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Abstract—The stochastic modelling of biological systems, cou-
pled with Monte Carlo simulation of models, is an increasingly
popular technique in Bioinformatics. The simulation-analysis
workflow may result into a computationally expensive task
reducing the interactivity required in the model tuning. In this
work, we advocate high-level software design as a vehicle for
building efficient and portable parallel simulators for a variety
of platforms, ranging from multi-core platforms to GPGPUs to
cloud. In particular, the Calculus of Wrapped Compartments
(CWC) parallel simulator for systems biology equipped with on-
line mining of results, which is designed according to the FastFlow
pattern-based approach, is discussed as a running example. In
this work, the CWC simulator is used as a paradigmatic example
of a complex C++ application where the quality of results is
correlated with both computation and I/O bounds, and where
high-quality results might turn into big data. The FastFlow
parallel programming framework, which advocates C++ pattern-
based parallel programming makes it possible to develop portable
parallel code without relinquish neither run-time efficiency nor
performance tuning opportunities. Performance and effectiveness
of the approach are validated on a variety of platforms, inter-alia
cache-coherent multi-cores, cluster of multi-core (Ethernet and
Infiniband) and the Amazon Elastic Compute Cloud.

I. INTRODUCTION

Systems biology is a biology-based inter-disciplinary field
that studies living organisms, considering them as systems
whose evolution depends on how components interact among
them. To study these complex interactions within biological
systems, both mathematical and computational models are
needed to describe and analyse results coming from tools that
implement different simulation techniques. Typically, the most
common simulation technique used is stochastic simulation
[1]. This technique comes as a parallel approach to ordinary
differential equations (ODEs) and is able to describe transient
and multi-stable behaviours of biological systems that do not
appear with ODEs modelling, but demanding more resources.
The stochastic simulation uses Monte Carlo methods applied to
a number of independent instances, in order to obtain a result
that is statistically significant. Because of their independence,
these instances make the simulation an embarrassingly parallel
problem: thanks to this property, groups of instances can be
executed independently. This does not trivially extends to the
whole simulation-analysis pipeline, which exhibits data depen-
dencies between the two stages of the processes. In particular,
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data from simulation stage should be collected and aligned to
simulation time before being ready to be analysed. In the par-
allelisation of both stages a number of performance problems
might arise: load-balancing among simulations (which are typ-
ically heavily unbalanced), overheads due to low computation-
to-communication ratio, increased memory traffic due to need
of storing simulation results, increased complexity in enforcing
data dependencies along the pipeline. Implement general and
efficient code for a variety of platforms is a complex task,
especially when facing state-of-the-art techniques, which are
required to build efficient tools. They are, for example, lock-
free algorithms in shared memory [2], [3], zero-copy message
passing, and asynchronous data feeding and non-coherent
memory hierarchies in GPGPUs. To overcome this problem,
it is of fundamental importance for programmers productivity
to rely on a framework that rises the level of abstraction and
provides them with parallel programming paradigms masking
delicate tasks, such as orchestration, synchronisation, and data
movements.

In this work, the simulator for the Calculus of Wrapped
Compartments (CWC) is presented as a test bed for the
FastFlow programming framework [4], which provides high-
level programming constructs to help in simplifying the devel-
opment of applications. Over the last several years, different
versions of the CWC were implemented, including shared
memory multi-core, clusters, and cloud. Here we want to ad-
dress the data parallelism exploitable via GPGPU accelerators,
thanks to the offloading facilities offered by the FastFlow
framework. This work is organised as follows: related work
on high level development frameworks and other parallel
stochastic simulators are discussed in Section II and Section
III focuses on the FastFlow framework. Section IV presents all
implemented versions of the CWC simulator, discussing also
the new target of GPGPU. Performances are shown in Section
V, while Section VI concludes the paper.

II. RELATED WORK

A. High-level development tools

Programming tools and frameworks are needed to ef-
ficiently target the architectures hosting homogeneous and
heterogeneous multi-core platforms or cluster of workstations.
The same necessity is present also when targeting grids and
clouds. The standard tools for shared memory multi-cores and
distributed systems are OpenMP and MPI that, unfortunately,
are not always satisfactory solutions. OpenMP offers a high-
level API for (cycle independent) loop parallelism, whereas



streaming and task parallelism can be approached only at
low level of abstraction. MPI exhibits an even lower-level
approach, where the programmer has to design domain de-
composition, data serialisation, and deadlocks avoidance.

Pattern-based parallel programming, rooted in the algo-
rithmic skeletons experience [5] and programming patterns
[6], promotes parallel paradigms as first-class programming
constructs. The algorithmic skeleton community has pro-
posed various programming frameworks, aimed at providing
the application programmer with very high-level abstractions
completely encapsulating parallelism exploitation patterns and
solving most of the above mentioned problems [5]. More
recently, some of the existing frameworks have been extended
to target clusters of multi-cores. The Muesli programming
framework is provided as a C++ library offering both data
and stream parallel skeletons. The original version of Muesli-
generated code for MPI platforms extended to target multi-
core architectures and distributed multi-core workstations by
generating OpenMP code. [7]. Some other frameworks provide
a high level of abstraction, but are oriented to coarse grain
computations (e.g. StreamIt [8], Brook [9]). SkePU specifically
targets parallel patterns for GPGPUs [10].

B. Systems biology simulators

Bio-PEPA [11] is a language for modelling and analysis of
biochemical networks. It is based on the PEPA process algebra
for computer systems performance analysis and then extended
to model biochemical networks. Supported analysis include
stochastic simulation analysis based on ordinary differential
equations (ODEs) and model checking. Two software tools are
available for modelling with Bio-PEPA: the Bio-PEPA Work-
bench and the Bio-PEPA Eclipse Plugin. Efforts have been
done to parallelise such simulators, focusing on distributed
architectures. StochKit [12], developed in the C++ language,
aims at making stochastic simulation accessible to biologists,
while remaining open to extension via new stochastic and
multi-scale algorithms. It implements the Gillespie algorithm
and targets multi-core platforms but it does not implement the
post-processing phase of on-line trajectory reduction. In [13],
is proposed a GPGPUs version of the Gillespie’s SSA by
way of the NVidia CUDA framework aiming to compute
in parallel different trajectories. StochSimGPU [14], a GPU-
accelerated version of the Matlab framework, allows computa-
tion of averages and histograms of the molecular populations
across the sampled realisations on the GPU. It can be noticed
that GPGPUs are heavily used in scientific applications that
need to exploit high-performance computing, despite the fact
that their usage, if directly approached via CUDA/OpenCL
programming, might needs a lot of work to tune the algorithm
to the underlying architecture.

III. FASTFLOW

FastFlow is a general-purpose C++ programming frame-
work for heterogenous parallel platforms (platforms consisting
of CPUs, GPUs and possibly other processors) that simplifies
the design and engineering of portable parallel applications
[4]. As shown in Fig. 1, it is designed as a stack of layers
that abstract out the shared memory parallelism at the level of
cores up to the definition of useful programming abstractions
and parallel patterns. The abstraction process has two main

goals: 1) to promote high-level, platform-independent parallel
programming, and in particular patter-based programming,
and 2) to realise efficient implementation of applications for
homogeneous and heterogeneous platforms, such as multi-
core, many-core (GPGPU) and distributed clusters of them.

Building blocks
queues, ff_node, ...

Core patterns
pipeline, farm, feedback, stenciReduce

High-level patterns
parallel for, mapreduce, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

Fa
st
Fl
ow

Fig. 1. FastFlow Layered Design.

FastFlow building blocks realises a (low-level) concurrent
programming model as a CSP/Actor hybrid model: processing
components are realised as POSIX threads or processes; chan-
nels are realised via either lock-free shared-memory Single-
Producer-Single-Consumer FIFO queues or distributed zero-
copy channels. These mechanisms are abstracted at the next
level up to define few compositional core patterns, i.e. farm,
pipeline and feedback. Also, core patterns include a single
GPU-specific pattern called stencilReduce, which is general
enough to model most of the interesting GPGPUs computa-
tions including iterative stencil computations.

Core patterns (or a composition of them) are further
abstracted at the (High-level patterns) layer (via C++ class
inheritance) to cover common parallel computing pattern in
the whole spectrum of Task, Data, and Stream parallelism.
Examples are parallel-for (likewise OpenMP parallel), Di-
vide&Conquer, streaming pipelines and farm, map, reduce,
MapReduce, Stencil, etc. The extensive description of Fast-
Flow is beyond the scope of this paper. FastFlow programming
model description and performance comparison with other
programming frameworks (e.g. POSIX threads, Cilk, OpenMP,
Intel TBB) can be found in related works [4], [15].

IV. CWC IMPLEMENTATIONS

The Calculus of Wrapped Compartments (CWC) is a
formalism, based on term rewriting, for the representation
of biological systems. Starting from an alphabet of atomic
elements, CWC terms are defined as multisets of elements and
compartments. Elements can be localised by compartmental-
isation and the structure of a compartment can be specified
by detailing the elements of interest on its membrane. For
instance, a cell can be represented as a compartment and its
nucleus with a separate, nested, compartment. The evolution
of the system is driven by a set of rewrite rules modelling
the reactions of interest that can be local to a single com-
partment, or involve different compartments. Compartments
can be dynamically created or destroyed [16] In the following
subsections, we present all the CWC simulator implementa-
tions, which implement the Gillespie algorithm on CWC terms.
Notice that, due to the need of managing nested compartments,



any implementation of the CWC is significantly more complex
than a plain Gillespie algorithm because terms should be
represented by dynamic data structures (trees actually). The
evolution of a single step of the system requires a number tree-
matching functions. The Gillespie algorithm realises a Monte
Carlo simulation on repeated random sampling to compute the
result. Each individual simulation is called a trajectory, which
tracks the state of the system at each time step.

A. Shared memory multi-core

The CWC simulator is designed in order to exploit both
parallel simulation and data analysis in a single workflow: data
distribution, parallel simulations, results collecting, parallel
trajectory, data assembling and analysis are pipelined. Figure
2 shows the proposed three stage pipeline, composed by
simulation, analysis and display of results.

1) Simulation pipeline: The simulation pipeline is com-
posed of i) generation of simulation tasks stage, ii) farm of
simulation engines stage and iii) alignment of trajectories
stage [17]. The first stage generates a number of independent
simulation tasks, each of them wrapped in a C++ object.
These objects are passed to the farm of simulation engines,
which dispatch them to a number of simulation engines (sim
eng). Each simulation engine brings forward a simulation that
lasts a precise simulation time (simulation quantum). Then it
reschedules back the operation along the feedback channel.
Simulation results produced in this quantum are streamed
toward the next stage which sorts out all received results and
aligns them according to the amount of simulation time. Once
all simulation tasks overcome a given simulation time, an array
of results is produced and streamed to the analysis pipeline.

2) Analysis pipeline: By design, each cut of simulation
trajectories (i.e. an array containing the results of all simula-
tions at a given simulation time), can be analysed immediately
and independently (thus concurrently) from each other. More
complex analysis, instead, require the access to the whole
dataset, but it is difficult to do with an on-line process. In
many cases it is approximated by way of sliding windows
over the whole dataset. For this reason, the incoming stream is
passed through sliding windows of trajectory cuts. Each sliding
window can be processed in parallel. Results are collected
and re-ordered (i.e. gathered) and streamed toward the user
interface and permanent storage [18].

3) The graphical user interface: The CWC simulation-
analysis pipeline can be controlled both from a command line
and graphical user interface, which makes it possible to design
the biological model, run simulations and analysis and to view
partial results during the run.

B. Distributed CWC Simulator and Cloud

Thanks to the extension of the FastFlow to distributed
platforms [19], the CWC simulator porting has been possible
with very limited code modifications. In this version, the
simulation pipeline was changed to a farm of simulation
pipelines that can be run on different platforms. Each farm
receives simulation parameters from the node in charge of
the generation of simulation tasks, and feeds the alignment
of trajectories node with a stream of results. The pipeline
was also extended to implement de-serialising and serialising

activities without modifying the existing code. By considering
an IaaS cloud platform as a virtual cluster of shared memory
multi-core platforms, the distributed CWC Simulator can be
easily fit to run on this kind of platforms [18]. The FastFlow
framework generates the connections among each node with
streams, which are implemented with the shared-memory
model within a virtual machine and in the message-passing
model among them.

C. GPGPUs

Thanks to the FastFlow support for execution offloading
onto NVidia CUDA GPGPUs – based on the recently released
CUDA Unified Memory feature, which provides the automatic
C++ object serialisation from host and GPGPU and vice-versa
– the porting of CWC for GPGPUs requires very limited
effort. Notice that the Unified Memory together with support
for recursion in GPGPU kernel code are enabling features for
this kind of code due to the need to move C++ objects (i.e.
simulations) including linked-lists and dynamic data structures
from host memory to GPU and vice-versa. Prior to the advent
of Unified Memory, data to be moved to GPGPUs was required
to be continuous in memory. The manual serialisation of all
data structures that should be moved from host to GPGPUs,
despite being theoretically possible, will involve profound and
complex extensions to the code base.

Abstractly, the execution of simulation quanta over differ-
ent instances (i.e. different CWC terms) can be regarded as
a data parallel pattern. The user intervention would amount
to writing the CUDA code for a CUDA kernel which runs
a simulation quantum for a single instance, then wrapping it
into ff_mapCUDA nodes (one for each GPGPU available).
The ff_mapCUDA node can be regarded as an execution
environment that allows the user to seamlessly interact with
a CUDA device. FastFlow takes care of memory management
(via either Unified Memory or explicit copy to device and
vice-versa for older CUDA runtime versions) and work seg-
mentation for load balancing. Note that, due to the atomic
nature of the CUDA kernel execution model, collection of
outcomes for a simulation quantum could not start until all the
instances have completed the quantum. Even if this partially
mitigates the depicted on-line fashion of data collection and
analysis, simulation quanta could be kept very short thanks to
low overhead introduced by CUDA kernel calls.

V. PERFORMANCE

In this section, the evaluation of the CWC Simulator is
presented, considering all versions shown in the previous
section.

A. Performance on multi-core and a cluster of multi-core

The CWC Simulator has been tested with a model for
circadian oscillations based on transcriptional regulation of
the frequency gene in the fungus Neurospora. The model
relies on the feedback exerted on the expression of the fre-
quency gene by its protein product [18], [20]. The perfor-
mance of the simulator is tested on two platforms: 1) Intel
workstation, equipped with 4 eight-core E7-4820 Nehalem
(64 HyperThreads) @2.0GHz with 18MB L3 cache and 64
GBytes of main memory running Linux CentOS 6.5 x86 64.
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Fig. 3. Speedup of the multi-core simulator on the Neurospora model on the
Intel 32-cores platform with different numbers of simulations (trajectories). 1)
using a single statistical engine. 2) using 4 statistical engines.

The Nehalem processor uses HyperThreading with 2 contexts
per core, and 2) an Infiniband connected cluster of Intel
workstations, each of them equipped with 2 six-core Xeon-
X5670 (12 HyperThreads) @3.0GHz with 12MB L3 cache
and 24 GBytes of main memory running Linux x86 64. The
Infiniband network is used via the TCP/IP stack (IPoIB).

The speedup of the multi-core version is reported in Fig. 3.
The upper figure uses a single statistical engine in the analysis
pipeline, while the second uses a farm with 4 statistical
engines. In the first case, the simulator succeeds to effectively
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use all the simulation engines only up to 512 independent
simulations (producing 512 independent trajectories), reaching
close to ideal speedup for limited data sets. The speedup
decreases with the dimension increasing of the dataset, because
of the on-line data filtering and analysis.

The speedup of the distributed version of the simulator
is shown in Fig. 5, against the number of hosts (top) and
the aggregated count of cores in different hosts (bottom). In
both cases 4 statistical engines are used. Here, speedup is also
influenced by the number of simulation engines per host since



the kind of latency and bandwidth involved in data streaming
depend on the kind of channel (shared-memory or network).

B. Performance on cloud
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Fig. 5. Execution of the Simulator in the single quad-core VM in the Amazon
EC2: speedup and execution time on the variation of virtualized cores.

Within this experiment, the Neurospora model for circadian
oscillations based on transcriptional regulation of frequency is
considered [20]. We compute the period of each oscillation
and plot the moving average of more than 200 simulations of
the local period. The first experiment was on eight virtual ma-
chines (VMs) each equipped with four Intel E-2670@2.6GHz
cores with 20MB L3 cache, running on the Amazon Elastic
Compute Cloud (Amazon EC2). Before testing on VMs, the
speedup and the execution time of the simulator on a 96-days
run on a single quad-core VM was measured. Data in Figure 5
show that the maximum speedup is next to the ideal (3.15 out
of 4), with an execution time of ∼ 71 minutes from the initial
time of ∼ 224 minutes. The speedup is not linear because
of the additional work done by the on-line alignment of
trajectories during the simulation. Next, the model was tested
on eight quad-core VMs. Figure 6 (top) shows the speedup
with respect to the variation of the number of virtual cores
used. Also in this test, the speedup is almost ideal, reaching
a maximum speedup of nearly 28 using 32 virtual cores. The
gain, with respect to the sequential execution on a single-core
VM is of ∼ 21× and of ∼ 7× with respect to the single
quad-core VM. The same experiment has been executed on an
heterogeneous environment composed of the Amazon VMs,
one 32-core Intel Nehalem workstation and the 2 × 16-cores
Intel Sandy Bridge workstations. The minimum execution time
obtained using 96 cores (32 from VMs, 32 from Nehalem and
2×16 from Sandy Bride) is 69.3 seconds with a gain of ∼ 62×
(Figure 6 bottom). It can be considered a good result taking
into account the high frequency of communications needed to
collect results computed by simulation pipelines.

C. Performances on GPGPU

GPGPUs (and CUDA in particular) utilises the so-
called Single-Instruction-Multiple-Thread (SIMT) execution
model. Typically, independent parallel activities are mapped
to threads, which are grouped in blocks in a kernel to be

4

8

12

16

20

24

28

32

4 8 12 16 20 24 28 32
4

8

12

16

20

24

28

32

s
p
e
e
d
u
p

n. of cores

ideal
speedup

4

32

48

64

96

4 32 48 64 96

69’’

93’’

137’’

71’

s
p
e
e
d
u
p

T
im

e

n. of cores

ideal
speedup

exec. time

Fig. 6. Performances of the simulator on the virtual cluster of eight quad-core
VMs (top) and on the heterogeneous platform (bottom) with eight quad-core
Amazon EC2 VMs, one 32-core Nehalem and two 16 cores Sandy Bridge

TABLE I. EXECUTION TIME ON MULTI-CORE (INTEL) AND GPGPU
(NVIDIA K40). Q/τ DENOTE QUANTUM/SAMPLES RATIO.

N. sims Execution time (s)

CPU (32 Intel cores) GPGPU (2880 SMX cores)

Q/τ = 10 Q/τ = 1 Q/τ = 10 Q/τ = 1

128 22 22 32 39
512 83 82 47 50

1024 166 164 70 63
2048 332 328 165 104

offloaded onto the GPGPU. Threads within a block can syn-
chronise whereas global synchronisation of threads on different
blocks may happen only at kernel end. FastFlow makes it
possible to build kernels according to a data-parallel pattern,
significantly simplifying application development against plain
CUDA/OpenCL programming, in particular with respect to all
aspects involving GPGPU data feeding, kernel synchronisa-
tion, host-device interaction (which also involves the manage-
ment of independent memory hierarchies), and the execution
of a number of common global operations (e.g. global data
reduction) [21]. However, application performance either di-
rectly using CUDA/OpenCL or FastFlow is very sensible to



a number of low-level optimisations in both kernel code and
data management.

In the case of the CWC simulator, the most critical aspect
involves so-called thread divergence. Unless in the SIMD
model, in the SIMT model all threads in a block not necessarily
should execute the same instruction, however any divergence
turns into a performance penalty (thread stall). Due to very
uneven execution time of different trajectories (due to random
walks of simulation time), thread divergence turns into load
balancing and eventually into performance degradation. The
best performances can be expected form those models in which
the structure (nested CWC compartments) of the terms is the
same over all the simulation instances at a given time. In
this category are biochemical and homogeneous mono-stable
systems. Unfortunately they are ones that can be better studied
with not stochastic approaches (e.g. ODEs). Symmetrically,
multi-stable and oscillatory systems (as the presented Neu-
rospora model) are in the worst case scenario.

Table I reports execution time of the Neurospora model on
the NVidia Tesla K40 (in a Intel quad-core i3 system) against
multi-core version running on 32 cores. Due to divergence,
the GPGPU succeed to exploit only a fraction of its peak
power, being anyway two-fold faster with respect to multi-
core version. Observe that the result is possible thanks to the
CWC design which manages blocks of simulations a FastFlow
stream, splitting them in successive quantum and implementing
a load re-balancing strategy after the computation of each
quantum. As can be noticed in Table I, quantum size negligibly
affects multi-core performance whereas significantly affects
GPGPU performance. It eventually makes it possible to tune
the same code to platforms with quite different hardware
execution models.

VI. CONCLUSION

Seamless code portability and performance portability will
be of paramount importance for next generation parallel pro-
gramming frameworks. FastFlow approaches the problem with
a pattern-based approach and low-overhead run-time support.

In this work we described how a quite complex appli-
cation, the CWC simulation-analysis pipeline, once designed
with the high-level FastFlow pattern-based methodology, has
been ported from multi-core to clusters/cloud to GPGPU with
limited source code changes. In all cases the application
exploits both pipeline parallelism between simulation an anal-
ysis stages and either stream or data parallelism within both
stages. Analysis of results is performed by evaluating statistical
estimators and data mining on streams, thus are computed
while simulation are still running.

Notably, the high-level approach supports code portability
and performance exploitation on a wide range of platforms but
also provides the designer with a number of knobs supporting
optimisation and performance tuning the configuration level,
thus significantly improving applications time-to-market.
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