Age-related differences in dual task performance: A cross-sectional study on women

This is a pre print version of the following article:

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1544677 since 2016-06-20T15:02:31Z

Published version:
DOI:10.1111/ggi.12700

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
Age-related differences in dual task performance: a cross sectional study on women

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Geriatrics & Gerontology International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>GGI-0132-2015.R4</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>27-Oct-2015</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Brustio, Paolo; Torino University, Psychology</td>
</tr>
<tr>
<td></td>
<td>Magistro, Daniele; Torino University, Psychology</td>
</tr>
<tr>
<td></td>
<td>Rabaglietti, Emanuela; Torino University, Psychology</td>
</tr>
<tr>
<td></td>
<td>Liubicich, Monica; Torino University, SUISM</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Quality of Life < Socio-Medical Science</td>
</tr>
<tr>
<td>Optional Keywords:</td>
<td>dual-task, mobility</td>
</tr>
</tbody>
</table>

GGI Editorial office (Email: ggi@blackwellpublishingasia.com)
Older women and mobility: a dual-task study

Age-related differences in dual task performance: a cross sectional study on women

Paolo R. Brustio,¹ Daniele Magistro PhD,¹,² Emanuela Rabaglietti PhD,¹,³ Monica E. Liubicich PhD³

¹ Department of Psychology, University of Torino, Italy.

² School of Electronic, Electrical and Systems Engineering, Loughborough University

³ SUISM, University of Torino, Italy.

Author Note

Brustio Paolo Riccardo

Department of Psychology, University of Torino, Italy.

Via Verdi, 10 10124 Torino, Italy

Phone: 0039 3494946612

paoloriccardo.brustio@unito.it

Magistro Daniele PhD (corresponding author)

School of Electronic, Electrical and Systems Engineering, Loughborough University,

England Loughborough, Leicestershire LE11 3TU UK

Phone: 0039 3494946612

d.magistro@lboro.ac.uk

Department of Psychology, University of Torino, Italy.

Via Verdi, 10 10124 Torino, Italy

Phone: 0039 3494946612

danielemagistro@gmail.com daniele.magistro@unito.it
Older women and mobility: a dual-task study

Rabaglietti Emanuela PhD

Department of Psychology, University of Torino, Italy.
Via Verdi, 10 10124 Torino, Italy
Corso Trento 13, 10129 Torino, Italy
Phone: 0039 3271 626123
emanuela.rabaglietti@unito.it

Liubicich Monica Emma PhD

SUISM, University of Torino, Italy.
Corso Trento 13, 10129 Torino, Italy
Phone: 0039 0116708268
monica.liubicich@unito.it
Abstract

Aim

Simultaneous performances of motor and attention-demanding tasks are common in activities of everyday life. This cross-sectional study examined the changes and age-related differences on the mobility performance with an additional cognitive or motor task and evaluated the relative dual-task cost (DTC) on the motor performance in young, middle-aged and older women.

Methods

Thirty young (mean age 25.12 ± 3.00 years), 30 middle-aged (mean age 47.82 ± 5.06 years) and 30 older women (mean age 72.74 ± 5.95 years) were recruited. Participants performed: (1) Single-task: Timed Up and Go Test (TUG); (2) Cognitive Dual-task: TUG while counting backwards by three; (3) Manual Dual-task: TUG while carrying a glass of water. A repeated-measures ANOVA with between-factor as Age groups and within-factor as Tasks was conducted to assess the effect of aging on the performance of mobility tasks. DTC was calculated as \[\text{[(performance in single-task − performance in dual-task)/performance in single task]} \times 100\% \]. One-way ANCOVAs were conducted to compare the DTC among the three Age groups.

Results

A significant interaction between Age groups and Task \((F_{4,172} = 6.716, p < 0.001, \text{partial } \eta^2 = 0.135) \) was observed. Specifically, older women showed a worse mobility performance under dual-task condition compared to young and middle-aged groups. Moreover, DTC differences in cognitive task were observed in older women compared to younger and middle-aged women \((F_{2,86} = 7.649, p < 0.001, \text{partial } \eta^2 = 0.151) \), but not in manual task.
Conclusion

Dual-task conditions may affect the mobility performance differently across the lifespan and could be particularly challenging in older women.

Keywords: aging, dual-task, mobility, Timed Up and Go Test, women
For Peer Review

Older women and mobility: a dual-task study

Introduction

In everyday life, mobility tasks are rarely performed alone. However, these tasks are often associated with a less or more difficult additional activity, such as talking and walking or crossing a road and paying attention to the environment. In previous studies, dual-task paradigms have been used to evaluate the simultaneous performance of an attention-demanding and motor task. In particular, the principle of dual-task methodology requires division of attention between the motor task (e.g. gait, postural task) and simultaneous additional attention task, usually a cognitive or motor task.

In particular, mobility, which is defined as the ability of a person to move in the environment safely and independently, is essential for independence in aging people. Especially, women presented a greater impairment in mobility function than men. For instance, a higher decrease in spatio-temporal gait parameters, as well as a higher risk of falling have been observed in older women compared to older men.

Furthermore, mobility may be particularly challenging in dual-task conditions for older adults. In particular, a dual-task condition may compromise a range of spatio-temporal gait parameters, such as reduction in speed, increase in stride-to-stride variability and in swing time variability, resulting in an increased difficulty in maintaining balance and consequently to a greater risk of falling. Moreover, this different in gait pattern was observed especially in older women due to the influence of the additional attention task. These changes support the idea that the motor performance in older adults is a complex task requiring more cognitive resources due to higher attention and control of executive processing.

The Timed Up and Go (TUG) Test is a valid test to identify the mobility function and falling risk in aging people. TUG testing requires a person to perform
Older women and mobility: a dual-task study

common movements of everyday life, including standing, sitting, walking and turning strategies. It can be considered an objective test and includes neuromuscular components, such as power, agility and dynamic balance.4,15,16 Slow performance in a TUG test is associated with poor step test performance,17 slow gait speed and poor balance performance.15 Moreover, TUG testing has also been associated with executive function and attention.14,18

Previous studies have used TUG tests in dual-task conditions, both with cognitive and additional motor task, to assess aging people,19-21 individuals with neurodegenerative diseases (e.g. Parkinson's disease)22 and people suspected of pre-frailty syndrome.23 However, to the best of our knowledge, no studies have examined TUG tests under dual-task conditions in a sample of young, middle-aged and older women to evaluate age-related differences. Assessing and interpreting the difference across the life span in dual-task performance both with cognitive and motor additional tasks may provide novel insights on aging people, especially in vulnerable persons, such as older women. Indeed, this may be useful to better understand the possible onset of aging-induced decline in the dual-task performance.10 Moreover, exploration of age-related differences in aging women with mean mobility task testing, similar to the common everyday life activities (e.g. standing, walking, turning and sitting), under dual-task conditions might be useful to guide the development of specific physical interventions in aging people.

Thus, the purpose of this cross-sectional study was to assess the relationship of cognitive and manual tasks on the mobility performance in young, middle-aged and older women. In particular, the aims of this study were to examine changes and age-related differences on the mobility performance with an additional cognitive or motor
Older women and mobility: a dual-task study

task and to evaluate the relative dual-task cost on the motor performance in young, middle-aged and older women.

We hypothesized to find a larger decrease in mobility performance under dual-task performance. Furthermore considering the relative dual-task cost, we expected to observe an increase in dual-task cost with age increase.

Materials and Methods

Participants

Ninety women were recruited for the study, including 30 young women (age 20–35 years; mean age 25.12 ± 3.00 years), 30 middle-aged women (age 45–55 years; mean age 47.82 ± 5.06 years) and 30 older women (age 65–85 years; mean age 72.74 ± 5.95 years). All subjects lived independently. All of the participants were enrolled through public advertisements. Inclusion criteria were: mini-mental status examination24 score ≥ 24 or higher, ability to walk without assistant device, no history of a previously fall, comprehension of simple instructions, ability to perform simple arithmetic exercises and ability to carry a glass of water. Exclusion criteria were the presence of certain medical conditions, such as an acute disease (e.g., myocardial infarction) or a chronic disease (e.g., Alzheimer’s disease, Parkinson’s disease) or a musculoskeletal conditions affecting mobility or balance. All of the participants were informed that participation in the study was voluntary and confidential. All of the selected participants provided a written-informed consent, according to Italian law. The Ethical Committee of Torino University approved the study.

Data collection
Older women and mobility: a dual-task study

The test procedure took approximately 60 minutes for each subject. Participants initially completed a socio-demographic questionnaire. The demographic and social data, age, family condition and level of education were self-reported. Following this, each subject completed a TUG test under three different task conditions (1) TUG (single-task), (2) TUG while counting backwards by three (TUGC) and (3) TUG while carrying a glass of water (TUGM).

TUG requirements were to stand up from a chair, walk 3 meters, turn 180°, walk back and sit down the chair. In TUGC, the subjects were instructed to perform the TUG while counting backwards by three from a given number between 80 and 99 randomly selected using a computerized randomization. The numbers given to each subject were in a randomized order. In TUGM, the subjects were instructed to perform the TUG and simultaneously carry a glass of water without spilling with their preferred hand. The intra-rater reliability for the TUG, TUGC and TUGM was 0.95, 0.94 and 0.99 respectively.

After giving standardized instructions and a visual demonstration the subjects were instructed to complete one trial each of TUG, TUGC and TUGM at their preferred speed and to perform both tasks as well as possible. No prioritization instruction between TUG and the additional task performance was given. The same investigators collected the data. To avoid performance bias of TUG, TUGC and TUGM, the order of the tests were chosen randomly. The performance time was the time in seconds taken to complete the TUG, TUGC and TUGM.

Data analysis

Using the standardized education years as a covariate, a repeated-measures analysis of variance, with between-factor as Age groups (younger, middle-aged and older adults)
Older women and mobility: a dual-task study

and within-factor as Tasks (TUG; TUGC; TUGM), was conducted to assess the effect of aging on the performance of mobility tasks.

To quantify the relative dual-task cost (DTC) in the mobility performance, the following formula $DTC = \left(\frac{\text{performance in single-task} - \text{performance in dual-task}}{\text{performance in single task}}\right) \times 100\%^{19}$ was used. The time in single (TUG) and dual-task performance both in TUGC and in TUGM was used to calculate DTC. Performance in single-task indicated performance in TUG alone, while performance in dual-task indicated the performance in TUGC or TUGM. Specifically, the DTC of TUGC was calculated as $\left(\frac{\text{TUG} - \text{TUGC}}{\text{TUG}}\right) \times 100\%$ and the DTC of TUGM as $\left(\frac{\text{TUG} - \text{TUGM}}{\text{TUG}}\right) \times 100\%$. Thus, a lower value in DTC indicated a poor performance in dual-task condition. One-way analyses of Covariance, with standardized education years as a covariate, were conducted to compare DTC between young, middle-aged and older adults. Bonferroni post-hoc correction was used to identify specific Age group differences. The level of significance was set at $p < 0.05$. All data were analysed using SPSS 20.0 for Windows (SPSS, Inc., Chicago, IL).

Results

The socio-demographic characteristics of the participants and results of the test were summarised in Table 1. The mean body mass index (BMI) was 21.15 ± 2.82 kg m$^{-2}$ for young, 23.49 ± 3.95 kg m$^{-2}$ for middle-aged and 24.67 ± 4.24 kg m$^{-2}$ for older women. Generally, older women presented a lower education ($M = 6.83 \pm 2.70$ years) compared to young ($M = 16.33 \pm 1.26$ years) and middle-aged women ($M = 11.26 \pm 3.44$ years).

Table 2 contains the results of the TUG performance, both in the single and dual-task performance, including the relative repeated-measures analyses of variance.
The 3×3 repeated measures yielded a significant interaction between Age groups and Task ($F_{4,172} = 6.716, p < 0.001$, partial $\eta^2 = 0.135$), which indicated that the effect of the dual-task performance was not uniform among the Age groups (Figure 1). The main effect of Age groups showed that there was a statistically significant difference between the Age groups ($F_{2,86} = 38.435, p < 0.001$, partial $\eta^2 = 0.472$). A post-hoc analysis, with Bonferroni adjustment, revealed a significant difference in older versus young groups ($p < 0.001$) and in older versus middle-aged groups ($p < 0.05$). Finally, the main effect of Task showed a statistically significant difference in the TUG performance in the single and dual-task performance ($F_{2,172} = 52.446, p < 0.001$, partial $\eta^2 = 0.379$).

Table 3 provides the results of the analyses of variance in DTC separately for young, middle-aged and older groups. There were statistically significant differences among the Age groups in DTC of TUGC ($F_{2,86} = 7.649, p = 0.001$, partial $\eta^2 = 0.151$), but not in DTC of TUGM ($F_{2,86} = 2.824, p = 0.065$, partial $\eta^2 = 0.062$). A post-hoc analysis with Bonferroni adjustment revealed that the DTC of TUGC (Figure 2) was statistically different in older ($M = -25.83 \pm 19.63$) versus young groups ($M = -11.54 \pm 11.95$) ($p < 0.001$) and in older versus middle-aged groups ($M = -15.25 \pm 10.55$) ($p < 0.05$).

Discussion

The main purpose of the present study was to assess the relationship of cognitive and manual tasks on the mobility performance. In particular, age-related differences in the mobility performance while counting backwards by three and carrying a cup of water and DTC were examined in a sample of young, middle-aged and older women.
A decline in the TUG test performance was observed in dual-task conditions both with cognitive and manual tasks. In accordance with previous studies on the gait performance in middle-aged and older women, the present study confirmed that young, middle-aged and older women had a decrease in the mobility performance while performing serial subtractions or carrying a cup of water. Moreover, older women showed a larger decrease in the TUG test performance under dual-task conditions when compared with young and middle-aged women. TUG tests assessed a relative multicomponent activity, including sit-to-stand movement, initiation of stepping, acceleration and deceleration and preparation to turn on two occasions, which required the involvement of cognitive resources (e.g. planning, orientation and organization). Therefore, due to the nature of the mobility task, the present study results suggest that everyday life activities, which require the dual-task performance, could be challenging for older people. This might reflect the increase in cognitive resources requested to perform multicomponent activity safely, as seen with the TUG test in dual-task conditions. The present study results were in accordance with previous studies where mobility during the dual-task activity performance took longer and increased the risk of falling in older adults. The larger change in the mobility performance observed in older adults might suggest an inability to share attention resources during the dual-task performance. Consequently, older adults required more attention cognitive resources for motor control when they simultaneously performed an additional task than the young and middle-aged groups, presumably due to competition for central processing resources.

Concerning the second aim of the study, while lower scores in DTC would suggest a poor performance on the individual tasks controlling for the performance of
Older women and mobility: a dual-task study

the single task, a higher cost score in DTC would indicate a better performance on the individual task costs. A DTC of −11.54% and of −15.25% was observed in young and middle-aged women, respectively, during TUGC. In contrast, older women had a higher DTC (−25.83%) in comparison to young and middle-aged women, showing that the effect of dual-task cost on the mobility performance was higher in older adults. These results suggest that performance of young and middle-aged women was less affected in dual-task conditions and that they were able to perform all tasks with minimal performance decrements. Differently, due to the decline in physical ability,28,29 in attention and executive function2 observed in aging people, our results showed that older women had a larger cost because of the difficulty in simultaneously managing both mobility and attention demanding tasks.30 Interestingly, we found a significant difference in DTC among Age groups in TUGC, but no difference in TUGM. Indeed, the results indicated that the DTC in the TUGM generally required less DTC among the Age groups, probably suggesting a different response strategy of the secondary tasks. This findings might suggest that the automaticity of the movements showed a greater degree of decline with cognitive task rather than with manual task.22 According to this interpretation it was possible that older women compensated with a slowing gait when performed the additional cognitive task required. Probably the nature of the manual task that required additional motor ability rather than cognitive resources23 was not sufficiently complex to reach the threshold attention needed to negatively impact the performance.22 Results indicate that the additional manual task was less demanding than the cognitive task. Consequently, older women had a similar ability to manage the dual-task performance as the other Age groups. Nevertheless, the additional manual task might be a screening tool in early identification of pre-frailty individuals.23
Older women and mobility: a dual-task study

together, the present study results confirm that DTC might be dependent on the nature of the attention task.3,12,13,30

There are some limitations to the present study. At first, the cross-sectional study did not permit us to give a causation of the results. A second limitation is the healthy and relatively small sample size, which did not allow us to generalize the results to a larger population of older adults. Indeed, the older adults’ population presents a greater heterogeneity and the results cannot be extended to specific populations, such as older adults living in long-term care facilities, older adults with history of falling, middle–cognitive impairment, or with specific diseases as Parkinson’s or Alzheimer’s disease.

A ceiling effect likely contributed to the results observed. We could hypothesize that, in a more heterogeneous cohort (people at risk of falling or middle–cognitive impairment), the results would be more pronounced. In contrast even though only healthy participants with good mobility and cognitive function were included, is an important finding. Our results demonstrate that, among healthy women, age-related differences in dual-task performance exist and thus may give us added insight into aging and age-associated changes in dual-task. Further studies are needed to extend our results. A third limitation is given by the quantitative only (time) measurement of the mobility performance. An additional limitation was the no evaluation of the secondary task, as well as that no prioritization instruction was given to the subjects between TUG and the additional tasks. This did not permit us to investigate the strategy of the subjects in dual-task performance.23

However, these measures permitted us to test participants quickly in a small space, to assess many groups in different environments without requiring expensive equipment and to provide initial screening on the dual-task performance. Future studies
are needed to better understand the mobility changes during common movements of everyday life under dual-task performance conditions. It will be important to study these changes not only with quantitative measures, but also with qualitative measurements (video and gait analysis), in relation to different cognitive domains, such as reaction time, visuomotor processing, verbal fluency and decision-making.

In conclusion, despite these limitations, the results of the present study underlined the change in motor patterns with simultaneous tasks of both cognitive and motor tasks. We observed a general decrease in the mobility performances under dual-task conditions in all age groups, but this decrease was more pronounced in older women compared to young and middle-aged groups. Moreover, the data suggested that the performance, particularly in older women, decreased when the secondary task is a cognitive task. Simultaneous performances of motor and attention-demanding tasks are common in activities of everyday life and the results of present study may help to clarify changes in dual-task conditions in aging and may be taken into account to develop specific physical interventions for aging people.

Acknowledgments
The authors would like to express their thanks to Prof. Massimiliano Zecca of Loughborough University for his support during the reviewing process of this manuscript. No financial support has influenced this work.

Disclosure statement
The authors declare no conflicts of interest.
References

Older women and mobility: a dual-task study

Older women and mobility: a dual-task study

Older women and mobility: a dual-task study

Figure Legend

Figure 1 Mean and standard deviation of the Timed Up and Go Test (TUG), Timed Up and Go Test while counting backward (TUGC) and Timed Up and Go Test while carry a cup of water (TUGM) for the young group (pointed line), the middle-aged group (dashed line) and the older group (solid line).

Figure 2 Mean and standard deviation of dual-task cost of cognitive tasks for young, middle-aged and older groups in TUGC. The statistical significance of the difference between the Age groups was calculated by using the Bonferroni post hoc test.

Notes: * p < 0.05
Table 1

Socio-demographic characteristics of subjects

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Young</th>
<th>Middle-aged</th>
<th>Older</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>25.12 ± 3.00</td>
<td>47.82 ± 5.06</td>
<td>72.74 ± 5.95</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.67 ± 0.66</td>
<td>1.62 ± 0.59</td>
<td>1.60 ± 0.52</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>59.40 ± 8.54</td>
<td>61.77 ± 11.47</td>
<td>63.77 ± 9.97</td>
</tr>
<tr>
<td>BMI (kg m(^2))</td>
<td>21.15 ± 2.82</td>
<td>23.49 ± 3.95</td>
<td>24.67 ± 4.24</td>
</tr>
<tr>
<td>Education years (years)</td>
<td>16.33 ± 1.26</td>
<td>11.26 ± 3.44</td>
<td>6.83 ± 2.70</td>
</tr>
<tr>
<td>Family condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never married</td>
<td>30 (100%)</td>
<td>3 (10%)</td>
<td>0</td>
</tr>
<tr>
<td>Married</td>
<td>0</td>
<td>26 (86.7%)</td>
<td>18 (60%)</td>
</tr>
<tr>
<td>Widow/Widower</td>
<td>0</td>
<td>0</td>
<td>12 (40%)</td>
</tr>
<tr>
<td>Divorced</td>
<td>0</td>
<td>1 (3.3%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: Data presented as mean and standard deviation or percentage. BMI: Body Mass Index.
Table 2

Repeated Measures Analyses of Variance

<table>
<thead>
<tr>
<th>Age groups</th>
<th>Task</th>
<th>Age group</th>
<th>Task*Age groups</th>
<th>Bonferroni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>Middle-aged</td>
<td>Older</td>
<td>TUG (s) 6.43 ± 0.69</td>
<td>7.30 ± 0.84</td>
</tr>
<tr>
<td>TUGC (s) 7.13 ± 0.73</td>
<td>8.40 ± 1.21</td>
<td>11.35 ± 3.32</td>
<td>$p < 0.001$</td>
<td>$p < 0.001$</td>
</tr>
<tr>
<td>TUGM (s) 7.19 ± 0.92</td>
<td>7.94 ± 1.07</td>
<td>10.65 ± 2.72</td>
<td>0.379</td>
<td>0.472</td>
</tr>
</tbody>
</table>

Notes: Data presented as mean and standard deviation; TUG, Timed Up and Go Test; TUGC Timed Up and Go Test with cognitive task; TUGM, Timed Up and Go Test with manual task.
Table 3

Analysis of variance

<table>
<thead>
<tr>
<th>Age groups</th>
<th>ANOVA</th>
<th>Bonferroni post hoc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>11.54 ± 11.95</td>
<td>F = 7.649, p < 0.001, partial η² = 0.151</td>
</tr>
<tr>
<td>Middle-aged</td>
<td>-15.25 ± 10.55</td>
<td>Young < Older, p < 0.001</td>
</tr>
<tr>
<td>Older</td>
<td>-25.83 ± 19.63</td>
<td>Middle-aged < Older, p < 0.05</td>
</tr>
</tbody>
</table>

DTC TUGM (%)
-12.56 ± 15.56
-9.16 ± 11.84
-18.97 ± 20.00

F = 2.824, p = 0.065, partial η² = 0.062

Notes: Data presented as mean and standard deviation. DTC TUGC, dual-task cost in Timed Up and Go Test with cognitive task; DTC TUGM dual-task cost in Timed Up and Go Test with manual task.
Older women and mobility: a dual-task study

Figure 1
Figure 2