Heat capacity of hydrous trachybasalt from Mt Etna: comparison with CaAl2Si2O8 (An)–CaMgSi2O6 (Di) as basaltic proxy compositions

This is a pre print version of the following article:

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1544274 since 2017-05-12T17:32:55Z

Published version:
DOI:10.1007/s00410-015-1196-6

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
Abstract:

The specific heat capacity (Cp) of six variably-hydrated (∼ 3.5 wt% H2O) iron-bearing Etna trachybasaltic glasses and liquids has been measured using differential scanning calorimetry from room temperature across the glass transition region. These data are compared to heat capacity measurements on thirteen melt compositions in the iron-free anorthite (An) - diopside (Di) system over a similar range of H2O contents. These data extend considerably the published Cp measurements for hydrous melts and glasses. The results for the Etna trachybasalts show non-linear variations in, both, the heat capacity of the glass at the onset of the glass transition (i.e. Cpg) and the fully relaxed liquid (i.e. Cpl) with increasing H2O content. Similarly, the "configurational heat capacity" (i.e. Cpc = Cpl - Cpg) varies non-linearly with H2O content. The An-Di hydrous compositions investigated show similar trends, with Cp values varying as a function of melt composition and H2O content. The results show that values in hydrous Cpg, Cpl and Cpc in the depolymerized glasses and liquids are substantially different from those observed for more polymerized hydrous albitic, leucogranitic, trachytic and phonolitic multicomponent compositions previously investigated by Bouhifd et al. (2006). Polymerized melts have lower Cpl, Cpc and higher Cpg with respect to more depolymerized compositions. The covariation between Cp values and the degree of polymerization in glasses and melts is well described in terms of a modified SMhydrous, and NBO/Thydrous. Values of Cpc increase sharply with increasing depolymerization up to SMhydrous ~30-35 mol % (NBO/Thydrous ~ 0.5) then decrease to an almost constant value. The partial molar heat capacity of H2O for both glasses (CpgH2O) and liquids...
(CplH2O) appears to be independent of composition and, assuming ideal mixing, we obtain a value for CplH2O of 79 J mol-1 K-1. However, we note that a range of values for CplH2O (i.e. ~ 78 - 87 J mol-1 K-1) proposed by previous workers will reproduce the extended data to within experimental uncertainty. Our analysis suggests that more data are required in order to ascribe a compositional dependence (i.e. non-ideal mixing) to CplH2O.

Response to Reviewers:

Reply to comments/suggestions/additions

REVIEWER 1

1. Sample description.

The reviewer is interested in knowing more about the effect of iron species on structure and how this would affect the calculation of SM parameters. Here is a more detailed explanation of the reasons why we considered treating half of the total iron as a network former and other half as a network modifier in order to calculate the SM parameters.

Iron speciation of hydrous samples was not measured in this paper and the assumed role of iron and water species is described in paragraph 3.2 (line 221 - 233 of the original manuscript). Di Muro et al. (2009) showed that basalts demonstrate that the sensitivity of glass structure to changing redox conditions decreases with increasing depolymerization. Mercier et al. (2009, 2010), based on a large number of measurements on various compositions, showed that water (i.e. hydrous melts) has a depolymerizing effect that seems to be independent from that of the other modifying components. Similarly it has been demonstrated by Giordano et al. (2008b) that the role of water on the structure is somehow independent from that of the other cations. However, in rare cases, such as for basaltic compositions it could also slightly increase the polymerization of the structure (Giordano et al., 2009b GCA).

In order to know the exact role of the effective network modifiers and the role of iron species in the network structure further extensive research is required. This is not the objective and beyond the scope of this study. In particular, for hydrous melts this work would require much more than the just accurate measurements of iron partitioning. Even in anhydrous melts the effective partitioning of Fe and the structural role of Fe species is still poorly known (both Fe2+ and Fe3+ can have network former (coordination IV) and network modifier (coordination VI) or intermediate (coordination V) roles depending on the compositions). The role of iron in hydrous melts is even more complicated and has only been discussed in a few papers (e.g., Mercier et al., 2009; 2010 and Di Muro et al., 2009). Mercier et al., (2009; 2010) and Di Muro et al. (2009) use the same basaltic composition as that used here and are based on large sample statistics. They show that our decision of assuming iron as partitioned half as a FeO and half as Fe2O3 is the best choice we can make so far. Based on the data currently available, the SMhydrous parameter is the best estimation that can be made at present. Di Muro et al. (2009) is now referred to in the manuscript where readers can find the evaluation and the significance of the uncertainty of the calculated SM/SMhydrous parameters.

On the basis of what is mentioned above, I believe that the role of iron species on anhydrous and hydrous basaltic glasses would have no significant effect in the structure nor in the calculation of the SM parameter.

2. We have added a small paragraph and two figures (as supporting online material) to describe the procedure used to perform the sensitivity calibration and calculate measurement accuracy.

3. The selected cooling/heating rate that we used for the calculation is, as reported at line 157 of the original manuscript, 10 K/min.

4. We changed it and, in order to be clearer about the role of pressure on the samples synthesized at high pressure, we have re-phrased that part of the paragraph, from line 149 to 158 of the new manuscript version.

5. These are the ways of expressing the same meaning, but we are happy to use the terms suggested by the reviewer. It has been modified throughout.

6. Corrected.

7. Corrected, we have changed it to match the journal style that requires J mol-1 K-1 to
10. The way how both NBO/T and SM parameters are calculated is explained on lines 221-233 of the original manuscript, as following:

Lines 224 to 226 state: "The modified SM parameter, referred to hereafter as SMhydrous, is calculated, in mol%, as the sum of the network modifier oxides plus the amount of dissolved H2O (Giordano et al. 2009; Mercier et al. 2009), without accounting for H2O speciation."

Lines 227 to 232 state: "Both the SMhydrous and NBO/Thydrous are considered to be representative of the degree of polymerization of the hydrous liquids (Mysen, 1988; Giordano et al. 2009) and both of them were calculated assuming, according to Mercier et al. (2009) and Di Muro et al. (2009) that half of the FeOtot (in wt%) partitions as FeO and the other half as Fe2O3, that implies a nearly constant \(\frac{[Fe_2O_3]}{[FeO + Fe_2O_3]} \) mass ratio value of about 0.5."

11. As explained above in reply to point one and discussed by Di Muro et al. (2009) - also referred to in the original manuscript iron speciation is not expected to significantly effect the structure of melts. As a consequence the effect of pressure will be not important. In addition, all samples are thermally re-equilibrated at atmospheric conditions during the first heating state and the pressure and thermal history undergone during hydrothermal syntheses will have even less of an effect.

12. Done.

13. Done.

14. We have added a legend to the figure.

15. Corrected.

16. The answer to this point is given in the response to point 11. We have added the following sentence to the manuscript to make it clearer: "Nonetheless, the heating cycles that each sample has gone will remove the thermal history that the sample experienced during its synthesis, resulting in sample equilibration at conditions similar to atmospheric under argon flow to prevent oxidation."

17. The values of Tgonset and Tgliquid are used in the manuscript were calculated in the most accurate way from the heat capacity data according to the configurational entropy theory. Other papers show the effect of heating/cooling rates on the glass transition temperatures and the specific viscosity values associated with it (e.g. Giordano et al., 2005, 2008b). Taking Tg as the temperature where viscosity is 1012 Pa s is just a comfortable approximation used in industrial science to compare it at the timescale of forming processes (about 100-1000 s) and is used here for convenience as it can be calculated from viscosity measurements. Industry actually defines 1012.2 Pa s viscosity value as the “annealing point”. There are two standard ASTM measurements using fiber elongation and beam bending techniques (ASTM C336 and C1350M).

18. The Tgonset of a glass which was previously cooled at 10K/min through the glass transition temperature region and subsequently heated up at 10K/min will exhibit Tgonset equal to the temperature where viscosity is \(\sim 1012 \) Pa s. This seems to be universal in oxide and silica base glasses.

REVIEWER 2.

Line 148: A column reporting the values of the mass of the samples investigated in this work has been added to Table 1 and the text has been changed accordingly.
Line 154: We have slightly modified the text (lines from 169 to 178) to provide some additional information about the DSC experimental procedure.

Line 157: We have added a small paragraph (lines 179 to 186 in the revised manuscript) to explain how many thermal cycles the samples experienced and how the samples were inspected to check for any potential change/instability due to the thermal treatments.

Line 173: We have added some more details (lines 179-186) described how we checked sample stability after the DSC experiments.

Line 182: We have added a legend to Fig. 2b.
With regard to error bars, we have added the following sentence on lines 156-158: "Based on multiple heating and cooling scans we believe reproducibility to be better than 3%. Therefore error bars for the Cp values of the fully relaxed liquid (Cpl) or Cp values of the glass (Cpg) are smaller than the symbol size used in the figures."
With regard to the number of measurements, yes, the presented data are based on one measurement at matching cooling and heating rates of 10 K/min for each sample. However, each sample experienced multiple thermal cycles (see lines 175-184 for a more detailed description of the measurement procedure) and inspected the samples before and after the DSC experiments.

Line 200: See previous comment and lines 146 - 158.

Lines 230 to 233 and line : We have modified the text and added a reference to Di Muro et al. (2009) who measured the redox state of various glasses (basalts in particular). Please also see comment to reviewer #1 (point 1).

Line 263: Letters were added to each figure in order to identify panels. Thank you for the suggestion.

Line 275: Legend was added for sake of clarity as suggested by the reviewer. Thank you.

Line 282-287 (now 312): The word “minima” was referred to trends observed in Fig. 4B. We have slightly modified the text in order to clarify it.

Lines 323-325 (now line 354-357 and added new text from line 358 - 378): here we have explained (having significantly extended the database of comparison for the heat capacity of hydrous melts compared to the previous work by Bouhifd et al. 2006, 2013) on which statistical parameters (standard deviation and average relative error) we decided to choose a best fit value of 79 J mol-1 K-1 for the partial molar heat capacity of water. We also explain that the difference between our value and the value of 85 J mol-1 K-1 proposed by Bouhifd et al. (2006) is rather insignificant. However, the value of 257 J mol-1 K-1, proposed by Bouhifd et al. 2013 does not reproduce the data as well using all models.

Lines 326 - 343: We have inserted a new paragraph describing the glass transition variation.

Line 464: We replaced steeply with steadily.
Heat capacity of hydrous trachybasalt from Mt Etna: comparison with
CaAl$_2$Si$_2$O$_8$ (An) – CaMgSi$_2$O$_6$ (Di) as basaltic proxy compositions

D. Giordanoa, A.R.L. Nicholsb, M. Potuzakc, D. Di Genovad, C. Romanoe and J.K. Russellf

a Dipartimento di Scienze della Terra, Universita’ degli Studi di Torino, Via Valperga Caluso 35, 10125 Torino, Italia

b Research and Development Center for Ocean Drilling Science, Japan Agency for Marine Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan

c Science and Technology Division, Corning Incorporated, Corning, 14831 NY, USA

d Department for Earth and Environmental Sciences, University of Munich, Theresienstraße 41/III, 80333 Munich, Germany

e Dipartimento di Scienze, Università degli Studi Roma Tre, L.go San Leonardo Murialdo 1, 00146 Rome, Italia

f Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4

Corresponding author details

phone: +39 011 670 5110
fax: +39 011 670 5128
e-mail: daniele.giordano@unito.it

Keywords: specific heat, Etna trachybasalt, anorthite-diopside, hydrous silicate melts

Submitted to
Contributions to Mineralogy and Petrology
January 20, 2015
Revised September 24, 2015
Abstract

The specific heat capacity (C_p) of six variably-hydrated (~3.5 wt% H$_2$O) iron-bearing Etna trachybasaltic glasses and liquids has been measured using differential scanning calorimetry from room temperature across the glass transition region. These data are compared to heat capacity measurements on thirteen melt compositions in the iron-free anorthite (An) - diopside (Di) system over a similar range of H$_2$O contents. These data extend considerably the published C_p measurements for hydrous melts and glasses. The results for the Etna trachybasalts show non-linear variations in, both, the heat capacity of the glass at the onset of the glass transition (i.e. C_{pg}^φ) and the fully relaxed liquid (i.e. C_{pl}^φ) with increasing H$_2$O content. Similarly, the “configurational heat capacity” (i.e. $C_p^c = C_{pl}^\varphi - C_{pg}^\varphi$) varies non-linearly with H$_2$O content. The An-Di hydrous compositions investigated show similar trends, with C_p values varying as a function of melt composition and H$_2$O content. The results show that values in hydrous C_{pg}^φ, C_{pl}^φ and C_p^c in the depolymerized glasses and liquids are substantially different from those observed for more polymerized hydrous albitic, leucogranitic, trachytic and phonolitic multicomponent compositions previously investigated by Bouhifd et al. (2006). Polymerized melts have lower C_{pl}^φ, C_p^c and higher C_{pg}^φ with respect to more depolymerized compositions. The covariation between C_p values and the degree of polymerization in glasses and melts is well described in terms of a modified $SM_{hydrous}$ and $NBO/T_{hydrous}$. Values of C_p^c increase sharply with increasing depolymerization up to $SM_{hydrous}$ ~30-35 mol % ($NBO/T_{hydrous} ~ 0.5$) then decrease to an almost constant value.

The partial molar heat capacity of H$_2$O for both glasses (C_{pl}^φH$_2$O) and liquids (C_{pl}^φH$_2$O) appears to be independent of composition and, assuming ideal mixing, we obtain a value for C_{pl}^φH$_2$O of 79 J mol$^{-1}$ K$^{-1}$. However, we note that a range of values for C_{pl}^φH$_2$O (i.e. ~78 - 87 J mol$^{-1}$ K$^{-1}$) proposed by previous workers will reproduce the extended data to within experimental uncertainty. Our analysis suggests that more data are required in order to ascribe a compositional dependence (i.e. non-ideal mixing) to C_{pl}^φH$_2$O.
1. Introduction

The thermophysical properties of silicate melts are of fundamental importance for the characterization of the dynamics and energetics of silicate melts on Earth. Heat capacity is one such property and the isobaric heat capacities of silicate glasses and liquids are important for thermal modelling of magmatic and volcanic processes (i.e., mingling and mixing, partial melting and solidification, advection of heat, degassing) (e.g. Burnham and Davis, 1974; Clemens and Navrotsky 1987; Russell 1990; Sahagian and Proussevich 1996; Perugini and Poli 2005), to the energy budgets of volcanic eruptions (e.g. Pyle 1995), and for constraining phase equilibria models (Sack and Ghiorso 1989; Ghiorso and Sack 1995). Perhaps more importantly, they provide an important linkage between macroscopic thermochemical properties of melts and their corresponding structural and transport properties (e.g. Richet and Bottinga 1995; Giordano et al. 2009; Chevrel et al. 2013).

Several studies have investigated the specific heat capacity (C_p) of anhydrous (i.e. H$_2$O <500 ppm) melts (e.g., Navrotsky, 1995; Toplis et al. 2001). However, given the inherent difficulties in conducting equivalent experiments on hydrous melts, only a few studies (i.e. Giordano et al. 2005, 2008a; Bouhifd et al. 2006; 2013, Di Genova et al. 2014) have measured the calorimetric properties of hydrous multicomponent melts to date. Previous calorimetric measurements (Clemens and Navrotsky; 1987) and thermodynamic modeling (Burnham and Davis, 1974) of the albite-H$_2$O system estimated the partial molar heat capacity of dissolved H$_2$O in silicate liquids ($C'_{p,H2O}$) at between 78 and 87 J mol$^{-1}$ K$^{-1}$.

All previous studies investigated iron-free multicomponent hydrous silicates and established that the contribution of H$_2$O to the C_p of silicate glasses is small, temperature dependent, and largely independent of composition. Bouhifd et al. (2006) investigated hydrous, silica-rich, polymerized melt compositions, including phonolite, trachyte, leucogranite and albite, and reported $C'_{p,H2O}$ as independent of melt composition and to have a value for 85 J mol$^{-1}$ K$^{-1}$. In contrast, a more recent paper by Bouhifd et al. (2013) investigating silica-poor, hydrous, depolymerized compositions (i.e.,...
tephritic and foiditic) reported a value for $C_p^{H_2O}$ of H$_2$O of 237+/−40 J mol$^{-1}$ K$^{-1}$. The authors ascribed this difference in estimated values to a strong compositional dependence of the partial molar heat capacity of H$_2$O. The contradiction between the Bouhifd studies and the previous studies (Burnham and Davis, 1974; Clemens and Navrotsky, 1987) highlights the need for further investigations to establish what role H$_2$O plays in determining the C_p of multicomponent hydrous liquids and glasses and how this can be parameterized and modeled.

Here we have investigated the heat capacities of hydrous glasses and liquids of a natural trachybasalt from Etna and of liquids along the An-Di join. The viscosities and glass transition temperatures for these melts were previously measured by Giordano and Dingwell (2003) and Giordano et al. (2005, 2008), respectively. The compositions investigated here were chosen for three main reasons. The composition of the Etna trachybasalt represents one of the most common natural volcanic rock compositions on Earth. It is iron-bearing and H$_2$O-bearing and has glass-forming ability easily detectable by differential scanning calorimetry (DSC) (e.g. Giordano et al. 2005; Potuzak et al. 2009). Secondly, the An-Di-H$_2$O system is of general interest to geochemists as well as to petrologists because it serves as a simple analogue for basaltic compositions (e.g., Bowen, 1915; Kushiro, 1973; Weill et al. 1980; Navrotsky et al. 1980). In this study we test the degree to which An-Di liquids are good analogues for basalts by comparing the measured calorimetric properties of hydrous trachybasaltic glasses and liquids with those in the An-Di-H$_2$O system. Thirdly, the wide range of compositions investigated here allows us to explore other thermochemical properties of hydrous silicate melts. We finally combined these measurements with the corresponding viscosity datasets in order to model the configurational entropies at the glass transition and establish the correlation between transport and thermochemical properties according to the Adam and Gibbs theory of configurational entropy.

2. Experimental methods

2.1. Sample description
The methods used to synthesize the samples and characterize their compositions and H₂O contents are well established in the literature (e.g., Giordano and Dingwell, 2003; Giordano et al. 2005; 2008) and, thus, only briefly summarized here. The starting materials for the hydrous melts in the An-Di system belong to a selection of dry glasses used by Knoche et al. (1993) and have the following compositions: An₁₀Di₉₀, An₄₂Di₅₈, An₉₀Di₁₀ and An₁₀₀ (Giordano et al. 2008). The starting material for the Etna trachybasalt is from Giordano and Dingwell (2003). H₂O-bearing samples, containing up to ~ 3.5 wt% H₂O were synthesized using an internally heated pressure vessel at the IMH (Institute of Mineralogy, University of Hannover, Germany) and the piston cylinder apparatus available at the BGI (Bavarian Geoinstitute, University of Bayreuth, Germany). The run products consisted of crystal-free, translucent glasses with no visible bubbles.

After high pressure syntheses, the samples were cut into 0.3 to 1 mm thick disks and doubly polished in preparation for calorimetry measurements. Compositions are reported in previous works from Giordano et al. (2005, 2008) and calculated compositional parameters for the investigated samples are reported in Table 1. Prior to the calorimetry measurements, the distribution, homogeneity and absolute H₂O content of the disks were measured using FTIR spectroscopy and Karl-Fisher Titration (KFT), the latter following the method described by Behrens et al. (1996). The measured H₂O contents are reported in Table 1 together with their associated uncertainties (corrected for 0.17 wt% unextracted H₂O; cf. Behrens et al. 1996).

2.2. Calorimetric heat capacity measurements of glasses and liquids

Calorimetry measurements were performed using a differential scanning calorimeter (NETZSCH® DSC 404 Pegasus) at the Department of Earth and Environmental Sciences, University of Munich, Germany, under high purity argon gas to prevent oxidation of iron. The thermocouples of the DSC were calibrated using the transformation temperatures of the standard salts, RbNO₃, KClO₄, CsCl and K₂CrO₄. The sensitivity of the DSC was calibrated using a single sapphire crystal standard. A baseline heat flow was established by measuring the calorimetric
response of two empty Pt/Rh crucibles in order to be able to calculate C_p. Then the heat flow of a single sapphire crystal, placed in one of the crucibles, against the empty crucible was measured. The DSC was calibrated at standard heating rate of 10 K/min with the sapphire disk cut from single crystal sapphire perpendicular to the crystalline c-axis. Both upper and lower flat surfaces were polished in order to achieve an excellent contact and heat transfer between the platinum crucible and the sapphire disk placed flat on the bottom of the crucible. A comparison between the multiple calibration runs performed by using our calorimeter are reported in Fig A (supporting material online) compared with the ASTM E1269-5 reference standard. This figure shows that there was an excellent agreement between the reference C_p data and our own measurements performed up to 1261 K (Fig A, supporting online material). The accuracy of the experiments was calculated to be within +/- 1% (Fig. B, supporting online material). Based on multiple heating and cooling scans we believe reproducibility to be better than 3%. Therefore error bars for the C_p values of the fully relaxed liquid (C_p^l) or C_p values of the glass (C_p^g) are smaller than the symbol size used in the figures.

Finally, the heat flow of a doubly polished glass sample disk (or portion of a disk), placed in one of the crucibles, was measured against the empty crucible. The masses of the sapphire standards used in the experiments were 27.77 or 55.90 mg; the mass of the sample analysed was as close to this as possible. Commonly the masses of the samples were matching the mass of sapphire standard, used as a calibration material for C_p, within the $\pm 15\%$. In the case of sample 802 only, due to the scarcity of available material, the mass was half that of the standard. We decided to keep the data related to this sample because it agrees with the overall pattern exhibited by the other Etna samples measured here and in Di Genova et al (2014). Heating across the glass transition into the supercooled liquid region started at 40 °C and was conducted cooling/heating at 1 atm under high purity argon gas to prevent oxidation of iron (Giordano et al. 2005, 2008). In order to allow complete structural relaxation, samples were initially heated above the glass transition temperature into the supercooled liquid field (Fig. 1) where the sample relaxed removing any memory of its
thermal and high pressure history obtained during experimental synthesis (Giordano et al. 2008a).

This initial heating was conducted at 20 K/min (for the Etna samples) and 10 K/min (for the An-Di samples). Then the sample was cooled to 40 °C at 20 K/min before being heated above the glass transition temperature again at a matching heating rate. This cooling and heating cycle was repeated three more times at matching cooling and subsequent heating rates of 15, 10, 5 K/min. The time spent above the glass transition temperature during each thermal cycle was kept at a minimum (on the order of 100 s) in order to prevent H2O exsolution. After the measurements were completed for each sample, the sample was removed from the DSC at room temperature and thoroughly inspected via optical microscopy for a) clarity b) formation of defects, such as bubbles, crystalline phases and microscopic phase separations. Additionally the dissolved water content of the sample that had undergone the DSC experiments was measured by FTIR and compared with the original sample. Here we only report data from those samples that did not exhibit any changes after having undergone the four thermal cycles during the DSC measurements. The Cp values for the glass and liquid were determined based on the measurements conducted during heating at 10 K/min after cooling at the same rate.

Figure 1 shows the variation of Cp as a function of temperature for one of the investigated samples cooling/heating during heating at 10 K/min after cooling at 10 K/min. The Cp of the glass (Cp^g) at the temperature of the onset of the glass transition (T_g^onset) is calculated by fitting a Maier–Kelley (MK) equation (Cp^g = a+bT+c/T^2+d*T^0.5; where T is the absolute temperature and a, b, c, d are adjustable parameters, Maier–Kelley, 1932) to the part of the Cp-curves preceding the onset of the glass transition (<T_g^onset). The parameters used in the MK equation for each of the investigated samples are provided in Table 1. The MK curve is extrapolated to T_g^onset, which is defined as the temperature at which the extrapolated Cp^g intersects the extrapolated rapid increase in Cp associated with the glass transition, as described by Moynihan (1995). Cp^l is defined as the Cp of the fully relaxed liquid at the temperature of the stable liquid (T_g^liquid) in the heat capacity curve, and the “configurational heat capacity”, Cp^c, is defined as the difference between Cp^l and the Cp^g.
Values of $T_{g\text{onset}}$ and $T_{g\text{liquid}}$ for the Etna trachybasalts and for the An-Di samples are reported in Table 1. Values at $T_{g\text{onset}}$ (Giordano et al. 2005; Giordano et al. 2008) and $T_{g\text{liquid}}$ (this study) were used to calculate $C_{p\text{g}}$ and $C_{p\text{l}}$ according to the model of Richet (1987) and Richet and Bottinga (1985), which assumes that the partial molar heat capacities of Al$_2$O$_3$ and TiO$_2$ depend on temperature.

3. Results

3.1. Effects of H$_2$O on the C_p of Etna and An-Di glasses and liquids

The measured $C_{p\text{g}}$, $C_{p\text{l}}$ and $C_{p\text{c}}$ values are reported in Table 1 and their variations as a function of composition are discussed below.

3.1.1. Specific heat capacity of hydrous glasses ($C_{p\text{g}}$)

For all compositions investigated, increased H$_2$O content causes a small decrease in $C_{p\text{g}}$ (Fig. 2) defining a slight curving upwards trend. Fig. 2a shows that the $C_{p\text{g}}$ of the Etna trachybasalts (dashed curve and empty triangles) has only a minor decrease (\sim 7 %), from about 75.8 to 70.5 J mol$^{-1}$ K$^{-1}$ for H$_2$O content up to 2.31 wt% (6.92 mol%). Further addition of H$_2$O up to 3.46 wt% (11.39 mol%) produces a slight increase in $C_{p\text{g}}$ to 71.5 J mol$^{-1}$ K$^{-1}$. Sample An$_{10}$ also exhibits a slight increase in $C_{p\text{g}}$, from 59.9 to 61.4 J mol$^{-1}$ K$^{-1}$, upon addition of H$_2$O from 1.75 to 2.58 wt% (5.26 to 7.62 mol%) (Fig. 2b). All other samples along the Di-An join show a small but systematic decrease in $C_{p\text{g}}$ with H$_2$O. In general (Fig. 2b), the glasses of the An-Di system show parallel patterns that mimic that followed by Etna trachybasalt (dashed curves). The absolute values of $C_{p\text{g}}$ are very similar for An$_{100}$, An$_{90}$ and Etna (dashed curve) whereas they decrease slightly but systematically for An$_{42}$ and An$_{10}$ compositions. For instance, at 5 mol% H$_2$O, $C_{p\text{g}}$ of An$_{100}$, An$_{90}$, Etna, An$_{42}$, An$_{10}$ are calculated to be \sim 77, 74, 72, 66 and 60 J mol$^{-1}$ K$^{-1}$, respectively (see Table 1 for C_p values). The dissolution of H$_2$O produces proportionally significantly different results in the $C_{p\text{g}}$ for the samples investigated (Table 1). The maximum decrease of $C_{p\text{g}}$ observed for Etna trachybasalt, An$_{10}$ and An$_{42}$
are 5, 10, and 10 J mol\(^{-1}\) K\(^{-1}\), corresponding to 7%, 12%, and 14% reductions in the initial anhydrous values, are due to the addition 11.4, 10.3 and 8.5 mol% H\(_2\)O, respectively.

3.1.2. Specific heat capacity of hydrous liquids (\(C_p^l\)) and the configurational heat capacity (\(C_p^c\))

The variation of \(C_p^l\) with H\(_2\)O content in the Etna trachybasalt shows a smooth curving downward pattern. Opposite to the pattern observed for \(C_p^g\), \(C_p^l\) decreases only slightly (from 97.9 to 96.3) up to 2.31 wt% (7.82 mol%) H\(_2\)O, then shows a steeper decrease (from 96.3 to 92.4) from 2.31 to 3.46 (11.39 mol%) wt% H\(_2\)O. Small effects (up to a maximum of ~ 8% for An\(_{100}\)) are also observed for samples in the An-Di system. The effect of dissolved H\(_2\)O on the \(C_p^l\) values for the An-Di system shows similar relationships to those observed for \(C_p^g\), with An\(_{100}\) and An\(_{90}\) having similar to slightly higher \(C_p^l\) values with respect to the Etna trachybasalt \(C_p^l\) values at the same H\(_2\)O content, while the values for An\(_{42}\) and An\(_{10}\) at the same H\(_2\)O content are systematically lower (Table 1). For all investigated samples, the initial dissolution of H\(_2\)O in the anhydrous melt compositions produces an increase in the \(C_p^c\) values. Moreover \(C_p^c\) for the Etna trachybasalt shows a concave trend as a function of H\(_2\)O (Fig. 2). This trend is determined by a progressive increase of \(C_p^c\) from 21.6 up to 25.8 J mol\(^{-1}\) K\(^{-1}\), due to the addition of 2.31 wt% H\(_2\)O, followed by a sharp decrease to 20.9 J mol\(^{-1}\) K\(^{-1}\) as H\(_2\)O content further increases up to 3.46 wt%. This decrease is visible only for the Etna trachybasalt, maybe due to the greater amount of H\(_2\)O dissolved in this liquid compared to the other samples analyzed. An\(_{100}\) contains almost the same amount of H\(_2\)O as the Etna samples. In detail, the maximum variation in \(C_p^c\) due to the addition of H\(_2\)O is different for each dataset, from ~ +40% for the An\(_{10}\) sample; +/-20% for Etna and ~ +13% for An\(_{42}\). Given the limited number of data available, the \(C_p^c\) variations for An\(_{100}\) and An\(_{90}\) are more difficult to evaluate as these datasets consist of only two points (Table 1).

3.2. \(C_p\) variations of hydrous melts and glasses with composition (\(SM_{hydrous}, NBO/T_{hydrous}\))
In order to evaluate the effect of structure on the \(C_p\) of the investigated systems, we calculated, for both dry and hydrous compositions, the structure modifier (\(SM\); Giordano et al. 2009) and the non-bridging oxygen over tetrahedra (\(NBO/T\)) parameters, assuming H\(2\)O as a network modifier. The modified \(SM\) parameter, referred to hereafter as \(SM_{hydrous}\), is calculated, in mol\%, as the sum of the network modifier oxides plus the amount of dissolved H\(2\)O (Giordano et al. 2009; Mercier et al. 2009), without accounting for H\(2\)O speciation. The modified \(NBO/T\) parameter, \(NB_{O/T}\), are considered to be representative of the degree of polymerization of the hydrous liquids (Mysen, 1988; Giordano et al. 2009). In our calculation, iron was partitioned following the principles of Mercier et al. (2009), who assumed an average iron oxidation state ratio of 0.5 for dry samples quenched in air. For the hydrous samples synthesized in pressure vessels the iron oxidation state was not directly determined, and we arbitrarily chose the same average iron oxidation state ratio of 0.5. The latter value is realistic and fits with the average iron oxidation state of most of the synthesized anhydrous glasses (Di Muro et al., 2009).

Figure 3 illustrates how \(C_p^g\), \(C_p^l\), and \(C_p^c\) vary as a function of these parameters, in a compositional regime encompassing more polymerized to more depolymerized glasses/liquids. By observing the heat capacity variation in the different compositional domains of Fig. 3 (\(SM_{hydrous}\), \(NBO/T_{hydrous}\)), the trends of Fig. 2 are more evident. In particular, \(C_p^l\) and \(C_p^g\) decrease smoothly as a function of \(SM_{hydrous}\) and \(NBO/T_{hydrous}\), with values decreasing from \(An_{100}\) (\(SM_{hydrous} = 26.1; NBO/T_{hydrous} = 0.04\)) to \(An_{90}\) (\(SM_{hydrous} = 31.5; NBO/T_{hydrous} = 0.25\)); Etna trachybasalt (\(SM_{hydrous} = 33; NBO/T_{hydrous} = 0.47\)); \(An_{42}\) (\(SM_{hydrous} = 39.5; NBO/T_{hydrous} = 0.83\)) and \(An_{10}\) (\(SM_{hydrous} = 45.3; NBO/T_{hydrous} = 1.50\)). Sample \(An_{10}\) is somewhat anomalous as it shows a slight increase (~2.5% of the measured value) of \(C_p^l\) and \(C_p^g\), as already shown in Fig. 2b. \(C_p^c\), on the other hand, shows a slight increase with increasing the degree of depolymerization. These trends suggest that, for the samples investigated here, \(C_p^g\), \(C_p^l\) and \(C_p^c\) can be, to a first approximation, described in terms as a function of \(SM_{hydrous}\), \(NBO/T_{hydrous}\).
Variations in C_p^l and C_p^g as a function of these compositional parameters define relative minima at $SM_{hydrous} \sim 45$ mol%, $NBO/T_{hydrous} \sim 1.2$; a minimum is not observed in the variation of C_p^c. In order to interpret and rationalize this behaviour, we have expanded our analysis (Fig. 4) to include other published data for more polymerized and depolymerized hydrous melt compositions (Bouhifd et al. 2006; Bouhifd et al. 2013). Data from Di Genova et al (2014) for the Etna trachybasalt agree well with our measurements (see Table 2) and are plotted in Fig. 4 with the same symbols (but smaller size) as our data for Etna.

4. Discussion

4.1. Heat capacity of glasses and liquids

4.1.1. Comparison with previous data

Our data on hydrous iron-bearing natural trachybasalt and synthetic An-Di compositions are compared with measurements on iron-free and iron-bearing compositions that are both more polymerized (i.e., albite, phonolite, trachyte, pantellerite) (Bouhifd et al. 2006, Di Genova et al. 2014) and less polymerized (i.e., tephrite, basalt, latite, foidite) (Bouhifd et al. 2013, Di Genova et al. 2014).

Figure 4 shows how C_p^g, C_p^l and C_p^c vary as a function of H$_2$O (panel A) and the $SM_{hydrous}$ parameter (panel B). Largely, it appears that polymerized melts have higher C_p^g values and lower C_p^l and C_p^c than the Etna trachybasalts and the other more depolymerized multicomponent melts. An increase in the $SM_{hydrous}$ parameter causes the C_p^c of polymerized and depolymerized melts to increase, although its effect on depolymerized melts is significantly smaller. In general, it appears that C_p^c increases up to $SM_{hydrous}$ of about 30 – 35 mol%, whereas any further increase in $SM_{hydrous}$ affects C_p^c to a smaller extent. The depolymerized tephritic and foiditic samples measured by Bouhifd et al. (2013) have, apart from the samples with the highest H$_2$O contents (Teph 2.2, NIQ 1.8), C_p^c values similar to those measured for the Etna trachybasalt and An-Di compositions (Table
On the contrary, \(C_p^g \), \(C_p^l \) of tephritic compositions (Teph, NIQ), and similarly sample An\(_{10}\), show a marked departure from the trends observed for the Etna trachybasalt. On the other hand, the pattern followed by \(C_p^c \) for these samples, although a bit steeper, appears to follow the overall path followed by the other compositions. Fig. 4A shows more clearly the effect of H\(_2\)O has on the \(C_p \) data of more depolymerized compositions (Teph, NIQ) measured by Bouhifd et al (2013) compared to the Etna trachybasalt. It shows that, apart from the \(C_p^l \) of sample Teph 2.2, the overall effect of H\(_2\)O on \(C_p^l \) of these depolymerized compositions is similar to, and substantially follows the same paths, as those of the Etna trachybasalt, although the \(C_p^l \) of these samples has only been measured at low H\(_2\)O contents. It is important to note that the trend of \(C_p^l \) for the FR latite sample (Di Genova et al. 2014) apparently shows a deviation from the overall trend.

The relative minima observed in Fig 4b for \(C_p^l \) and \(C_p^g \) generated by fitting the hydrous An-Di compositions persist even after adding the data from Bouhifd et al. (2013) and Di Genova et al. (2014). The reason for the minima are unclear; they could really represent a local minimum with underlying structural reasons, but they could also be a result of peculiar behaviour of the simplified hydrous An-Di compositions, fitting limitations, or an artifact of expressing composition in terms of \(SM_{hydrous} \), \(NBO/T_{hydrous} \) and the molar mass parameters.

4.1.2. Partial molar heat capacity of H\(_2\)O of silicate glasses (\(C_p^g_{H2O} \)) and liquids (\(C_p^l_{H2O} \))

We have compared our results with previous models for anhydrous glasses (Richet, 1987) and for anhydrous liquids (Richet and Bottinga, 1985; Lange and Navrotsky, 1992; Stebbins et al. 1984). We have modified these models to account for the effects of H\(_2\)O (using the partial molar heat capacity of H\(_2\)O in silicate glasses, \(C_p^g_{H2O} \), and liquids, \(C_p^l_{H2O} \)) using the approach of Bouhifd et al. (2006; 2013) and Di Genova et al. (2014).

In general, the Richet (1987) model shows that the heat capacity of the glasses can be predicted by the following additive function of composition:

\[
C_p^g = \sum x_i C_p^g(T) \tag{1}
\]
where \(x_i \) is the mole fraction of oxide and \(C_p^g_i \) is the partial molar heat capacity of oxide \(i \) in the glass which depends on temperature (Richet, 1987).

Measured and calculated \(C_p^g \) for anhydrous and hydrous glasses are within error of the values expected using the model. Given the fact that the Richet (1987) glass model is calibrated on a database significantly larger than that of our study, we assume that it provides the most accurate estimates of \(C_p^g \) for anhydrous glasses available so far. For hydrous glasses we assume that the temperature dependence of \(C_p^{H_2O} \) is well represented by the equation obtained by Bouhifd et al. (2006), which assumes it is independent of composition.

The \(C_p^l \) measured here and in the previous work by Bouhifd et al. (2006; 2013) for hydrous compositions have been compared with predictions made using the models for anhydrous compositions from Stebbins et al. (1984), Richet and Bottinga (1985), implemented for the temperature dependent partial molar heat capacity of \(Al_2O_3 \) as obtained by Courtial and Richet (1993), and Lange and Navrotsky (1992). In the subsequent discussion these models will be referred to as S’84, RBC’85,93 and LN’92, respectively. We have also compared the measured \(C_p^l \) with those predicted using \(C_p^{H_2O} \) obtained by Bouhifd et al. (2006; 2013) combined with the above mentioned S’84, RBC’85,93 and LN’92 models. In our calculation, iron was partitioned following the principles of Mercier et al. (2009), who assumed an average iron oxidation state ratio of 0.5 for dry samples quenched in air. For the hydrous samples synthesized in pressure vessels the iron oxidation state was not directly determined, and we arbitrarily chose the same average iron oxidation state ratio of 0.5. Nonetheless, the heating cycles that each sample has gone will remove the thermal history that the sample experienced during its synthesis, resulting in sample equilibration at pressure conditions similar to atmospheric under argon flow to prevent oxidation.

Table 1 shows the predicted \(C_p^l \) values using the S’84, RBC’85,93 and LN’92 models. The calculations were performed using the \(C_p^{H_2O} \) of 85 J mol\(^{-1}\) K\(^{-1}\), proposed by Bouhifd et al. (2006), the \(C_p^{H_2O} \) of 237 J mol\(^{-1}\) K\(^{-1}\) estimated by Bouhifd et al. (2013) and the \(C_p^{H_2O} \) of 41 J mol\(^{-1}\) K\(^{-1}\) estimated by Di Genova et al. (2014).
Our parameterization based on the data compiled here (Table 1) and based on the minimization of standard deviation and relative errors suggests an optimal value for C_{pH2O} of 79 J mol$^{-1}$ K$^{-1}$. This value is in close agreement with the early studies of Burnham and Davis (1974) and Clemens and Navrotsky (1987) and provides a better fit to the data than other values (e.g., Table 1).

In particular, the C_{pH2O} of 79 J mol$^{-1}$K$^{-1}$ reduces the deviation from model calculations to 1.6%. T_g^{liquid} used to calculate C_{pH2O} by the RBC’85,93 model are reported in Table 1.

If instead all the data measured in this study and the Bouhifd et al. (2006, 2013) studies are considered, the RBC’85,93 and S’84 models using either the C_{pH2O} defined here (79 J/mol*K) or by Bouhifd et al. (2006) (85 J/mol*K), reproduce the data equally well. Results using both the RBC’85,93 and S’84 models are based on the minimization of the average relative error (3.7%). In particular, the C_p measured in this work are best reproduced by the RBC’85,93 model (to within 1.1% and 1.9% relative error for the Etna trachybasalt and the Anorthite-Diopside join). The largest difference between the measured and predicted values is observed for the Teph 2.2 liquid measured by Bouhifd et al. (2013) (Table 1).

If we consider single datasets, the data obtained in this study are better described by the RBC’85,93 model. On the other hand, this is not true if we include in our analysis the data from Bouhifd et al (2006, 2013). In this case, the phonolitic and trachytic compositions investigated by Bouhifd et al (2006) are better reproduced by the LN ’92 model, whereas the albitic liquid is best reproduced by the S’84 model. Finally, the tephritic and foiditic compositions are better reproduced by the S’84 model. In every case it did not matter whether the C_{pH2O} defined in this study or that defined by Bouhifd et al. (2006) was used.

4.1.3. Relationships between T_g^{onset}, T_g^{liquid} and T_g^{12}

Figure 5A compares T_g^{onset} with T_g^{liquid} and includes data presented here and from Giordano et al. (2005; 2008) and Bouhifd et al. (2006; 2013). T_g^{onset} with T_g^{liquid} show a strong positive correlation with a slope of 1 and an intercept value of ~58 K, which represents the average ΔT over which the glass to melt transition is measured. To a first approximation the correlation between
T_g^{onset} and T_g^{liquid} is clearly independent of composition and H_2O content (Giordano et al. 2005, 2008). We have also plotted the calorimetrically measured values of T_g^{onset} against model values of T_g^{12}, the glass transition temperature, as calculated from Adam Gibbs model values at viscosity of 10^{12} Pa s (see § 4.2; Table 2) in Fig. 5B. There is clear agreement (see Appendix) between the calorimetric (observed) and predicted (modeled) glass transition temperatures.

4.2. Configurational contribution

4.2.1. Relationship with the viscosity of silicate melts

The capacity of liquids to adopt different structural configurations as a function of temperature distinguishes them from solids. Indeed, the difference in heat capacity between a glass and the corresponding fully relaxed liquid at the limiting fictive temperature is a direct record of these configurational changes. Classically, it is referred to as the configurational heat capacity C_p^c and there is a corresponding configurational entropy (S^c) (the same as macroscopic entropy) that is functionally dependent on C_p^c (e.g. Richet, 1987; Richet and Bottinga, 1985, 1995 and Toplis et al. 2001). These thermochemical properties (i.e. S^c and C_p^c) reflect the changes in structural state of the melt as it transitions to a glass, and the Adam and Gibbs theory (Adam and Gibbs, 1965) provides a connection to the temperature dependence of melt viscosity by:

\[\log \eta = A_{AG} + B_{AG} / (T S'(T)) \] (2)

The variables include the pre-exponential term A_{AG}, the potential energy barrier hindering the structural rearrangement of the liquid B_{AG}, and the configurational entropy of the liquid at a temperature of interest (S'(T)). The variable S'(T) represents a measure of the number of configurations accessible to the liquid and can be related to the configurational energies at the glass transition temperature (T_g) by the expansion:

\[S'(T) = S'(T_g) + \int_{T_g}^{T} (C_p^c / T) dT \] (3)

We have used the complementary viscosity data available for the melts listed in Table 2 to obtain model estimates of S'(T_g). We mainly follow the work of Richet (1984), Toplis et al. (1997),
Toplis (1998) and Webb (2008), wherein Eq. 1 is fitted to measurements of C_p^c and melt viscosity for the same melt compositions (Giordano et al. 2005, 2008; Whittington et al. 2000, 2001) and the adjustable parameters are A_{AG}, B_{AG} and $S'(T_g)$. A full description of our optimization philosophy and methodology is provided in the Appendix where we remodel a subset of the data analyzed by Toplis et al. (1997). The main and most important difference in our approach is that we assume that A_{AG}, the pre-exponential term in Eq. 1, is a constant for all melts. The variable A, in most conventional equations describing the temperature dependence of melt viscosity, represents the high temperature limits to viscosity. This value has been shown theoretically and empirically to be a constant value for all silicate melts and, thus, independent of composition by Russell et al. (2002; 2003), Russell and Giordano (2005), Giordano and Russell (2007) and Giordano et al. (2008b).

Operationally we combined all datasets ($k=23$) comprising measured values of C_p^c, onset values of T_g, and melt viscosity measurements at four or more temperatures to create a single overdetermined system of non-linear equations ($n=292$). The adjustable parameters included: a single common unknown value of A_{AG} and k values of B_{AG} and $S'(T_g)$, each ($2^k+1 = 47$). We then applied the optimal value of A_{AG} (-3.51) to model the other melt compositions that had fewer than four temperature measurements of viscosity ($k' = 18$; Table 2). Specifically, we fitted Eq. 1 to the data available for individual melt compositions assuming that $A_{AG} = -3.51$ to retrieve optimal values of B_{AG} and $S'(T_g)$ for these melts. This two-pronged modeling strategy put all model parameters on the same platform (e.g., a common value of A for the high temperature viscosity limit) and thereby, avoided problems that arise from using an arbitrary value of A_{AG}, (cf. Toplis et al. 1997; Webb 2008).

The results of our optimization for best fit values of A_{AG}, B_{AG} and $S'(T_g)$ are illustrated in Figure 6A. Our model reproduces the original viscosity data to within measurement error (Fig. 6B). The range of model values of B_{AG} and $S'(T_g)$ for a fixed value of A_{AG} of -3.51 is shown in Fig. 6A; $S'(T_g)$ varies from 9 - 35 J mol$^{-1}$ K$^{-1}$ whilst B_{AG} ranges from 150 - 450 kJ mol$^{-1}$. The two parameters show a very strong positive correlation and part of this is a model-induced covariation (cf.
Appendix A; Russell et al. 2002). However, the range of values in Fig. 6A span a range much larger than the confidence ellipses arising from analytical uncertainties and the functional form of the equation, indicating that A_{AG} and B_{AG} are, in fact, positively correlated properties of these melts.

We have also discriminated the anhydrous (black symbols) from the hydrous (grey) melts and used the size of symbol to indicate the relative H_2O contents. Values of B_{AG} and $S'(T_g)$ for the anhydrous melts are uniformly lower than for the H_2O-bearing melts. However, there is no single systematic pattern in B_{AG} and $S'(T_g)$ values with increasing amounts of H_2O suggesting that the parameters are controlled by both melt composition and H_2O content, although the highest H_2O contents do suggest a decrease in values of B_{AG}.

On the basis of our model optimization we have calculated the derivative transport properties $T_{g_{12}}$ and melt fragility (m). As developed by Toplis et al. (1997), these properties can be computed for each melt from the measured values of C^c_p and the model values of A_{AG}, B_{AG} and $S'(T_g)$:

$$T_{g_{12}} = \frac{B_{AG}}{(12 - A_{AG}) S'(T_g)}$$ \hspace{1cm} (4)

and

$$m = [12 - A_{AG}] \left[1 + \frac{C^c_p}{S'(T_g)} \right]$$ \hspace{1cm} (5)

respectively. The calculated values of $T_{g_{12}}$ and fragility for the suite of 31 anhydrous (black symbols) and hydrous (grey symbols) melts are plotted in Figure 6C. The dataset describes a general trend that echoes the pattern predicted by the Giordano et al. (2008) viscosity model (cf. Fig. 6b in Giordano et al. 2008). The anhydrous melts show a range of fragilities 25-60 and a narrow range of model values of $T_{g_{12}}$ (900-1150 K). The addition of H_2O causes a pronounced decrease in $T_{g_{12}}$ values (600-900K) and has variable effects on melt fragility; although the reduced range of fragilities (20-45) for hydrous melts suggests that dissolved H_2O causes many melts to become more Arrhenian-like and stronger (Giordano et al. 2008b; 2009). These results are partially
corroborated by Di Genova et al. (2014) who noticed that the effect of H₂O on fragility depends on the degree of polymerization of the anhydrous equivalent melt.

The addition of dissolved H₂O, on the order of 3 wt%, causes a marked increase (up to three-fold) in \(B_{AG} \) and \(S'(T_g) \) values for the An-Di and Etna melts, as well as, the more depolymerized compositions of Bouhifd et al (2013). A similar, but significantly less marked increase is observed for the more polymerized melts of Bouhifd et al. (2006). In this case \(B_{AG} \) increases only slightly whilst \(S'(T_g) \) increases to nearly double the anhydrous value.

Figure 7 shows how the ratio \(B_{AG}/S'(T_g) \) varies as a function of H₂O and \(SM_{hydrous} \) and provides a means to explain, according to Eq. 1, the low viscosity of hydrous Etna trachybasalt relative to the An-Di-H₂O system. As H₂O content increases, in fact, the Etna trachybasalt shows the lowest \(B_{AG}/S'(T_g) \) values and consequently the lowest viscosity at the same H₂O (Fig 7A).

Fig. 7B shows how the \(B_{AG}/S'(T_g) \) ratio varies as a function of the \(SM_{hydrous} \) parameter which largely represents the degree of polymerization. In the glass transition interval (where \(S'(T) \approx S'(T_g) \)), the variation of the \(B_{AG}/S'(T_g) \) ratio largely follows (Eq. 1) the path of viscosity variation, meaning that, in that interval, lower \(B_{AG}/S'(T_g) \) values correspond to lower viscosities. Accordingly, Fig. 7 shows the reason that the Etna trachybasalt has a viscosity lower than An-Di melts in the glass transition interval. The figure also suggests that higher \(SM_{hydrous} \) values do not guarantee lower viscosity. An-Di melts, commonly considered highly depolymerized melts, have neither the lowest \(B_{AG}/S'(T_g) \) ratios nor the lowest viscosities.

The key to understanding the differences in behaviour between the multicomponent Etna compositions and the melts in the An-Di system resides in understanding the role of iron in the structure and thermodynamic quantities of natural silicate melts (Chevrel et al. 2013).

4.3. Structural considerations

For both dry and hydrous compositions, the variation in \(C_p^8 \) observed among the different liquids are related to vibrational contributions, directly linked to the cation field strength, of
chemical bonds in the structure (Giordano et al. 2008a, 2009). Therefore intuitively more
depolymerised glasses will have longer and weaker Tetrahedra-Oxygen (TO) bonds associated with
lower values of C_p^c. The trends visible in Fig. 3 and 4 are in perfect agreement with this
consideration.

Trends in C_p^c can be discussed in more detail. In general, C_p^c is defined as the energy needed
to change the structure of a liquid in response to temperature variations across the glass transition
and it is made of a chemical and a topological contribution. The chemical contribution has to do
with mixing of various chemical component in the silicate framework, (Al/Si order disorder, mixing
of cationic sites, Q species equilibria triclusters, ion channeling, bond dangling, coordination state
of network formers, coordination changes of network modifiers, etc. see Stebbins, 2008; Giordano
et al. 2008a), whereas the topological contribution is related to the framework of the silicate
network, therefore the configuration of the oxygen matrix, expressed in terms of TO bonds and
TOT angle distribution.

It has previously been observed (Richet and Bottinga, 1985; Bouhifd et al. 1998; Toplis et al.
2001; Webb, 2008; Di Genova et al., 2014) that C_p^c increases with decreasing SiO$_2$. In general, this
increase is ascribed to a decrease in the overall strength of TO bonds and to a correlated increase of
the TO and TOT distribution (topological contribution to the configurational heat capacity). Second
order variation in the C_p^c, at similar NBO/T_{hydr} or SM_{hydr} values, can be due to different Al/Si
and/or alkali versus alkaline earth ratios.

The results shown in Fig. 4 are consistent with the increase in C_p^c as a function of the degree
doing depolymerisation of the melt that accompanies the decrease in SiO$_2$. The leveling off of C_p^c at
$SM_{hydr} \sim 30-35$ mol% ($NBO/T_{hydr}>0.5$) is more intriguing as it suggests that after a certain
degree of depolymerisation, pertaining approximately to basaltic compositions, further increase in
depolymerisation does not translate into a perceivable increase in the configurational heat capacity
(or decrease in viscosity), as the increase in disorder (chemical or topological) does not have any
appreciable effect on the energetics of an already extremely disordered/depolymerized liquid.
One possibility is that the observed leveling could be driven by stabilizing Al in lower coordination state (i.e., in Al\(^4\)) by alkalis or alkaline earth elements until the peraluminous melts become metaluminous (i.e., charge balanced) and then further in peralkaline or peralkaline-earth field where Al starts to have higher coordination (C\(_N\)) and forming NBO on Si (Si-O-Al).

The introduction of H\(_2\)O in the silicate liquids seems to largely mimic the behavior of the other oxides (Fig 3 and 4). \(C_{p^e}\) seems to steadily increase as a function of H\(_2\)O content for polymerized compositions (\(SM_{hydrous} \sim 30-35\) in Fig. 4), whereas, for more depolymerized liquids (\(SM_{hydrous} > 30-35\)) it tends to level off and not to be affected by the introduction of H\(_2\)O (Fig. 2) or others oxides (Fig. 4). This general trend seems not to include An\(_{10}\) composition and the tephritic and NIQ compositions from Bouhifd (2013), which instead display a small but distinctive increase of \(C_{p^e}\) as H\(_2\)O is introduced into the liquid. In contrast, the Etna compositions display the opposite behavior with a small increase in \(C_{p^e}\) upon introduction of H\(_2\)O. The limited number of calorimetric data for hydrous melts and, in particular, on melts having very high H\(_2\)O contents (e.g., >10 mol %) precludes an unambiguous interpretation of this behavior.

In deriving \(SM_{hydrous}\) and \(NBO/T_{hydrous}\) parameters, we consider total H\(_2\)O to be a network modifier without accounting for water speciation, therefore possibly overestimating the extent of H\(_2\)O in a network modifier role. Speciation of water and the different structural role of molecular versus hydroxyl groups are therefore fundamental to specifically address this issue. Moreover, the presence of H\(_2\)O may influence the oxidation state of iron (Fe\(^{2+}/\)Fe\(^{3+}\)) affecting the calculation of the considered polymerization parameter, which in this case have been set on the basis of the structural considerations provided by Mercier et al. (2009) to Fe\(^{2+}/\)Fe\(^{3+}\) = 0.5.

In summary whereas general trends can be envisaged in both \(C_{p^e}\) and \(C_{p^n}\) as a function of chemical compositions and degree of depolymerization, further data exploring the complexity of natural melts is required in the future to validate and generalize our modeling and interpretation. At present, there are insufficient experimental data to model the effect of iron redox on the heat
capacities of multicomponent silicate melts, so also in this case, further studies will be needed to investigate this aspect more in detail. Finally, our approach is strictly empirical; the chemical components we have chosen have no explicit or independent relationship to the structure or speciation of the silicate melt. We believe that future models may benefit immensely from a calibration based on a component basis that, at least in part, reflects melt speciation.

5. Conclusions.

The results of this investigation show that:

1) the C_p of polymerized and depolymerized compositions are different and can be largely distinguished in terms of compositional parameters accounting for the modifying effect of H$_2$O in the structure (e.g., SM_{hydr} or NBO/T);

2) a compositional dependence of the partial molar heat capacity of H$_2$O for both glasses and liquids has not been observed;

3) we estimate an optimal C_{p,H_2O} of 79 J mol$^{-1}$ K$^{-1}$;

4) our value for C_{p,H_2O} used in conjunction with existing predictive models for anhydrous melts can reproduce measured C_p values for hydrous glasses and liquids to within 3% relative error;

5) the Adam-Gibbs equation fitted to a large dataset comprising the corresponding measurements of melt viscosity constrains the high temperature limits of melt viscosity $10^{-3.5}$ Pa s and provides estimates of B_{AG} and S'_{AG};

6) values of B_{AG} and S'_{AG} strongly reflect the degree of polymerization of the melts and are strongly affected by H$_2$O content of the melt.

It is possible that the absence of a distinct temperature or compositional dependence of C_{p,H_2O} observed in our study could indeed reflect an incomplete sampling of the wide range of chemical composition pertaining to natural systems. Apart from Etna trachybasalt, all the data shown in Fig 4 derive from simplified synthetic systems. It should also be noted that none of the models presented...
here account for the partitioning of H$_2$O species into the silicate liquids or for their possible interactions with the other oxide components. In addition, we have treated iron as a single species (FeO$_{tot}$), whereas silicate melts contain both ferric and ferrous iron and their proportions, which can vary according to temperature, composition and H$_2$O content, and can substantially affect the structure of the melt (Mysen, 1988; Dingwell, 1991), but probably not their physical properties (Chevrel et al. 2013).

Finally, we believe that new models should be recalibrated using measurements obtained on multicomponent anhydrous and hydrous liquids that consider how H$_2$O species partition into the melt structure, how H$_2$O species interact with other oxide components, and the redox state of iron.

Acknowledgments.

The authors would like to knowledg two anonymous reviewers for constructive comments that have led to clarification of the initial manuscript. JKR acknowledges financial support for this research from grants awarded through the NSERC Discovery and Discovery Accelerator Supplements programs.

References

Bowen NL (1915) The crystallization of haplobasaltic, haplodioritic and related magmas Am J Sci 40, 161-185;

Chevrel MO, Giordano D, Potuzak M, Courtial P, Dingwell DB (2013) Physical properties of CaAl2Si2O8 - CaMgSi2O6 - FeO - Fe2O3 melts: Analogues for extra-terrestrial basalt Chem Geol 346, 93 - 105;

Clemens JD, Navrotsky A (1987) Mixing properties of NaAlSi3O8 melt-H2O: new calorimetric data and some geological implications J Geology 95, 173 - 186;

Dingwell DB (1991) Redox viscometry of some Fe-bearing silicate melts Am Mineral 76, 1560–1562;

Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses Am Ceramic Soc J 8:339-355

Giordano D, Potuzak M, Romano C, Dingwell DB, Nowak M (2008a) Viscosity and glass transition temperature of hydrous melts in the system CaAl$_2$Si$_2$O$_8$ - CaMgSi$_2$O$_6$ Chem Geol 256, 203-215;
Knoche R (1993) Temperaturabhängige Eigenschaften silikatischer Schmelzen Untersuchungen in den Systemen Na$_2$O-SiO$_2$ und NaAlSi$_3$O$_8$ - CaAl$_2$Si$_2$O$_8$ - CaMgSi$_2$O$_6$ Dissertation, Universität Bayreuth 186 pp;
Lange RA, Navrotsky A (1992) Mineralogy and Heat capacities of Fe$_2$O$_3$-bearing silicate liquids Contrib Mineral Petrol 110, 311 - 320;
Maier CG, Kelley KK (1932) An equation for the representation of high temperature heat content data J Am Ceramic Soc 54, 3243-3345;
Navrotsky A, Hon R, Weill DF, Henry DJ (1980) Thermochemistry of glasses and liquids in the system CaMgSi$_2$O$_6$ - CaAl$_2$Si$_2$O$_8$ - NaAlSi$_3$O$_8$, SiO$_2$-CaAl$_2$Si$_2$O$_8$-NaAlSi$_3$O$_8$ and SiO$_2$-Al$_2$O$_3$-CaO-Na$_2$O Geochim Cosmochim Acta 44, 1409-1423;

Russell JK, Giordano D (2005) A model for silicate melt viscosity in the System CaMgSi2O6-CaAl2Si2O8-NaAlSi3O8 Geochim Cosmochim Acta 69, 5333-5349;

Viscosity, fragility and configurational entropy of melts along the join SiO$_2$-NaAlSiO$_4$ Am Min 82, 979–990;

Captions to Figures

Figure 1. The heat capacity curve (C$_p$) from DSC experiment on glass An$_{42}$ showing how T_g onset, T_g peak and T_g liquid are defined. The Cp curve in the figure was generated after cooling and heating from the glassy state through the glass transition at 10 K/min. A successful measurement is indicated by the glass returning to the same value of C$_p$ after each cooling (not shown here). The dashed line is the Maier Kelley (MK) fit to the glass heat capacity.

Figure 2. Variation of C$_p$$_{hydros}$, (triangles) C$_p$$_{dry}$ (circles) and C$_p$$_{H2O}$ (squares) as a function of H$_2$O content in variably hydrated (a) Etna trachybasalt (Giordano and Dingwell, 2003; Giordano et al. 2005) and (b) melts in the An-Di system. Lines in both panels define $c_p^i = c_p^{i dry} + a' H_2O + b' H_2O^2$ fitted to each of the Etna trachybasalt C$_p$ datasets allowing direct comparison with glasses and melts in the An - Di system in (b).

Figure 3. Values of C$_p$$_{hydros}$ (triangles), C$_p$$_{dry}$ (circles) and C$_p$$_{H2O}$ (squares) for all samples (Table 1) plotted as a function of (a) SM$_{hydros}$ and (b) NBO/T$_{hydros}$. Symbols are as in Figure 2. Values of C$_p$$_{hydros}$ and C$_p$$_{dry}$ show a general decrease with increasing depolymerization, i.e., increasing SM$_{hydros}$ and NBO/T$_{hydros}$. In particular, the more polymerized compositions of the An-Di system (An$_{100}$, An$_{90}$) have higher C$_p$$_{dry}$ and C$_p$$_{hydros}$ than Etna trachybasalt that in turn have higher C$_p$$_{hydros}$ and C$_p$$_{dry}$ and are more depolymerized than An$_{42}$ and An$_{90}$. Absolute variations of C$_p$$_{H2O}$ are also shown and can correspond to as much as 20 % relative (see text).

Figure 4. Variation of C$_p$$_{dry}$ (triangles), C$_p$$_{dry}$ (circles) and C$_p$$_{H2O}$ (squares) shown as a function of (a) H$_2$O (mol%) and (b) SM$_{hydros}$ for samples measured here (Fig. 3) combined with the measurements of Bouhifd et al (2006). (a) Data plotted to show the effect of H$_2$O on the C$_p$ of the more depolymerized melt tephritic compositions (Teph, NIQ; Bouhifd et al. 2013). The overall effect of H$_2$O on C$_p$ of these depolymerized compositions is similar to that shown for the Etna trachybasals. (b) Inclusion of the literature data allows C$_p$ variations to be examined over a much wider range of SM$_{hydros}$ values than has previously been possible. Largely, more polymerized melts have lower C$_p$$_{dry}$ and C$_p$$_{H2O}$, and higher C$_p$$_{dry}$ than depolymerized natural melts. C$_p$$_{dry}$ increases at low SM$_{hydros}$ values until becoming constant at >35 mol%. C$_p$$_{dry}$ and C$_p$$_{H2O}$ appear to show apparent minima at SM values of 45 (see text).
heat capacity data exist, including data reported here and data compiled from the literature (Table 2). (a) T_g^{liquid} (K) against T_g^{onset} (K) for the fully relaxed melt defined using C_p curves (Fig. 1); compiled data are from Giordano et al. (2005, 2008), Bouhifd et al. (2006, 2013) (Table 1). All data plot above the 1:1 model line and can be modelled by an offset temperature of 57.5 K. (b) T_g (K) values taken as the temperature at which $\eta = 10^{12}$ Pa s as predicted by temperature dependent viscosity curves (e.g., Eq. 1; see text and Appendix) plotted against T_g^{onset} (K).

Figure 5. Measured and modelled glass transition temperatures for silicate melts for which hydrous heat capacity data exist, including data reported here and data compiled from the literature (Table 2). (a) T_g^{liquid} (K) against T_g^{onset} (K) for the fully relaxed melt defined using C_p curves (Fig. 1); compiled data are from Giordano et al. (2005, 2008), Bouhifd et al. (2006, 2013) (Table 1). All data plot above the 1:1 model line and can be modelled by an offset temperature of 57.5 K. (b) T_g (K) values taken as the temperature at which $\eta = 10^{12}$ Pa s as predicted by temperature dependent viscosity curves (e.g., Eq. 1; see text and Appendix) plotted against T_g^{onset} (K).

Figure 6. Calculated fitting parameters for the Adam-Gibbs temperature dependent equation (Eqs. 1, 2) for melt viscosity to thermochemical and viscosity datasets for melt compositions listed in Table 2. (a) Best estimate values returned for adjustable parameters B_{AG} and $S'(T_g)$ for 41 anhydrous (black symbols) and hydrous (grey symbols) melt compositions assuming a common but unknown high temperature limiting viscosity (A). The global fit uses 23 melts to constrain the value of A to -3.51 (black symbols); 18 other melts having fewer viscosity measurements were fit for values of B and $S'(T_g)$ assuming this same optimal value of A (grey symbols). Symbol sizes of hydrous melts are proportional to water content. (b) Measured values of $\log \eta$ plotted against predicted values calculated with the optimal value of A and values of B_{AG} and $S'(T_g)$ obtained for individual melt compositions. Dashed lines denote +/- 0.25 log units. Symbols as in (a). (c) Derivative melt properties, including glass transition temperature (T_g^{12}) and melt fragility (m), calculated from the model (Table 2) for anhydrous (black) and hydrous (grey) melts (see text); symbol size is proportional to water contents.

Figure 7. Covariation of the $B_{AG}/S'(T_g)$ ratio with melt composition as expressed by the variables (a) H$_2$O mol% and (b) SM$_{\text{hydrous}}$.

Figure A1. The 1σ solution space for the Adam-Gibbs equation fitted to each of the datasets Ab, Jd, and Ne (Table A1). The confidence envelopes on the solution are shown as 2-D slices through the corresponding 3-D confidence ellipsoid. The plane through the 3-D ellipsoid is chosen to contain the solution and be parallel to one of the parameters A, B and S' making it a constant in that space (see text). (A) A-B plane; (B) A-S' plane; and (C) B-S' plane.

Figure A2. The entire Ab-Jd-Ne dataset (N=36) is fit to the Adam-Gibbs equation assuming that all three melt compositions share a common (but unknown) value of A and individual values of B and S'. Main figure compares the 1σ confidence ellipses (dotted lines) on the optimal values of B and S' (solid circles) for each melt composition at the model value of A (-3.80 ± 2.2). Inset shows the level of misfit in values of $\log \eta$ predicted from the global optimization. Dashed lines denote ±0.25 log units of viscosity.

Figure A3. Comparison of model curves for temperature dependent viscosity and measured data for Ab, Jd, and Ne melts (Table A1). The viscosity, C_p, and T_g (K) datasets for each melt composition are fit simultaneously to model Adam-Gibbs curves (Eq. A3) assuming that there is a single common value of A (~3.8). The shaded fields are the 1σ confidence limits for the model functions derived from the confidence ellipses shown in Figure A2.

Figure A4. Estimates of S' (T_g) for three silicate melts (Ab, Jd, Ne) plotted against composition represented by SiO$_2$ content (mol. %). The original results of Toplis et al. (1997) are reproduced here (cf. their Fig. 8b) and compared to the estimates obtained in this work where we assume the three melts share a common value of A.

Figure 1. Giordano et al. (2015) [CMP]
Figure 2 Giordano et al. (2015) [CMP]
Figure 3. Giordano et al. (2015) [CMP]
Figure 4. Giordano et al. (2015) [CMP]

(A)

(B)

<table>
<thead>
<tr>
<th>C_p^1</th>
<th>C_p^g</th>
<th>C_p^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS pantellerite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>samples from Bouhifd et al (2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etna [this work, Di Genova et al., 2014]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all An - Di samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR latite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 5. Giordano et al. (2014) [CMP]
Figure 6. Giordano et al. (2014) [CMP]
Figure 7. Giordano et al. (2015) [CMP]
| Table 1 | Experimental measured properties of anthidyl acetate and its various models with variable CpH₂O and the glass, liquid and configurational heat capacities (Cₚg, Cₚl and Cₚc) observed heating rates of 10 K/min. Measured values of Cₚg are compared to values predicted L&N20, RBC and S84 models for different va

<table>
<thead>
<tr>
<th>Calculated Cₚ liquid using various models with variable CₚDro</th>
<th>H₂O</th>
<th>SM</th>
<th>H₂O</th>
<th>H₂O</th>
<th>SM</th>
<th>Tgonset</th>
<th>Tgliquid</th>
<th>Cₚg</th>
<th>Cₚl</th>
<th>Cₚc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elna (trachbaulty)</td>
<td>0.02</td>
<td>0.047</td>
<td>27.14</td>
<td>0.465</td>
<td>954</td>
<td>1017</td>
<td>73.54</td>
<td>94.59</td>
<td>21.05</td>
<td>80.96</td>
</tr>
<tr>
<td>0.10</td>
<td>1.13</td>
<td>4.050</td>
<td>30.04</td>
<td>0.574</td>
<td>776</td>
<td>898</td>
<td>79.04</td>
<td>90.95</td>
<td>21.95</td>
<td>79.90</td>
</tr>
<tr>
<td>BET 1-3</td>
<td>1.64</td>
<td>5.801</td>
<td>31.31</td>
<td>0.625</td>
<td>769</td>
<td>841</td>
<td>71.28</td>
<td>94.40</td>
<td>23.25</td>
<td>97.71</td>
</tr>
<tr>
<td>0.12</td>
<td>2.31</td>
<td>8.011</td>
<td>32.92</td>
<td>0.743</td>
<td>795</td>
<td>908</td>
<td>74.94</td>
<td>94.02</td>
<td>24.97</td>
<td>96.81</td>
</tr>
<tr>
<td>0.80</td>
<td>3.46</td>
<td>11.689</td>
<td>38.35</td>
<td>0.811</td>
<td>788</td>
<td>703</td>
<td>78.78</td>
<td>90.50</td>
<td>24.11</td>
<td>96.56</td>
</tr>
<tr>
<td>ETN DRY</td>
<td>0.02</td>
<td>0.076</td>
<td>27.75</td>
<td>0.405</td>
<td>909</td>
<td>292</td>
<td>73.62</td>
<td>94.50</td>
<td>26.80</td>
<td>97.12</td>
</tr>
<tr>
<td>ETN 1.4</td>
<td>1.48</td>
<td>5.412</td>
<td>31.64</td>
<td>0.548</td>
<td>769</td>
<td>858</td>
<td>68.60</td>
<td>95.60</td>
<td>27.00</td>
<td>99.80</td>
</tr>
<tr>
<td>ETN 2.9</td>
<td>2.40</td>
<td>9.045</td>
<td>33.24</td>
<td>0.647</td>
<td>707</td>
<td>809</td>
<td>65.32</td>
<td>98.90</td>
<td>27.60</td>
<td>95.42</td>
</tr>
<tr>
<td>ETN 3.6</td>
<td>3.67</td>
<td>12.639</td>
<td>37.62</td>
<td>0.756</td>
<td>656</td>
<td>80.90</td>
<td>91.18</td>
<td>28.30</td>
<td>97.55</td>
<td>6.29</td>
</tr>
<tr>
<td>ETN 3.8</td>
<td>7.96</td>
<td>12.966</td>
<td>39.64</td>
<td>0.769</td>
<td>655</td>
<td>86.60</td>
<td>91.68</td>
<td>29.40</td>
<td>97.55</td>
<td>6.29</td>
</tr>
<tr>
<td>An100</td>
<td>7.96</td>
<td>12.966</td>
<td>39.64</td>
<td>0.769</td>
<td>655</td>
<td>86.60</td>
<td>91.68</td>
<td>29.40</td>
<td>97.55</td>
<td>6.29</td>
</tr>
<tr>
<td>An100</td>
<td>2.90</td>
<td>10.287</td>
<td>33.31</td>
<td>0.277</td>
<td>879</td>
<td>729</td>
<td>79.54</td>
<td>96.40</td>
<td>29.40</td>
<td>97.55</td>
</tr>
<tr>
<td>An903D100</td>
<td>3.56</td>
<td>8.994</td>
<td>34.00</td>
<td>0.332</td>
<td>843</td>
<td>918</td>
<td>70.57</td>
<td>96.29</td>
<td>27.52</td>
<td>97.94</td>
</tr>
<tr>
<td>An903D100</td>
<td>0.00</td>
<td>0.000</td>
<td>26.11</td>
<td>0.043</td>
<td>1122</td>
<td>1103</td>
<td>82.42</td>
<td>107.71</td>
<td>25.29</td>
<td>105.59</td>
</tr>
<tr>
<td>An903D100</td>
<td>0.00</td>
<td>0.000</td>
<td>26.11</td>
<td>0.043</td>
<td>1122</td>
<td>1103</td>
<td>82.42</td>
<td>107.71</td>
<td>25.29</td>
<td>105.59</td>
</tr>
<tr>
<td>An903D100</td>
<td>0.00</td>
<td>0.000</td>
<td>26.11</td>
<td>0.043</td>
<td>1122</td>
<td>1103</td>
<td>82.42</td>
<td>107.71</td>
<td>25.29</td>
<td>105.59</td>
</tr>
<tr>
<td>Calculated Cₚ liquid using various models with variable CₚDro</td>
<td>H₂O</td>
<td>SM</td>
<td>H₂O</td>
<td>H₂O</td>
<td>SM</td>
<td>Tgonset</td>
<td>Tgliquid</td>
<td>Cₚg</td>
<td>Cₚl</td>
<td>Cₚc</td>
</tr>
<tr>
<td>Calculated Cₚ liquid using various models with variable CₚDro</td>
<td>H₂O</td>
<td>SM</td>
<td>H₂O</td>
<td>H₂O</td>
<td>SM</td>
<td>Tgonset</td>
<td>Tgliquid</td>
<td>Cₚg</td>
<td>Cₚl</td>
<td>Cₚc</td>
</tr>
</tbody>
</table>
Table 2. Summary of results derived from modelling of thermochemical and rheological experimental measurements. Data are divided into compositions used to constrain a common value of A (i.e. Global Fit) and compositions fitted using this optimal A-value (see text). N denotes the number of viscosity experiments. The model values reported include \(\Lambda_{AG} (-3.51) \), \(B_{AG} \), \(S^* \), and the model calculated values of \(T_g \) (K) and fragility (\(m \)).

<table>
<thead>
<tr>
<th>Used for Global Fit</th>
<th>Experimental Measurements</th>
<th>AG (Global Fit: (\Lambda_{AG} = -3.51))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(H_2O) wt. %</td>
<td>(\log \eta) N</td>
</tr>
<tr>
<td>ET</td>
<td>0.02 10</td>
<td>21.05</td>
</tr>
<tr>
<td>ET-801-1</td>
<td>0.64 6</td>
<td>21.66</td>
</tr>
<tr>
<td>BET1-3</td>
<td>1.64 6</td>
<td>23.62</td>
</tr>
<tr>
<td>An100</td>
<td>0.00 66</td>
<td>25.29</td>
</tr>
<tr>
<td>An100H</td>
<td>2.90 4</td>
<td>26.75</td>
</tr>
<tr>
<td>An42Di58H3</td>
<td>2.70 4</td>
<td>25.72</td>
</tr>
<tr>
<td>HAB0</td>
<td>0.00 8</td>
<td>4.85</td>
</tr>
<tr>
<td>HAB2.2</td>
<td>1.87 8</td>
<td>10.45</td>
</tr>
<tr>
<td>PHON0</td>
<td>0.00 20</td>
<td>11.68</td>
</tr>
<tr>
<td>PHON0.5(B)</td>
<td>0.78 11</td>
<td>13.59</td>
</tr>
<tr>
<td>PHON2.2</td>
<td>2.15 9</td>
<td>15.67</td>
</tr>
<tr>
<td>TRACH</td>
<td>0.00 24</td>
<td>12.79</td>
</tr>
<tr>
<td>TRACH50</td>
<td>0.57 9</td>
<td>15.59</td>
</tr>
<tr>
<td>TRACH2.2</td>
<td>2.19 9</td>
<td>16.36</td>
</tr>
<tr>
<td>TEPHDRY</td>
<td>0.00 22</td>
<td>23.54</td>
</tr>
<tr>
<td>NIO0</td>
<td>0.00 20</td>
<td>23.66</td>
</tr>
<tr>
<td>NIO0.6</td>
<td>0.68 7</td>
<td>25.66</td>
</tr>
<tr>
<td>DK89</td>
<td>0.00 14</td>
<td>8.93</td>
</tr>
<tr>
<td>FR</td>
<td>0.0 12</td>
<td>18.08</td>
</tr>
<tr>
<td>FR-1.6</td>
<td>1.59 4</td>
<td>24.74</td>
</tr>
<tr>
<td>PS</td>
<td>0.0 12</td>
<td>11.16</td>
</tr>
<tr>
<td>PS-0.5</td>
<td>0.72 4</td>
<td>12.18</td>
</tr>
<tr>
<td>PS-1.1</td>
<td>1.16 4</td>
<td>12.92</td>
</tr>
</tbody>
</table>

Fitted to \(\Lambda = -3.51 \)

<table>
<thead>
<tr>
<th></th>
<th>(H_2O) wt. %</th>
<th>(\log \eta) N</th>
<th>(Cp^2) J mol(^{-1}) K(^{-1})</th>
<th>(B_{AG}) J mol(^{-1})</th>
<th>(S^*) J mol(^{-1}) K(^{-1})</th>
<th>(T_g) K</th>
<th>Fragility (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-800-1</td>
<td>1.13 4</td>
<td>24.15</td>
<td>434701</td>
<td>35.3</td>
<td>795</td>
<td>26.1</td>
<td></td>
</tr>
<tr>
<td>ET-802-1</td>
<td>2.31 3</td>
<td>25.03</td>
<td>351593</td>
<td>30.5</td>
<td>742</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td>An90Di10H1</td>
<td>1.53 3</td>
<td>25.48</td>
<td>296777</td>
<td>21.8</td>
<td>885</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td>An90Di10H2</td>
<td>2.56 4</td>
<td>25.72</td>
<td>339279</td>
<td>26.1</td>
<td>839</td>
<td>30.8</td>
<td></td>
</tr>
<tr>
<td>An42Di58H1</td>
<td>1.05 3</td>
<td>25.02</td>
<td>231958</td>
<td>16.9</td>
<td>886</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td>AN10Di90H2</td>
<td>1.67 3</td>
<td>24.23</td>
<td>194494</td>
<td>15.0</td>
<td>833</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td>AN10Di90H3</td>
<td>1.75 3</td>
<td>26.42</td>
<td>223778</td>
<td>17.5</td>
<td>823</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td>An10Di90H4</td>
<td>2.58 3</td>
<td>28.76</td>
<td>204623</td>
<td>16.7</td>
<td>788</td>
<td>42.2</td>
<td></td>
</tr>
<tr>
<td>PHON5</td>
<td>4.72 3</td>
<td>16.06</td>
<td>220095</td>
<td>23.8</td>
<td>596</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>TRACH5</td>
<td>4.92 3</td>
<td>17.07</td>
<td>227639</td>
<td>23.4</td>
<td>628</td>
<td>26.8</td>
<td></td>
</tr>
<tr>
<td>TEPH1.5</td>
<td>1.60 3</td>
<td>27.49</td>
<td>328597</td>
<td>26.0</td>
<td>815</td>
<td>31.9</td>
<td></td>
</tr>
<tr>
<td>TEPH2.22</td>
<td>2.27 3</td>
<td>32.42</td>
<td>220010</td>
<td>17.9</td>
<td>794</td>
<td>43.6</td>
<td></td>
</tr>
<tr>
<td>NIOQ1.88</td>
<td>1.88 3</td>
<td>33.02</td>
<td>354117</td>
<td>29.7</td>
<td>769</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>FR-2.7</td>
<td>2.69 5</td>
<td>16.12</td>
<td>194064</td>
<td>17.5</td>
<td>715</td>
<td>29.8</td>
<td></td>
</tr>
<tr>
<td>FR-3.8</td>
<td>3.76 3</td>
<td>14.90</td>
<td>175261</td>
<td>16.6</td>
<td>681</td>
<td>29.1</td>
<td></td>
</tr>
<tr>
<td>FR-6.3</td>
<td>6.32 3</td>
<td>14.04</td>
<td>153889</td>
<td>15.5</td>
<td>642</td>
<td>29.6</td>
<td></td>
</tr>
<tr>
<td>PS-2.2</td>
<td>2.11 3</td>
<td>13.68</td>
<td>221170</td>
<td>22.7</td>
<td>627</td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td>PS-3.5</td>
<td>3.55 4</td>
<td>14.28</td>
<td>140296</td>
<td>15.2</td>
<td>597</td>
<td>30.1</td>
<td></td>
</tr>
</tbody>
</table>

Sources include this work (TW) and literature: (B) Bouhifd et al. (2006, 2013); (D) Di Genova et al. (2014).
Appendix A. Modelling Methodology

Our goal is to gain insight into the energetics of the melt to glass transition. Specifically we would like to investigate the configurational entropy associated with the glass transition. Richet and Bottinga (1984) estimate the magnitude of residual configurational entropy at the glass transition temperature ($S_c(T_g)$) from the calorimetric cycle using enthalpy and heat capacity data available for crystalline material and for the glass and melt counterparts. Toplis et al. (1997) explored another route for estimating $S_c(T_g)$ by combining calorimetric measurements on glasses and melts and measurements of viscosity on the same melts (e.g., Richet and Bottinga, 1995; Richet and Neuville, 1992). The Adam-Gibbs theory provides a robust connection between the transport or relaxation properties of melts (i.e. viscosity) and their thermochemical properties (Adam and Gibbs, 1965; Richet, 1984):

$$\log \eta = A + \frac{B}{T S_c(T_g)}.$$ \hspace{1cm} (A1)

Toplis et al. (1997) fit the Adam-Gibbs model to measured values of melt viscosity and estimated values of configurational heat capacity for 3 melt compositions (Table A1) using an expanded form of Eq. A1 where $S_c(T_g)$ occurs as an adjustable parameter. This approach has been adopted and modified by a number of other workers (e.g., Toplis, 1998; Webb, 2008; Whittington et al., 2009; Avramov, 2013).

The Data

Here we follow this same approach and apply the method to hydrous melts and glasses. The main difference is that we assume that all silicate melts converge to a single, common, but unknown, value at high temperature. This strategy has a sound theoretical basis, strong empirical support, and creates substantially more reliable estimates of the other adjustable parameters (cf. Russell et al. 2002; 2003; Russell and Giordano, 2005)). The approach is therefore to:

i) synthesize hydrous melts below their solubility limits at high pressure and temperature and quench them isobarically to produce homogeneous unvesiculated hydrous glasses;
ii) use differential scanning calorimetry to measure: the heat capacity of the glass
(Cpg) immediately below Tg (i.e. the onset of Tg) and of the melt (Cpm) immediately
above Tg;
iii) calculate the configurational heat capacity (Cpc) as Cpm - Cpg;
iv) measure the high and low temperature viscosity of the same melt.

These datasets are integrated and used to constrain the Adam-Gibbs equation (Eq. A1) for
describing the T-dependent viscosity of melts. The configurational entropy at the temperature of
interest (T) is replaced by:

\[S_c(T) = S_c(Tg) + \int_{Tg}^{T} \frac{Cpc}{T} dT \] \hspace{1cm} (A2)

where \(Cpc \) is the configurational heat capacity of the melt-glass transition. Assuming that \(Cpc \) is
independent of T, integration of A2 and substitution into A1 provides the expression:

\[\log \eta = A + \frac{B}{T \left[S_c(Tg) + Cpc \ln \left(\frac{T}{Tg} \right) \right]} \] \hspace{1cm} (A3)

where A, B and \(S_c(Tg) \) are adjustable unknown parameters to be solved for by fitting A3 to
experimentally measurements of \(Cpc, Tg \) and \(\eta \).

Optimization Philosophy

Below we demonstrate our approach to fitting the Adam-Gibbs equation to experimental
measurements of \(Tg, Cpc, \) and pairs of \(\eta:T(K) \) to obtain estimates of A, B and \(S_c(Tg) \) (Eq. A3).
We illustrate our philosophy by remodelling the data from Toplis et al. (1997) for Albite (Ab),
Jadeite (Jd), and Nepheline (Ne) melts (\(m=3 \)). Each dataset suggests a system of \(n \) non-linear
equations for each melt composition of the form:

\[\log \eta_i = A + \frac{B}{T_i \left[S_c(Tg) + Cpc \ln \left(\frac{T_i}{Tg} \right) \right]} \quad \text{for } i = 1: n \] \hspace{1cm} (A4)

where the three adjustable parameters A, B, \(S_c(Tg) \) are unique unknowns for each melt
composition and \(n \) is the number of measured pairs of \(\eta:T(K) \).
As stated above, we have adopted the work of Russell et al. (2002; 2003) and Russell and Giordano (2005) and assumed that silicate melts approach a common high-temperature limiting value (i.e. A). This implies a single unknown value of A for all melts. Toplis et al. (1997) optimizations of the Ab, Ne and Jd melts also yielded a very narrow range of individual A-values (Table A1; -2.38 to -2.53) and on that basis Webb (2008) adopted a single averaged value of A (-2.61) from Toplis (1998) for her modelling.

Thus, we have elected to fit Adam-Gibbs equations (Eq. A3) to the calorimetric (T_g, C_p) and viscosity datasets for Ab, Jd, Ne melts simultaneously (Table A1). We solve a single system of equations (cf. A4) comprising the $m=3$ datasets by minimizing the function:

$$
\chi^2_{min}(x) = \sum_{j=1}^{m} \sum_{i=1}^{n_j} \left[\frac{\log \eta_i - A - B_j/\left(T_g \left[S_{c_j} + C_{p_{c_j}} \ln \left(T_i/T_g\right) \right]\right)}{\sigma_i} \right]^2
$$

(A5)

where x denotes the solution vector comprising a common value of A, and $2m$ values of B and $S_c(T_g)$, each. There are a total of 36 ($\Sigma_j n_i$) observations of viscosity for the m melt compositions (Table A1). The objective function is weighted to uncertainties (σ_i) on viscosity arising from experimental measurement.

Covariance Analysis

The form of the Adam-Gibbs function is non-linear with respect to the unknown parameters and, therefore, A5 is solved by conventional iterative methods (e.g., Press et al., 1986). One attribute of using the χ^2 merit function (A5) is that, rather than consider a single solution that coincides with the minimum residuals, we can map a solution region at a specific confidence level (e.g., 1σ; Press et al., 1986). This allows delineation of the full range of parameter values (e.g., A, B_j, and S_{c_j}) that can be considered equally valid descriptors of the experimental data at the specified confidence level (e.g., Russell et al., 2002). Furthermore, the confidence limits accurately portray the magnitude and nature of covariances between model parameters.

Russell et al. (2002; 2003) showed that the non-linear character of non-Arrhenian models ensures strong numerical correlations between, and even non-unique estimates of, model parameters. One result of the strong covariances between model parameters is that wide ranges
of values can be used to describe individual datasets. This is true even where the data are numerous, well-measured, and span a wide range of temperatures and viscosities. Stated another way, there is a substantial range of model values which, when combined in a non-arbitrary way, can accurately reproduce the experimental data.

We illustrate these concepts explicitly by displaying the covariances between parameters for each of the three datasets fitted independently with unique values of A, B and S_c (Fig. A1; Table A1). The 1σ confidence envelopes on the optimal 3 parameter solutions define 3-D ellipsoids; the 2-D ellipses plotted in Figure A1 approximate those confidence envelopes on two parameters where the third parameter is fixed at the optimal solution. These ellipses are planes through the 3-D ellipsoid that contain the solution and are parallel to the fixed parameter. For example, Figure A1 shows the range of values of A and B permitted (and the apparent correlation) fixed at the optimal value of S_c and the magnitude and nature of their covariance. As might be expected given the form of equation A3, the model-induced covariance is strongest between B and S_c. An additional consequence of the model is the negative covariance between A and B vs. a positive covariance between A and S_c.

The magnitudes of covariance between adjustable parameters also varies for the individual melt compositions. These variations reflect 3 main elements, in decreasing order of importance: i) the degree of non-Arrhenian behaviour (i.e. fragility), ii) the temperature-distribution of data, and iii) the quality of the data. Near-Arrhenian melts with low fragility numbers (cf. Table A1) allow for wide ranging, but strongly correlated, parameter estimates (cf. Ab vs. Ne; Fig. A1).

Optimization to a Common A

The optimal parameters derived from simultaneous solution of the 3 datasets (Ab, Jd, Ne) assuming a common value of A are summarized in Table A1 and Figure A2. The original viscosity data are reproduced to within experimental uncertainty (Fig. A2, inset). In Figure A2, the 1σ confidence limits on B and S_c are shown for a fixed value of A (i.e. optimal solution $A = -3.8$). The confidence envelopes are computed by mapping boundaries of constant χ^2* around the optimal solution in the manner described fully by Press et al. (1986). The optimal solution is defined by the minimum χ^2_{min} from which a value of $\Delta\chi^2*$ (i.e. $\chi^2* - \chi^2_{\text{min}}$) is set; the value of $\Delta\chi^2*$ depends on the degrees of freedom and the confidence level of interest.
The matrix $\alpha(2m+1, 2m+1)$ is then calculated for the χ^2_{min} fit from

$$\alpha_{k,l} = \sum_{i=1}^{n} \frac{1}{\sigma^2_i} \left[\frac{\partial y_i}{\partial x_k} \frac{\partial y_i}{\partial x_l} \right]$$ \hspace{1cm} (A6)$$

where $\alpha(k,l)$ are the individual entries on the matrix and y_i are the functions (A4) evaluated at the solution. The covariance matrix (C) to the problem is the inverse of α.

We have portrayed the confidence limits as 2-D ellipses resulting from the projection of the solution onto a single plane where the other parameter (A) is fixed at the optimal solution (e.g., Fig. A2). These 2-D ellipses are computed from the matrix equation:

$$\Delta \chi^2 = r \cdot [C_p]^{-1} \cdot r'$$ \hspace{1cm} (A7)$$

where C_p is calculated from $[\alpha_p]^{-1}$ and α_p is the 2x2 submatrix of the original matrix α containing rows and columns of the parameters of interest (e.g., $S_c Ab$ and B_{Ab}). The unknowns to this matrix equation are the two components of the relative displacement vector r (i.e. r_x, r_y or r_{Sc}, r_B). In its quadratic form, equation A7 becomes:

$$r_x^2 \cdot C_p(1,1) + 2 \cdot r_x \cdot r_y \cdot C_p(1,2) + r_y^2 \cdot C_p(2,2) = \Delta \chi^2$$ \hspace{1cm} (A8)$$

The coordinates are calculated by fixing one unknown (e.g., r_y) and solving A8 for its roots. Given arbitrary values of r_y, the values of r_x are computed from:

$$r_x = \frac{-r_y \cdot C_p(1,2) \pm \sqrt{(r_y \cdot C_p(1,2))^2 - C_p(1,1)(r_y^2 \cdot C_p(2,2) - \Delta \chi^2)}}{C_p(1,1)}$$ \hspace{1cm} (A9)$$

Operationally we search for coordinate pairs across the minimum and maximum range of values for r_y established by the relationship:

$$r_y = \pm \frac{-C_p(1,1) \Delta \chi^2}{\sqrt{C_p^2(1,2) - C_p(1,1) \cdot C_p(2,2)}}$$ \hspace{1cm} (A10)$$
Forward Modelling

To the uninitiated, the range of values of B and S_c (Fig. A2) consistent with the experimental dataset (Fig. A2, inset) may be larger than expected. To illustrate and emphasize the consistency of these confidence envelopes with the original viscosity measurements we have calculated families of Adam Gibbs functions (Eq. A3) using the combinations of B and S_c that define the ellipses in Figure A2. The limits to the families of Adam Gibbs functions are denoted in Figure A3 by two dashed lines delineating a shaded field and are compared directly to the original viscosity measurements and to the optimal fit (solid line). The dashed lines are essentially the 1σ confidence limits on the model function.

In all three cases the family of curves derived from the confidence envelopes (Fig. A2) define narrow bands that are entirely consistent with the measurement uncertainties on the original datasets. The experimental data are permissive of a wide range of values of B and S_c, however, the strong correlations between parameters (Fig. A2) control how these values are combined. Thus, even though a wide range of parameter values are considered, they generate a narrow band of Adam Gibbs functions that are entirely consistent with the experimental data.

Compositional Dependence

We conclude this appendix with a comparison of our model values of A, B and S_c to the original work of Toplis et al. (1997). Our single value of A (-3.80) describes the three datasets well but is ~1 log unit lower than the values obtained by Toplis et al. (1997). Our fitting strategy is different in that we use a fixed value of C_{pc} (Table A1) taken from his paper whilst they employed a temperature dependent equation. Despite the slight difference in values, Toplis et al. (1997) obtained virtually the same A value for each of their melts supporting our concept of optimizing for a common A.

Our values of S_c are plotted in Figure A4 and agree well with the values estimated by Toplis et al. (1997) and reproduce the overall compositional pattern (e.g., dependence on SiO2 content). More data would be required to assess whether our slightly higher value for Ne and lower value for Ab are better estimates or not. Our values of B are very close numerically to those of Toplis et al. (1997), however, the relative values for the Ab and Jd melts are switched.

In the case of derivative properties, including T_g and fragility (m), our model returns similar values and similar patterns to those calculated by Toplis et al. (1997) (Table A1). Ne is
the most fragile melt (37.6 vs. 33.9) and Ab melt is the strongest (26 vs. 22.6). The values of m obtained by simply fitting each viscosity dataset to a standard temperature dependent equation for non-Arrhenian melts (i.e. the Vogel-Fulcher-Tamman equation; Fulcher, 1925) agree more closely with our values (Ab: 26 vs. 24.2; Jd 28.3 vs. 27.7; Ne: 37.6 vs. 40.2). Estimated of glass transition temperatures ($T_g \sim T$ where $\eta = 10^{12}$ pa s) are also in good agreement with values obtained from modelling the viscosity data by itself (Table A2).
Click here to download Electronic supplementary material: SUPPORTING_ONLINE_MATERIAL.pdf