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Abstract		26	

Amplicon	targeted	high-throughput	sequencing	has	become	a	popular	tool	for	the	culture-27	

independent	analysis	of	microbial	communities.	Although	the	data	obtained	with	this	28	

approach	are	portable	and	the	number	of	sequences	available	in	public	databases	is	29	

increasing,	no	tool	has	been	developed	yet	for	the	analysis	and	presentation	of	data	obtained	30	

in	different	studies.	This	work	describes	an	approach	for	the	development	of	a	database	for	31	

the	rapid	exploration	and	analysis	of	data	on	food	microbial	communities.	Data	from	32	

seventeen	studies	investigating	the	structure	of	bacterial	communities	in	dairy,	meat,	33	

sourdough	and	fermented	vegetable	products,	obtained	by	16S	rRNA	gene	targeted	high-34	

throughput	sequencing,	were	collated	and	analysed	using	Gephi,	a	network	analysis	software.	35	

The	resulting	database,	which	we	named	FoodMicrobionet,	was	used	to	analyse	nodes	and	36	

network	properties	and	to	build	an	interactive	web-based	visualisation.	The	latter	allows	the	37	

visual	exploration	of	the	relationships	between	Operational	Taxonomic	Units	(OTU)	and	38	

samples	and	the	identification	of	core-	and	sample-	specific	bacterial	communities.	It	also	39	

provides	additional	search	tools	and	hyperlinks	for	the	rapid	selection	of	food	groups	and	40	

OTUs	and	for	rapid	access	to	external	resources	(NCBI	taxonomy,	digital	versions	of	the	41	

original	articles).	Microbial	interaction	network	analysis	was	carried	out	using	CoNet	on	42	

datasets	extracted	from	FoodMicrobionet:	the	complexity	of	interaction	networks	was	much	43	

lower	than	that	found	for	other	bacterial	communities	(human	microbiome,	soil	and	other	44	

environments).	This	may	reflect	both	a	bias	in	the	dataset	(which	was	dominated	by	45	

fermented	foods	and	starter	cultures)	and	the	lower	complexity	of	food	bacterial	46	

communities.		47	

Although	some	technical	challenges	exist,	and	are	discussed	here,	the	net	result	is	a	valuable	48	

tool	for	the	exploration	of	food	bacterial	communities	by	the	scientific	community	and	food	49	

industry.	50	
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	51	

Key	words	Food	bacterial	communities;	Network	analysis;	16S	rRNA	amplicon-based	high-52	

throughput	sequencing.	53	

	54	

1.	Introduction	55	

	56	
The	degree	of	complexity	of	the	microbiota	that	potentially	impacts	on	food	quality	and	safety	57	

is	extremely	variable.	In	both	fermented	and	non-fermented	foods,	the	type	of	contaminating	58	

microbiota	can	initially	be	rather	diverse,	reflecting	mainly	the	original	microbiota	of	the	raw	59	

material,	processing,	handling	and	storage	conditions	and	the	level	of	good	manufacture	60	

practice	(Bokulich	et	al.,	2012;	Bokulich	and	Mills,	2013;	Chaillou	et	al.,	2015,	Cocolin	and	61	

Ercolini,	2015;	De	Filippis	et	al.,	2013).	However,	depending	on	the	storage	conditions	and	62	

other	extrinsic	factors,	only	a	few	species	and	strains	will	be	able	to	develop	sufficiently	in	the	63	

food	matrix	to	significantly	affect	the	food	quality	(by	spoilage	or	fermentation)	or	safety.		64	

The	methods	employed	to	study	microbes	and	microbial	diversity	in	foods	have	evolved,	and	65	

in	turn,	have	also	revolutionized	our	overall	understanding	of	the	microbial	ecology	of	foods	66	

(Cocolin	and	Ercolini,	2015).	The	culture-independent	evaluation	of	food	microbial	diversity	67	

by	high-throughput	rRNA	gene	sequencing	has	become	an	increasingly	popular	approach	to	68	

food	microbiology.	After	microbial	nucleic	acid	extraction	from	the	food,	the	DNA	(or	cDNA	in	69	

cases	where	RNA	was	targeted)	is	used	as	a	template	to	amplify	variable	regions	within	or	70	

across	the	rRNA	genes	of	bacteria	(16S)	or	fungi	(internal	transcribed	spacer	[ITS]	or	other	71	

target)	and	an	amplicon	library	is	then	sequenced	using	high-throughput	sequencing	(HTS;	72	

Ercolini,	2013)	platforms.	The	result	is	a	food	(sample)-specific	profile	of	the	microbiota	73	

where	all	the	microbial	entities	are	identified	at	variable	taxonomic	depth.	Based	on	the	74	

number	of	sequence	reads	assigned	to	a	given	taxon,	the	relative	abundance	of	each	identified	75	

operational	taxonomic	unit	(OTU)	can	be	determined.	Therefore,	for	each	food	sample	76	
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analysed,	a	clear	understanding	of	the	composition	and	relative	abundances	of	the	77	

microorganisms	populating	the	food	at	that	time	can	be	provided.	The	advantages	and	78	

disadvantages	of	this	methodology	have	been	discussed	elsewhere	(Bokulich	and	Mills,	2013;	79	

Ercolini,	2013).		80	

Many	different	sequencing	technologies	are	available	for	the	generation	of	sequence	data		81	

(Glenn,	2011.	http://www.molecularecologist.com/next-gen-fieldguide-2014).	Regardless	of	82	

how	the	data	is	generated,	accurate	data	analysis	tools	are	pivotal	in	any	study	of	microbial	83	

ecology;	from	quality	filtering	to	graphical	representations,	the	software	and	the	algorithms	84	

selected	can	greatly	impact	on	the	results	and	interpretation.	Essential	steps	in	any	analysis	85	

pipeline	include	post-sequencing	quality	checking	(based	on	both	length	and	quality	scores),	86	

clustering	into	OTUs,	chimera	removal,	alignment,	taxonomical	assignment	and	diversity	87	

analysis.	The	choice	of	the	pipeline	has	been	proven	to	significantly	affect	the	results	in	terms	88	

of	estimated	diversity	and	microbial	community	structure	(May	et	al.,	2014).	Diversity	can	be	89	

calculated	from	both	a	within	sample	(alpha	diversity)	and	between	sample	perspective	(beta	90	

diversity).	Numerous	packages	have	been	developed	for	rRNA	gene	amplicon	data	analysis,	91	

primarily	designed	for	UNIX	based	operating	systems.	The	most	widely	used	packages	are	92	

QIIME	(Caporaso	et	al,	2010)	and	MOTHUR	(Schloss	et	al.,	2009).	They	have	become	popular	93	

because	they	provide	a	pre-compiled	and	user-friendly	analysis	pipeline,	but	also	due	to	their	94	

constant	maintenance	and	updates.		95	

Beyond	the	power	linked	to	the	sensitivity	and	the	throughput	of	sequencing-based	96	

microbiota	analysis,	a	fundamental	advantage	is	the	possibility	of	using	the	raw	sequence	data	97	

in	meta-studies.	In	fact,	in	contrast	to	previous	culture-independent	approaches,	the	98	

sequencing-based	tools	offer	the	unprecedented	advantage	of	making	the	results	readily	99	

available	for	the	scientific	community	through	the	deposit	of	the	sequences	in	public	100	

databases	(e.g.	the	Sequence	Read	Archive	(SRA)	of	the	National	Center	for	Biotechnology	101	
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Information	(http://www.ncbi.nlm.nih.gov/Traces/sra)	or	the	European	Nucleotide	Archive	102	

of	the	European	Bioinformatics	Institute	(http://www.ebi.ac.uk/ena).	This	allows	researchers	103	

to	easily	access	datasets	corresponding	to	diverse	food	samples	generated	by	different	104	

laboratories	and	with	different	scopes.		105	

Network	analysis	(Newman	et	al.,	2006)	tools	have	recently	been	used	to	provide	effective	106	

and	information	dense	displays	of	microbial	communities	for	several	environments	(de	107	

Menezes	et	al.,	2014;	Deng	et	al.,	2012;	Muegge	et	al.,	2011;	Zhou	et	al.,	2011a),	including	108	

foods	(Chaillou	et	al.,	2015;	De	Filippis	et	al.,	2013;	De	Filippis	et	al.,	2014;	Dolci	et	al.,	2014;	109	

Ercolini	et	al.,	2013;	Oakley	et	al.,	2013).	In	a	network	representation,	objects	(OTUs	and/or	110	

samples)	represent	the	nodes	(or	vertices),	and	are	connected	by	links	(edges).	The	edges	can	111	

be	directed	(i.e.	when	the	direction	of	the	connection	is	of	importance)	or	undirected	and	are	112	

usually	associated	with	a	weight.	The	latter	can	store	information	on	the	abundance	of	an	OTU	113	

in	a	sample	or	the	probability	of	a	significant	co-occurrence/co-exclusion	relationship.	114	

Two	types	of	displays	have	been	used	in	microbial	ecology.	In	OTU	-	sample	nets,	the	network	115	

is	bipartite	i.e.	two	types	of	nodes	exist,	sample	and	OTU	nodes,	and	connections	occur	only	116	

between	samples	and	associated	OTUs.	Conversely,	co-occurrence/co-exclusion	networks,	117	

which	show	significant	positive	or	negative	interactions	among	members	of	microbial	118	

communities	have	rarely	(Chaillou	et	al.,	2015;	Mounier	et	al.,	2008;	Oakley	et	al.,	2013)	been	119	

used	in	food	microbial	ecology,	but	have	been	successfully	applied	to	the	study	of	the	120	

microbial	communities	of	a	variety	of	environments	(miscellaneous	environments:	Deng	et	al.,	121	

2012;	water:	Liu	et	al.,	2014;	soil:	Zhou	et	al.,	2011a)	and	for	the	human	microbiome	(Faust	et	122	

al.,	2012).	The	methods	and	models	used	to	derive	interaction	networks	have	been	reviewed	123	

by	Faust	and	Raes	(2012)	and,	although	they	are	riddled	by	pitfalls	related	to	the	structure	of	124	

the	data	and	to	the	sensitivity	to	the	methods	and	parameters	selected	in	the	analysis	(Faust	125	

and	Raes,	2012;	Kuczynski	et	al.,	2010),	they	offer	significant	advantages	with	respect	to	126	
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detecting	biologically	and	ecologically	relevant	relationships	among	members	of	microbial	127	

communities.	128	

The	number	of	HTS	studies	of	food	microbial	communities	has	been	increasing	steadily	in	129	

recent	years	(Mayo	et	al.,	2014),	but	the	information	is	dispersed	in	a	large	number	of	papers,	130	

each	analysing	a	single	or	a	limited	range	of	foods.	It	is	therefore	tempting	and	timely	to	131	

collect	and	integrate	data	from	several	studies	in	such	a	way	that	the	results	can	be	readily	132	

searched	and	visualized,	even	by	relatively	inexperienced	users.	With	the	aim	of	providing	133	

flexible	means	for	meta-studies	in	food	microbial	ecology,	here	we	present	FoodMicrobionet,	134	

a	database	and	visualisation	tool	based	on	network	analysis,	and	some	examples	of	the	135	

potential	of	the	tool	in	terms	of	data	display	and	analysis.	136	

	137	

2.	Material	and	methods	138	

2.1.	Data	sources	139	

FoodMicrobionet	1.0	includes	data	from	17	studies,	on	dairy	products,	dairy	starter	cultures,	140	

raw	and	fermented	meat,	doughs	and	sourdoughs,	or	fermented	vegetables.	The	list	of	studies,	141	

with	information	on	the	sequencing	platforms,	software	employed	for	bioinformatics	analysis,	142	

and	the	databases	used	for	OTU	assignment	is	shown	in	Table	1.	143	

2.2	Data	tables	144	

Abundance	 tables,	 including	 taxonomic	 lineages	 for	 each	 OTU,	 were	 obtained	 from	 each	145	

contributor	 and	 transformed	 in	 tab-delimited	 nodes	 and	 edges	 tables,	 which	were	 collated	146	

and	 curated	 to	 remove	 duplicates.	 The	 node	 and	 edge	 tables	 and	 their	 specifications	 are	147	

provided	in	section	1	of	Supplementary	Material.	148	

2.3.	Network	analysis	149	

2.3.1.	OTU	-	Food	network	150	
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The	edges	tables	were	imported	in	Gephi	0.8.2-beta	(http://gephi.github.io/;	Bastian	and	151	

Jacomy,	2009)	using	the	"Import	spreadsheet"	feature.	Nodes	tables	were	then	imported	to	152	

retrieve	the	metadata	for	each	node.	Statistics	(degree	and	weighted	degree,	centrality	153	

statistics,	network	diameter,	graph	density,	average	path	length)	were	then	calculated	for	154	

each	node	and	for	the	network	using	the	statistical	module	of	Gephi.	A	glossary	of	terms	for	155	

node	and	network	statistics	is	provided	in	Table	2.	Styles	were	then	applied	to	the	nodes	to	156	

enhance	the	display:	the	colour	of	the	node	was	attributed	on	the	basis	of	a	custom	field	157	

containing	families	for	OTUs	and	Food	subgroup	for	samples;	the	size	of	the	nodes	was	made	158	

proportional	to	the	weighted	degree	of	the	node;	edge	thickness	was	made	proportional	to	the	159	

weight	of	the	connection.	A	Yfan	Hu	force	based	layout	algorithm	was	finally	applied	(Hu,	160	

2006).	Simplified	versions	of	the	networks	were	obtained	by	filtering.	The	whole	network	was	161	

then	exported	for	web	visualisation	using	the	Sigmajs	exporter	plugin	of	Gephi.	162	

2.3.2.	Microbial	interaction	networks	163	

Microbial	interaction	networks	were	generated	for	selected	groups	of	samples	extracted	from	164	

FoodMicrobionet	using	the	CoNet	app	(Faust	et	al.,	2012)	of	Cytoscape	3.2.1.	OTU	abundance	165	

(as	number	of	sequences	per	sample)	tables	were	then	imported	using	CoNet,	and	five	166	

methods	(Pearson,	Spearman,	Mutual	information,	Bray	Curtis,	Kullback-Leibler)	were	used	167	

to	mine	for	significant	co-occurrence/co-exclusion	relationships.	Null	distributions	were	168	

generated	using	the	edge-scores	routine	and	random	distributions	using	the	bootstrap	169	

routine.	Brown's	method	was	used	to	merge	method	specific	p-values	and	the	Benjamini	170	

Hochberg	method	was	used	to	adjust	the	p-values	for	multiple	testing.	Interactions	were	171	

evaluated	for	both	low	level	taxa	and	high	level	taxa,	but	a	parent	child	exclusion	filter	was	172	

used	to	avoid	interactions	between	a	high	level	taxon	and	its	members	(e.g..	between	173	

Lactobacillaceae	and	members	of	the	genus	Lactobacillus).	To	simplify	network	visualisations,	174	

interactions	with	high	level	taxa	were	included	only	if	they	did	not	duplicate	interaction	due	175	
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to	a	lower	level	taxon	(i.e.	if	Lactobacillales	and	Lactobacillus	delbrueckii	shared	the	same	176	

interactions,	the	former	node	was	removed).	Topological	properties	of	the	interaction	177	

networks	were	evaluated	using	the	NetworkAnalyzer	tool	of	Cytoscape.	178	

	179	

3.	Results	and	discussion	180	

3.1.	Building	FoodMicrobionet:	a	bipartite	OTU-sample	network	for	food	bacterial	communities.	181	

The	main	purpose	of	FoodMicrobionet	is	to	provide	a	user-friendly	tool	to	explore	multiple	182	

datasets	generated	by	16S	rRNA	gene	amplicon	HTS	studies	of	food	bacterial	communities.	183	

The	flowchart	for	the	development	of	FoodMicrobionet	and	of	its	products	(visualisations,	184	

tables,	graphs)	is	shown	in	Fig.	1.	Data	from	seventeen	published	and	unpublished	studies	185	

(Table	1)	on	dairy	and	meat	products,	starter	cultures,	sourdoughs	or	fermented	vegetable	186	

products	(olives)	were	assembled	in	a	database	and	a	network	was	generated	using	Gephi	187	

0.8.2-beta.	The	network	has	964	OTU	nodes	and	552	sample	nodes,	with	18,115	edges	188	

(sample-OTU	relationships),	and	is	by	far	the	largest	such	collection	of	data	of	food	bacterial	189	

microbiota.		190	

Network	analysis	software	packages	such	as	Gephi	or	Cytoscape	(edges	and	nodes	files	191	

provided	in	supplementary	material	can	be	easily	imported	in	Cytoscape)	offer	a	wide	range	192	

of	filtering,	statistical	analysis	and	graphical	representation	options	but	require	some	193	

informatics	skills.	Therefore	an	interactive	network	visualisation	194	

(http://www.foodmicrobionet.org/fmbn1_0_3web/)	was	created	using	a	publicly	available	195	

plugin.	This	visualisation	allows	even	inexperienced	users	to	explore	FoodMicrobionet,	to	196	

select	individual	sample	or	OTU	nodes,	or	to	carry	out	group	selections	for	sample	and	OTU	197	

nodes.	Relevant	properties	for	both	OTU	and	food	sample	nodes	can	be	visualised	by	either	198	

clicking	on	nodes	or	by	selecting	them	using	a	search	field.	A	user	manual	for	the	web	199	

visualisation	is	provided	in	section	2	of	Supplementary	material.	200	
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Because	of	the	high	number	of	sample	and	OTU	nodes,	the	information	cannot	be	easily	201	

presented	into	a	readable	graph.	Therefore,	simplified,	filtered	and	node-labelled	sub-202	

networks	for	meats,	sourdoughs	and	dairy	foods	are	shown	in	Fig.	2.	The	common	features	203	

found	in	OTU-sample	networks	previously	published	(De	Filippis	et	al.,	2013;	De	Filippis	et	al.,	204	

2014;	Dolci	et	al.,	2014;	Ercolini	et	al.,	2013)	are	evident:	sample	nodes	with	similar	205	

microbiota		occupy	defined	areas	of	the	graph	and	are	close	to	the	OTU	nodes	that	dominate	206	

their	microbiota.	This	allows	to	identify	easily	the	dominant,	core	and	minor	OTUs,	that	can	be	207	

clearly	distinguished	by	their	position	and	by	their	node	size.	208	

Taxon	specific	sub-networks	can	be	easily	extracted.	Examples	for	members	of	the	families	209	

Pseudomonadaceae	and	Enterobacteriaceae	are	presented	in	Supplementary	Fig.	S1	and	S2.	In	210	

this	version	of	the	display	the	size	of	sample	nodes	is	related	to	the	cumulative	abundance	of	211	

the	taxon	and	the	size	of	the	OTU	nodes	is	related	to	the	cumulative	abundance	of	the	OTU	in	212	

the	sub	network.	Edge	thickness	gives	an	estimate	of	the	abundance	of	a	given	OTU	in	each	213	

sample,	while	colours	can	be	used	to	estimate	the	relative	abundance	of	food	groups	in	which	214	

the	selected	taxon	is	found.	215	

The	node	degree	distribution	for	OTU	nodes	is	shown	in	Supplementary	Fig.	S3.	The	216	

distribution	fits,	albeit	with	a	relatively	low	R2	(0.832),	a	power	law	distribution	with	an	217	

exponent	(g)	of	1.12±0.04.	Node	degree	power	law	distributions	are	indicative	of	a	scale-free	218	

network	(Dunne	et	al.,	2002;	Newman	et	al.,	2006).	Such	networks	are	widely	distributed	in	219	

all	fields	(social	networks,	internet	networks,	power	grids,	bibliographic	networks)	and	share	220	

several	properties.	They	are	usually	large	and	complex,	highly	connected	(large	average	221	

degree),	with	a	high	number	of	nodes	with	low	degree	(in	the	case	of	FoodMicrobionet	OTUs	222	

which	are	found	only	in	one	or	few	food	samples)	but	with	a	small	numbers	of	OTUs	223	

connected	to	a	large	number	of	samples	(i.e.	the	'signature'	OTUs	which	make	the	core	224	

microbiota	of	a	given	group	of	food	samples).	Because	FoodMicrobionet	1.0	includes	different	225	
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food	groups,	several	signature	OTUs	with	high	degree	are	found,	and	this	may	affect	the	fit	of	226	

the	power	law	distribution.		227	

FoodMicrobionet	can	also	be	used	to	obtain	further	information	on	distribution	of	taxa	in	228	

different	food	groups	by	filtering	and	recalculation	from	nodes	and	edges	tables.	Information	229	

on	dominating	OTUs	can	be	gathered	by	plots	showing	the	weighted	degree	distribution	(i.e.	230	

how	abundant	an	OTU	is	in	the	whole	dataset	or	in	a	subset)	as	a	function	of	relative	231	

occurrence	(i.e.	the	fractions	of	samples	in	which	an	OTU	is	found).	An	example	for	raw	meat	232	

is	shown	in	Fig.	3.	Further	examples	for	raw	milk	and	mozzarella	are	shown	in	Supplementary	233	

Fig.	S4	and	S5.	More	traditional	plots	for	OTU	distribution	can	also	be	obtained.	An	example	of	234	

the	distribution	of	OTU	belonging	to	different	phyla	in	different	food	groups	is	shown	in	235	

Supplementary	Fig.	S6.	236	

	237	

3.2.	Microbial	interaction	networks.	238	

Microbial	interaction	networks	may	help	in	formulating	inferences	on	the	phenomena	239	

underlying	the	structure	of	food	microbial	communities,	from	co-occurrence	or	co-exclusion	240	

patterns	due	to	the	occupation	of	different	niches	or	to	selective	conditions	allowing	the	241	

growth	of	a	subset	of	taxa,	to	relationships	such	as	amensalism,	commensalism,	symbiosis,	242	

etc.	The	inference	of	microbial	interactions	is	still	affected	by	pitfalls:	the	results	may	be	243	

strongly	affected	by	the	level	of	coverage	of	the	microbial	community,	by	the	bioinformatics	244	

pipelines	used	with	specific	options	for	clustering	of	the	sequences	and	taxonomic	245	

assignment,	by	the	procedures	used	in	normalization	and	by	the	methods	used	to	estimate	the	246	

relationships,	etc.	However,	robust	methods	have	been	developed	to	perform	this	analysis	247	

(Faust	et	al.,	2012).	Since	OTU	abundance	tables	were	available	for	all	datasets	included	in	248	

FoodMicrobionet,	we	explored	co-occurrence/mutual	exclusion	patterns	for	all	datasets	for	249	

which	a	high	enough	number	of	samples	was	available.	Statistics	for	all	interaction	networks	250	
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are	shown	in	Table	3	but	a	detailed	discussion	of	microbial	interactions	is	beyond	the	scope	of	251	

this	paper	and	only	two	examples	are	discussed	below.	252	

A	microbial	interaction	network	for	the	kefir	dataset	(Marsh	et	al.,	2013)	is	shown	in	Fig.	4.	253	

The	dataset	included	milk	kefir	and	grains	from	different	sources.	Due	to	the	very	simple	254	

structure	of	bacterial	communities	in	kefir	and	kefir	grains	only	a	few	interactions	were	255	

significant.	The	network	has	a	very	low	complexity	(7	nodes,	average	degree	3.41	and	average	256	

path	length	2.19),	with	a	clustering	coefficient	of	0.714,	and	no	fit	of	the	power	law	for	the	257	

node	degree	distribution.	The	occurrence	of	Acetobacter	was	negatively	related	with	the	258	

occurrence	of	Lactobacillales	and	that	of	Lactobacillus	with	Leuconostoc,	Lactococcus	and	259	

Streptococcus.	In	fact,	while	Lactobacillus	dominated	the	kefir	grain	microbiota,	the	latter	260	

genera	showed	a	better	ability	to	grow	in	milk	kefir.	Members	of	the	family	Lachnospiraceae,	a	261	

minor	group	in	the	kefir	microbiota,	also	systematically	occurred	in	kefir	grains,	while	they	262	

were	almost	always	absent	in	milk	kefir.	On	the	other	hand,	the	co-exclusion	relationship	with	263	

Acetobacter	was	observed	in	both	grains	and	milk	and	may	reflect	conditions	for	storage	and	264	

production	of	kefir.	265	

A	very	complex	interaction	network	was	obtained	for	the	beef	dataset	(De	Filippis	et	al.,	266	

2013).	The	dataset	included	swabs	from	different	points	of	bovine	carcasses	cuts	and	267	

beefsteaks	obtained	thereof,	sampled	at	0	days	and	after	7	days	of	aerobic	storage	at	4°C,	for	268	

two	different	samplings.	The	full	network	is	shown	in	Supplementary	Fig.	S7,	while	a	269	

simplified	version,	including	only	the	most	abundant	taxa,	is	shown	in	Fig.	5A,	together	with	270	

the	interaction	network	inferred	for	spoiled	beef	steak	samples	(Fig.	5B).		The	complexity	of	271	

co-occurrences	and	mutual	exclusions	in	fresh	raw	meat	mainly	reflects	the	high	diversity	of	272	

bacterial	communities	(Fig.	S7,	Fig.	5A).	Significant	interactions	among	the	most	abundant	273	

taxa	(Moraxellaceae,	Pseudomonadaceae,	Aerococcaceae,	Staphylococcaceae,	274	

Flavobacteriaceae,	Rhodobacteriaceae	and	Corynebacteriaceae	on	carcass	swabs	and	freshly	275	
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cut	beefsteaks;	Pseudomonaceae,	Listeriaceae,	Moraxellaceae	and	Enterobacteriaceae	on	276	

spoiled	steaks)	confirm	the	co-occurrence	and	mutual	exclusion	patterns	due	to	different	277	

samplings,	different	cuts,	and	spoilage	described	by	De	Filippis	et	al.	(2013).		Spoilage	278	

dramatically	reduced	diversity	(De	Filippis	et	al.,	2013)	and	simplified	the	microbial	279	

interaction	network	(Fig.	5B).	The	co-occurrence	relationship	between	Acinetobacter	280	

guillouiae	(a	species	occurring	at	low	abundance)	and	Enterobacteriaceae	is	independent	of	281	

the	sampling	and	of	the	cut.	On	the	other	hand	the	mutual	exclusion	relationship	between	282	

Staphylococcus	equorum	and	Serratia	is	clearly	related	to	the	contamination	patterns	of	the	283	

beef	cuts,	with	the	former	species	occurring	systematically	in	thick	flank	cuts	and	members	of	284	

the	genus	Serratia	occurring	in	brisket	and	chuck	cuts.	The	last	set	of	interactions	reflects	285	

different	spoilage	environments.	In	fact,	the	dominating	spoilage	organism	was	Pseudomonas	286	

in	sampling	1	and	Brochothrix	in	sampling	2	(De	Filippis	et	al.,	2013).	Carnobacterium,	287	

Acinetobacter	johnsonii,	Chryseobacterium	and	members	of	the	class	Actinobacteria	also	288	

occurred	more	frequently	in	beef	steaks	from	sampling	1.	289	

The	interaction	networks	inferred	in	our	study	(Table	3)	are	less	complex	(sometimes	290	

dramatically)	than	those	inferred	for	environmental	bacterial	communities	(Deng	et	al.,	2012)	291	

or	for	the	human	microbiome	(Faust	et	al.,	2012).	In	addition,	they	do	not	show	any	fit	of	the	292	

power	law	for	either	the	node	degree	distribution	or	the	clustering	coefficient/degree	293	

relationship,	showing	that	they	are	neither	scale-free	nor	show	a	hierarchical	structure.	294	

However,	the	average	clustering	coefficient	is	often	higher	than	that	of	random	networks	with	295	

the	same	size	and	average	degree.	In	general,	interaction	networks	for	fermented	or	spoiled	296	

foods	show	the	lowest	complexity,	and	a	high	correlation	(r=0.92)	was	found	between	the	297	

number	of	OTUs	detected	in	the	dataset	and	the	number	of	nodes	in	the	interaction	network.	298	

More	complex	networks,	with	>20	nodes	were	obtained	when	raw	foods	(milk,	meat)	were	299	

included	in	the	dataset	or	when	the	dataset	reflected	different	environments	(milk	and	300	
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cheese,	Dolci	et	al.,	2014;	Mozzarella	produced	with	different	acidification	methods,	Guidone	301	

et	al.,	2015;	raw	and	spoiled	meat,	different	cuts	and	samplings,	De	Filippis	et	al.,	2013).	In	302	

contrast,	Deng	et	al.	(2012)	published	figures	on	a	wide	range	of	complex	bacterial	interaction	303	

networks	from	environmental	or	human	sources:	the	network	size	ranged	from	107	to	254	304	

nodes,	the	node	degree	distribution	showed	a	good	fit	of	the	power	law	for	all	networks	and	305	

the	modularity	(which	measures	the	occurrence	of	modules	which	are	strongly	306	

interconnected)	was	significantly	higher	than	that	of	random	networks,	while	the	occurrence	307	

of	a	hierarchical	structure	was	variable.	Moreover,	the	bacterial	interaction	network	of	the	308	

human	microbiome	(Faust	et	al.,	2012)	included	197	phylotypes	with	3005	significant	309	

interactions.	The	network	showed	a	good	fit	of	the	power	law	model	for	the	node	degree	310	

distribution	but	did	not	show	a	strong	hierarchical	structure,	although	the	occurrence	of	body	311	

site	modules	was	found.	Several	factors	may	contribute	to	the	lower	complexity	of	microbial	312	

interaction	networks	for	food.	Food	microbial	communities,	and	fermented	food	communities	313	

in	particular,	are	dramatically	less	complex	than	those	found	in	environmental	samples	or	in	314	

the	human	or	animal	microbiome,	and	therefore	a	lower	number	of	sequences	is	generally	315	

sufficient	to	obtain	a	high	coverage	as	it	can	be	predicted	by	alpha	rarefaction	analyses	316	

(Ercolini,	2013).	This	may	prevent	the	detection	of	significant	interactions	for	minor	OTUs.	317	

Finally,	the	interactions	detected	in	this	study	mainly	reflect	co-occurrence	and	mutual	318	

exclusion	patterns	in	different	food	environments,	and	although	they	in	some	cases	may	319	

suggest	true	positive	(commensalism,	mutualism)	or	negative	(competition,	amensalism)	320	

interactions	(Gram	et	al.,	2002;	Ivey	et	al.,	2013),	these	should	be	confirmed	in	independent	321	

experiments.		322	

	323	

3.3.	Future	perspectives.	324	
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Both	the	web	visualisation	and	the	full	or	filtered	networks	obtained	from	Gephi,	although	325	

visually	pleasing	and	informative,	are	somewhat	naïve	and	should	be	interpreted	with	326	

caution.	The	meta-analyses	based	on	sequencing	data	published	by	different	laboratories	327	

carry	some	inevitable	bias	due	to	differences	in	data	generation	and	processing.	These	include	328	

possible	differences	from	sample	handling	through	nucleic	acid	extraction,	variable	16S	329	

region	chosen	as	target,	library	purification	and	preparation,	sequencing	technology	and	330	

parameters,	sequencing	depth	/	sample	coverage	(Ercolini,	2013).	Furthermore,	it	is	331	

important	to	underline	that	the	exact	bioinformatics	path	chosen	for	the	analysis	can	have	a	332	

strong	impact	too	(May	et	al.,	2014),	and	will	have	to	be	taken	into	account	for	a	possible	333	

standardization	of	the	data	handling	and	usage.	In	addition,	detection	of	rare	OTUs	might	be	334	

affected	by	biases	and	reproducibility	and	repeatibility	issues	(Benson	et	al.,	2014;	Guidone	et	335	

al.,	2015;	Pinto	and	Raskin,	2012;	Zhou	et	al.,	2011b).	To	take	this	into	account	it	may	be	336	

advisable	to	compare	different	studies	at	a	lower	taxonomic	resolution	and	exclude	rare	OTU	337	

from	the	comparisons.	This	can	be	easily	done	by	processing	data	tables	from	338	

FoodMicrobionet.	An	example	of	a	filtered	network	is	shown	in	Supplementary	Fig.	S8.	In	this	339	

case,	OTUs		belonging	to	the	same	genus	were	merged,	and	the	interactive	web	visualisation	is	340	

available	at	http://www.foodmicrobionet.org/fmbn1_0_3gweb/.	341	

Therefore,	for	a	future	larger	scale	meta-analysis	it	would	be	advisable	to,	as	a	minimum	342	

requirement,	process	the	sequences	with	the	same	standardized	flow	in	order	to	limit	at	least	343	

the	post-sequencing	bias	of	the	analysis.	Unfortunately	an	optimized	bioinformatics	pipeline	344	

is	still	not	available	for	food	microbial	communities.	Most	studies	in	FoodMicrobionet	were	345	

carried	out	using	the	same	sequencing	platform	and	similar	or	identical	bioinformatics	346	

pipelines	(Table	1)	and	direct	comparisons	among	studies	can	be	carried	out	with	a	good	347	

degree	of	confidence.		348	
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With	these	limitations	in	mind,	the	approach	used	here	provides	an	appealing	means	for	349	

microbiologists	and	food	scientists	dealing	with	food	microbial	community	metadata	analysis	350	

by	(a)	providing	access	to	a	large	set	of	curated	data	on	the	occurrence	of	different	taxa	in	351	

foods	most	of	which	were	obtained	from	studies	published	in	peer	reviewed	journals,	thus	352	

facilitating	the	process	of	formulating	and	validating	hypotheses	on	the	structure	and	353	

dynamics	of	food	bacterial	communities	and	writing	original	articles	and	reviews;	(b)	354	

fostering	open	access	to	microbial	ecology	data	by	making	curated	nodes	and	edges	tables	355	

publicly	available;	(c)	improving	our	understanding	of	the	ecology	of	spoilage-associated	and	356	

beneficial	microorganisms;	and	(d)	providing	information	on	the	structure	of	bacterial	357	

communities	in	raw	materials,	fermented	and	spoiled	foods	which	can	be	used	for	food	358	

process	development.	359	

While	only	part	of	this	information	is	available	through	the	online	visualisation,	the	latter	360	

provides	a	simple	interactive	interface	to	explore	the	microbial	ecology	of	the	food	361	

environments	included	in	FoodMicrobionet	1.0.	Experienced	users	can	import	the	nodes	and	362	

edges	files	provided	as	supplementary	material	in	a	variety	of	spreadsheet,	statistical	or	363	

network	analysis	software	packages	to	carry	out	graphical	and	statistical	analyses	or	to	364	

generate	their	own	networks.		365	

Future	plans	include	(a)	expanding	the	network	to	other	food	matrices	and	food	366	

environments;	(b)	implementing	an	optimized	data	analysis	pipeline	to	standardize	the	367	

treatment	of	the	raw	data;	and	(c)	the	addition	of	metadata	describing	food	properties	in	368	

order	to	speculate	on	relevant	ecological	factors	driving	microbial	interactions	and	to	allow	369	

the	selection	of	FoodMicrobionet	sub	networks	with	defined	range	of	specific	ecological	370	

factors.	Contributions	from	other	research	groups	will	be	welcome.	Details	on	the	submission	371	

procedure	are	provided	in	section	3	of	Supplementary	Materials.	372	
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Ultimately,	FoodMicrobionet	will	allow	all	researchers	in	the	food	microbiology	to	benefit	373	

from	the	significant	advances	that	HTS	is	providing	in	this	key	field	of	research.		374	

	375	
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Figure	legends	517	

	518	

Figure	1.	Flowchart	of	the	development	of	FoodMicrobionet	v	1.0.	FoodMicrobionet	is	a	519	

curated	database	of	HTS	studies	on	food	bacterial	communities	which	is	implemented	in	520	

Gephi	0.8.2,	a	network	analysis	software.	The	network	file	can	then	be	used	to	generate	a	521	

variety	of	products	for	visual	and	statistical	analysis.	522	

Figure	2.	Filtered	(only	OTU	nodes	with	a	cumulative	abundance	>5%	are	shown)	for	raw	523	

meat	(A)	sourdough	samples	(B)	and	dairy	products	and	starters	(C)	extracted	from	524	

FoodMicrobionet	1.0.	Node	colour	(grey	scale	for	food	subgroups	for	sample	nodes	or	525	

bacterial	family	of	OTU	nodes)	is	used	to	highlight	different	sample	and	OTU	nodes.	Style	526	

features	are	used	to	enhance	the	graph:	node	size	is	related	to	the	weighted	degree	(i.e.	527	

cumulative	abundances	for	OTUs)	while	edge	thickness	is	proportional	to	the	abundance	of	an	528	

OTU	in	a	given	sample.	Areas	of	the	graph	in	which	samples	belonging	to	a	given	group	are	529	

more	abundant	are	enclosed	by	dashed	lines.	530	

Figure	3.	Relative	occurrence/	weighted	degree	scatterplot	for	OTU	nodes	in	raw	meat	531	

samples	(De	Filippis	et	al.,	2013).	Only	nodes	with	and	weighted	degree	>1	are	shown.	532	

Different	symbols	are	used	for	members	of	different	phyla	and	the	identity	of	nodes	with	a	533	

weighted	degree	>5	is	shown.	534	

Figure	4.	Microbial	interaction	network	for	the	kefir	dataset	(Marsh	et	al.,	2013).	Each	node	535	

represents	an	OTU.	Interactions	were	evaluated	at	different	taxonomic	levels.	Only	significant	536	

interactions	are	shown	(p<0.0004;	q<4x10-4).	Edges	showing	negative	interactions	(co-537	

exclusion)	are	coloured	red,	those	for	positive	interactions	in	green.	The	colour	of	nodes	538	

corresponds	to	the	class.	The	thickness	of	the	edges	reflect	the	level	of		significance	of	the	539	

supporting	evidence	for	the	association	(as	q-values,	0-4x10-4),	while	the	size	of	the	nodes	is	540	

proportional	to	their	degree.	541	
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Figure	5.	Microbial	interaction	network	for	the	beef	dataset	(De	Filippis	et	al.,	2013).	A	542	

simplified	network	for	all	samples	(non-spoiled	and	spoiled,	A)	and	the	full	interaction	543	

network	for	spoiled	beefsteaks	(B)	are	shown.	Each	node	represents	an	OTU	(only	low	level	544	

taxa	are	shown).	Interactions	were	evaluated	at	different	taxonomic	levels.	Only	significant	545	

interactions	are	shown	(p<0.0004;	q<4x10-4).	Edges	showing	negative	interactions	(co-546	

exclusion)	are	coloured	red,	those	for	positive	interactions	in	green.	The	colour	of	nodes	547	

corresponds	to	the	class.	The	thickness	of	the	edges	reflect	the	level	of	significance	of	the	548	

supporting	evidence	for	the	association	(as	q-values,	0-4x10-4),	while	the	size	of	the	nodes	is	549	

proportional	to	their	degree.	Actinobacteriac	refers	to	the	class	Actinobacteria.	550	

	551	


