B-BP or EGO10-mdB-BP, with and without Antimycin A (ATP): 10 μM). Signal was quantified (using IMAGEJ) in 9 shoot-ward segments (100 μm each) from the agar cube used to apply the fluorescent molecules to the root. All experiments were repeated at least three times, two replicates per repeat, a minimum of five seedlings per replicate in each experiment. Means of replicates were subjected to statistical analysis by Student’s t-test (P ≤ 0.05). * indicates statistically significant differences between means of EGO10A-BP (blue) and EGO10B-BP (light blue) or EGO10-mdB-BP (green) treatments. † indicates statistically significant differences between means of EGO10A-BP and EGO10A-BP + ATP; treatments. ‡ indicates statistically significant differences between means of EGO10-mdB-BP and EGO10-mdB-BP + ATP treatments. (B) Root-hair length (μm) in root segments above the agar cubes containing EGO10A-BP, EGO10B-BP, EGO10-mdB-BP or naked-BP. All experiments were repeated at least three times, two replicates per repeat, a minimum of five seedlings per replicate in each experiment. Means of replicates were subjected to statistical analysis by multiple comparison Tukey-Kramer test (P ≤ 0.05). Different letters above the bars indicate statistically significant differences between means. (C) Images of roots treated with EGO10A-BP or naked-BP. Green - EGO10A-BP or Naked-BP signal, Blue staining - DAPI. Yellow arrows denote the epidermis cell layer. Blue, red and white arrows indicate EGO10A-BP staining in endosomies like bodies, cytoplasm and nucleus envelop, respectively. (D) Images of roots treated with EGO10A-BP or EGO10A-BP + ATP followed by brefeldin A (BFA). Red – FM-64 staining; green – EGO10A-BP signal. BFA compartments are indicated by white arrows. Yellow arrows mark EGO10A-BP signal in the cytoplasm. Insert: enlarged BFA body. (E) Images of roots treated with EGO10A-BP followed by brefeldin A (BFA) treatment. In the Golgi marker-expressing lines (WT [6-1] and gat1-2) ST-RFP red – ST-RFP signal; in the endoplasmic reticulum marker expressing line ER-cKCFP (CS16256) red – FM-64 staining; green – EGO10A-BP signal; blue –ER-cK signal. BFA compartments are indicated by white arrows.

Supplemental Figure 1. The molecules used in the present study. The strigolactone (SL) analog EGO10A-BP has a SL analog structure functionalized with green BODIPY (BP) as the fluorophore. EGO10A-BP and EGO10B-BP are pure enantiomers which were separated by chiral HPLC. EGO10-mdB-BP’s structure is the same as the active BODIPY-tagged SL analog EGO10-BP but lacks the D-ring and the enol ether bridge (i.e., bioactivephores). Naked-BP – the BODIPY fluorophore alone.

Supplemental Figure 2. The experimental system. (A) An example of seedlings on plates that were treated with agar cubes containing EGO10A-BP, EGO10B-BP, EGO10-mdB-BP or naked-BP. (B) An example of root segments used for quantification of signal intensity in treated roots, shoot-ward or root-ward from the agar cube.

Supplemental Figure 3. (A) Signal intensity (arbitrary units) in roots treated with EGO10A-BP, EGO10B-BP, EGO10-mdB-BP or naked-BP. Signal was quantified (using IMAGEJ) in the first shoot-ward or root-ward segment (100 μm) from the agar
cube used to apply the fluorescent molecules to the root. (B) Signal intensity (arbitrary units) of roots treated with EGO10A-BP. Signal was quantified (using IMAGEJ) in 10 shoot-ward or root-ward segments (100 μm each) from the agar cube used to apply the fluorescent molecules to the root. All experiments were repeated at least three times, two replicates per repeat, a minimum of five seedlings per replicate in each experiment. Means of replicates were subjected to statistical analysis by multiple comparison Tukey–Kramer test (P ≤ 0.05). Lowercase or capital letters above the bars indicate statistically significant differences between means.

Supplemental Figure 4. Root-hair length (μm) in root segments above the agar cubes only (not containing SL analogs) or containing EGO10A, EGO10B, or EGO10-mD, and non-treated control. Experiment consisted of four replicates per repeat, a minimum of ten seedlings per replicate. Means of replicates were subjected to statistical analysis by multiple comparison Tukey–Kramer test (P ≤ 0.05). Different letters above the bars indicate statistically significant differences between means.

Supplemental Figure 5. Examples to images of roots treated with EGO10A-BP. Green–EGO10A-BP signal, Blue staining–DAPI. White arrows denote EGO10A-BP staining in nucleus.

Supplemental Figure 6. (A) EGO10A-BP signal in root segments that were covered with agar cubes containing EGO10A-BP or EGO10A-BP + Antimycin A (ATPi). Roots were uncut and agar cube was removed to reveal the part of the root below it. (B) Images of roots treated with EGO10A-BP and ATPi. Green–EGO10A-BP; blue–DAPI staining.

Supplemental Figure 7. Linear-regression formula of graph of signal intensity (arbitrary units) in roots treated with EGO10A-BP or EGO10A-BP + Antimycin A (ATPi). Signal was quantified (using IMAGEJ) in the first three shoot-ward segments (100 μm each) from the agar cube used to apply the fluorescent molecules to the root. All experiments were repeated at least three times, two replicates per repeat, a minimum of five seedlings per replicate in each experiment. Means of replicates were subjected to statistical analysis by multiple comparison Tukey–Kramer test (P ≤ 0.05). Capital letters indicate statistically significant differences between means.
of roots treated with EGO10A-BP followed by brefeldin A (BFA) treatment. In the Golgi marker-expressing lines (WT [+] and pm1/2) ST-RFP red – ST-RFP signal, in the endoplasmic reticulum-marker expressing line ER-eGFP (CS16256) red – FM4-64 staining; green – EGO10A-BP signal; blue – eGFP signal. BFA compartments are indicated by white arrows.

Figure 1. (A) Signal intensity (arbitrary units) of roots treated with EGO10A-BP, EGO10B-BP or EGO10-mBP, with and without Antimycin A (ATPase inhibitor), 10 μM. Signal was quantified using ImageJ in 10 shoot-root segments (100 μm each) from the agar cube used to apply the fluorescent molecules to the root. All experiments were repeated at least three times, two replicates per repeat, a minimum of five seedlings per replicate in each experiment. Means of replicates were subjected to statistical analysis by Student's t-test (P < 0.05). * – Statistically significant differences between means of EGO10A-BP (blue) and EGO10BP (light blue) or EGO10-mBP (green) treatments. T – Statistically significant differences between means of EGO10A-BP and EGO10A-BP + ATPi treatments. # – Statistically significant differences between means of EGO10-miBP and EGO10-mBP + ATPi treatments. (B) Root hair length (μm) in root segments above the agar cubes containing EGO10A-BP, EGO10B-BP, EGO10-mBP or naked-BP. All experiments were repeated at least three times, two replicates per repeat, a minimum of five seedlings per replicate in each experiment. Means of replicates were subjected to statistical analysis by multiple comparison Tukey–Kramer test (P < 0.05). Different letters above the bars indicate statistically significant differences between means. (C) Images of roots treated with EGO10A-BP or EGO10-mBP. Green – EGO10A-BP or Naked-BP signal; blue staining: DAPI. Yellow arrows denote the epidermis cell layer. Blue, red and white arrows indicate EGO10A-BP staining in endomeres like bodies, cytoplasts and nucleus envelope, respectively. (D) Images of roots treated with EGO10A-BP or EGO10A-BP + ATPi followed by brefeldin A (BFA). Red – FM4-64 staining; green – EGO10A-BP signal; BFA compartments are indicated by white arrows. Yellow arrows mark EGO10A-BP signal in the cytoplasm. Insert: enlarged BFA body. (E) Images