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Abstract Third order WENO and CWENO reconstruction are widespread high
order reconstruction techniques for numerical schemes for hyperbolic conservation
and balance laws. In their definition, there appears a small positive parameter,
usually called ε, that was originally introduced in order to avoid a division by
zero on constant states, but whose value was later shown to affect the convergence
properties of the schemes. Recently, two detailed studies of the role of this param-
eter, in the case of uniform meshes, were published. In this paper we extend their
results to the case of finite volume schemes on non-uniform meshes, which is very
important for h-adaptive schemes, showing the benefits of choosing ε as a function
of the local mesh size hj . In particular we show that choosing ε = h2j or ε = hj
is beneficial for the error and convergence order, studying on several non-uniform
grids the effect of this choice on the reconstruction error, on fully discrete schemes
for the linear transport equation, on the stability of the numerical schemes. Finally
we compare the different choices for ε in the case of a well-balanced scheme for
the Saint-Venant system for shallow water flows and in the case of an h-adaptive
scheme for nonlinear systems of conservation laws and show numerical tests for a
two-dimensional generalisation of the CWENO reconstruction on locally adapted
meshes.

Keywords WENO · CWENO · non-uniform mesh · conservation and balance
laws · high-order methods

Mathematics Subject Classification (2000) 65M06 · 65M08

1 Introduction

Hyperbolic conservation and balance laws like

ut +∇ · f(u) = g(u, x) (1)

I. Cravero E-mail: isabella.cravero@unito.it · M. Semplice E-mail: matteo.semplice@unito.it
Dipartimento di Matematica “G. Peano” - Università di Torino - Via C. Alberto, 10 - 10123
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describe a wealth of phenomena, from gas dynamics, to magnetohydrodynamics,
to shallow water flows, that are of much practical interest in fields like the study of
industrial processes, simulation-based prototyping, forecasting of natural phenom-
ena for the design of early-warning systems and passive defences against natural
disasters, etc. Nonlinearities in the flux function f(u) give rise to very complex
solutions, whose efficient numerical approximation often requires Adaptive Mesh
Refinement (AMR) techniques, so that one can use fine meshes only in specific
regions of the flow, e.g. close to boundaries, shocks, contact discontinuities.

In the field of hyperbolic conservation laws, AMR has been achieved by su-
perimposing patches of uniform grids, thus representing and time-advancing the
solution at the same location on multiple meshes, taking care to maintain con-
servativity at mesh interfaces [3]. This approach undoubtedly has the advantage
that one can employ the very well-known and well-studied numerical schemes for
discretization on uniform meshes. Alternatively, one may consider a single mesh,
that can be locally refined, giving rise to an unstructured mesh. In this respect,
it is important to notice that finite-volume methods can be easily formulated also
on nonconforming meshes, like quad-tree ones, that can present hanging nodes.
This approach, albeit facilitating the grid management and enforcement of con-
servativity, requires the development of new discretization techniques, suitable for
irregular meshes.

The fact that, in smooth regions of the flow, schemes of order three and above
can compute accurate solutions on relatively coarse meshes is very important in
AMR schemes, because a good adaptive strategy will be able to exploit this by
leaving the mesh very coarse in smooth regions, and refining it only in a very
small region around problematic features. For example, in [23] a second and a
third order adaptive scheme with the same error indicator are compared, showing
that the second order one has to refine in a much larger region, giving rise to much
bigger meshes.

Since a successful technique for mesh adaptivity in the case of hyperbolic sys-
tems is expected to continuously refine and coarsen the mesh at different locations
in the computational domain, in our opinion it is important that discretization
techniques do not to rely on precomputed quantities related to the local mesh
geometry (see e.g. [11]). A good balance between the high accuracy and the small
stencil requirement are third order accurate schemes. In this work we thus concen-
trate on two third order reconstructions that employ very small stencils, for which
the needed metric information on the neighbours may be gathered efficiently at
every timestep and extend to the non-uniform case a technique that can squeeze
out from these small stencils a lot of extra accuracy with respect to the traditional
form of the discretization.

In order to fix the notation, we consider systems of balance laws with a ge-
ometric source term of the form (1) and we seek the solution on a domain Ω,
with suitable initial and boundary conditions. Although some two-dimensional
applications will be shown in the numerical experiments at the end of the paper,
the theory is developed in the one-dimensional case, in which the computational
domain Ω is an interval, discretized with cells Ωj = [xj−1/2, xj+1/2], such that
∪jΩj = Ω. The amplitude of each cell is hj = xj+1/2−xj−1/2, with the cell centre
being xj = (xj−1/2 + xj+1/2)/2.



Third order WENO and CWENO reconstructions on nonuniform meshes 3

We consider semidiscrete finite volume schemes and denote with

uj(t) =
1

hj

∫
Ωj

u(t, x) dx

the cell average of the exact solution in the cell Ij at time t and Uj(t) its numerical
approximation. The semidiscrete numerical scheme can be written as

d

dt
Uj = − 1

hj

(
Fj+1/2 − Fj−1/2

)
+Gj(U, x). (2)

The numerical fluxes Fj+1/2(t) should approximate f(u(t, xj+1/2)) with suitable
accuracy and are computed as a function of the so-called boundary extrapolated

data, i.e.

Fj+1/2 = F(U−j+1/2, U
+
j+1/2), (3)

where F is a consistent and monotone numerical flux, evaluated on two estimates
of the solution at the cell interface U±

j+1/2
, in turn obtained with a high order

non oscillatory reconstruction. The function F may be an upwind flux, (local)
Lax-Friedrichs, an approximate or exact Riemann solver, etc. Finally, Gj is a
consistently accurate, well balanced discretization of the cell average of the source
term on the cell Ωj , that in general requires the reconstruction of the point values
of the solutions also at inner points in the cell (see e.g. [20]).

One of the most successful high order reconstructions is the Weighted Essen-
tially Non-Oscillatory (WENO), whose first efficient implementation was described
in [12]. It is based on the observation that one may recover the value of high order
interpolating polynomials on a centred stencil as convex combination of the values
of lower order ones that interpolate the function only in a substencil (see [8] for
a comprehensive development of this idea). In particular, let Pj,λ(x) candidate
polynomial in the j-th cell. Typically, Pj,λ(x) will interpolate, in the sense of cell
averages, the data U in a stencil λ ∈ Λ, where Λ is the set of stencil considered in
the reconstruction.

Next, depending on the particular reconstruction being performed, one has one
or more sets of optimal weights Cλ such that the linear combination

∑
λ CλPj,λ(x)

has some desirable property, like coinciding with an higher order reconstruction
at some point in the j-th cell. For example, the WENO reconstruction is char-
acterised by two sets of optimal weights C±λ such that the combination of the

evaluated polynomials
∑
λ∈Λ C

±
λ Pλ(xj ± h

2 ) matches the value of the central re-
construction evaluated at the boundaries. The CWENO reconstruction instead
has only one set of optimal weights and computes the linear combination of the
candidate polynomials

∑
λ∈Λ CλPλ(x) which can then be evaluated where needed.

The weights of this convex combination are named linear weights but the actual
reconstruction is computed by a modified set of weights, the so-called nonlinear

weights, that are designed to be close to the linear ones in regions of smoothness
and close to zero if a discontinuity occurs in the corresponding substencil. In order
to achieve this, one considers suitable smoothness indicators, like those of [12] that
defined

Ij,λ =
∑
r≥1

(hj)
2r−1

∫
Ωj

[
P

(r)
j,λ (x)

]2
dx. (4)
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Note that these indicators are bounded even if the λ-th stencil contain a discon-
tinuity, while they approach 0 if the solution is smooth in the stencil. In order to
perform the reconstruction, one forms the nonlinear weights ωλ, with the help of
the regularity indicators as in

ω̃λ =
Cλ

(ε+ Ij,λ)τ
, ωλ =

ω̃λ∑
ξ∈Λ ω̃ξ

(5)

and considers the linear combination
∑
λ ωλPj,λ(x). The final result is a recon-

struction that is close to some higher order one (dictated by the choice of the
linear weights, often coinciding with the central one) in regions of smoothness
and degrades smoothly to a one-sided non-oscillatory one close to discontinuities.
Despite the absence of a formal proof of convergence for non- smooth solutions,
this basic idea has been very successful and many details related to the very high
order versions, the extension to higher dimensions, to non structured meshes, the
existence and positivity of the linear weights, together with dozens of applications,
have been studied over the years. A comprehensive review with lots of useful ref-
erences may be found in [25].

In order to obtain a fully discrete scheme, we apply a Strong Stability Preserv-
ing Runge-Kutta method (SSPRK) with Butcher’s tableau (A, b), obtaining the
evolution equation for the cell averages

U
n+1
j = U

n
j −

∆t

hj

s∑
i=1

bi

(
F

(i)
j+1/2

− F (i)
j−1/2

)
+ ∆t

s∑
i=1

biG
(i)
j . (6)

Here F
(i)
j+1/2

= F
(
U

(i),−
j+1/2

, U
(i),+
j+1/2

)
and the boundary extrapolated data U

(i),±
j+1/2

are

computed from the stage values of the cell averages

U
(i)
j = U

n
j −

∆t

hj

i−1∑
k=1

aik

(
F

(k)
j+1/2

− F (k)
j−1/2

)
+ ∆t

i−1∑
k=1

aikG
(k)
j .

We point out that the spatial reconstruction procedures and the well-balanced
quadratures for the source term must be applied for each stage value of the Runge-
Kutta scheme. In this paper we consider a uniform timestep over the whole grid.
A local timestep, keeping a fixed CFL number over the grid, can be enforced
using techniques from [13,5,21]. The overall accuracy of the scheme is the smallest
between the accuracy of the spatial reconstruction and that of scheme used for the
time-evolution.

With regards to the accuracy of the WENO reconstructions, [10] pointed out a
previously unnoticed phenomenon of loss of accuracy close to local extrema with
non-vanishing third derivative and proposed a post processing (called mapping)
of the nonlinear weights aimed at closing the gap between linear and nonlinear
weights for very smooth functions and recover the full accuracy also in this excep-
tional situation. Their original technique suitable for fifth order schemes, together
with later improvements that extend it to the case of very high order schemes,
is now known as WENO-M (see [7] and references therein). Another approach
to solve the same problem, known as WENO-Z, consists in computing additional
indicators, using the Jiang-Shu ones as building blocks, and it is effective from
orders higher than 5 (see [6] and references therein).
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Recently, [1] proposed a completely different technique. Upon observing that
in the Jiang-Shu formulation [12], the occurrence or not of the loss of accuracy is
controlled by the relative size of the smoothness indicators and of the constant ε,
they proposed to set ε = h2 and showed the optimality of this choice in the case of
uniform meshes, for WENO reconstructions of arbitrary order of accuracy. Indeed
their technique allows to recover the correct asymptotic convergence rates even
close to local extrema. Moreover, at the same time, it stabilises the convergence
rates close to the asymptotic ones already for very coarse meshes, thus providing a
reconstruction scheme that converges at the expected rate already on the meshes
used in practice for computations and not only on very fine meshes. [14] extended
this idea to the third order CompactWENO (CWENO3) scheme of [17], which
was originally introduced in the context of central schemes since for the standard
WENO3 scheme one cannot define linear weights that can yield third order accu-
rate reconstructions at the cell centres. Of course the reconstruction is useful also
in the case of non-central schemes for balance laws, when the reconstruction at the
cell centre is needed in the well-balanced quadrature [20,22]. The CWENO recon-
struction was extended to higher order [4] and higher space dimensions [19,15], in
the uniform grid setting and to non-uniform meshes of quad-tree type [23], where
the CWENO approach is very convenient since it is based on linear weights that
do not depend on the relative size of the neighbours. In this last paper, the choice
ε = h was found useful in numerical experiments. WENO-M and WENO-Z are tar-
geted to very high order reconstructions on uniform meshes, but in applications
requiring local mesh refinement and unstructured meshes, due to the variability of
the disposition and size of the neighbours and the fact that the mesh may change
at every timestep, reconstructions with very small stencils and order up to four
are to be favoured with respect to those requiring the collection of information
over large stencils. This paper is devoted to the analysis of the non-uniform mesh
case and compares the choices ε = h2 and ε = h in the WENO3 and CWENO3
schemes in one space dimension. Several aspects are considered, from the formal
accuracy, to stability, to the experimental orders of convergence observed on both
coarse and fine meshes.

In Section §2 and §3 we analyse the effects of different choices of ε in the case
of WENO3 and, respectively, CWENO3 schemes on non-uniform meshes. In §4 we
present numerical simulations corroborating our findings, including also tests on
balance laws and an h-adaptive scheme for conservation laws. In §5 we draw some
conclusions and illustrate perspectives for future work.

2 WENO3

The third order WENO reconstruction [24] considers the two first-neighbours of the
cell in which the reconstruction is to be computed. We thus consider a non-uniform
grid with hj = h, hj−1 = βh and hj+1 = γh. The two candidate polynomials are
the linear polynomials matching the cell average of the central cell and of one of
the neighbours, namely

Pj,L(x) = uj + σj,−(x− xj), (7a)

Pj,R(x) = uj + σj,+(x− xj), (7b)
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where σj,± are given by

σj,− = 2
uj − uj−1

(1 + β)h
, σj,+ = 2

uj+1 − uj
(1 + γ)h

.

The central reconstruction is the second order polynomial whose cell averages
in Ωj and Ωj±1 match uj and uj±1, respectively, and is given by

POPT
j (x) = a+ b(x− xj) + c(x− xj)2, (8)

where

a = uj −
c

12
h2,

b =
(1
2 + β)σj,+ + (1

2 + γ)σj,−
1 + β + γ

,

c =
3

2

σj,+ − σj,−
h(1 + β + γ)

.

One may easily verify that

POPT
j (xj+1/2) = C+

j,LPj,L(xj+1/2) + C+
j,RPj,R(xj+1/2)

for

C+
j,L =

γ

1 + β + γ
, C+

j,R =
1 + β

1 + β + γ

and similarly that the optimal weights for the reconstruction at xj−1/2 are

C−j,L =
1 + γ

1 + β + γ
, C−j,R =

β

1 + β + γ
.

Note that, in the case of a uniform mesh, β = γ = 1 and one recovers the weights
computed in [24] and [1].

In order to investigate the accuracy of the reconstruction, we apply it to the
cell averages of a regular function u(x), whose Taylor expansions are given by

uj = uj + h2

24u
′′
j + h4

1920u
(4)
j +O(h6),

uj+1 = uj + h
2 (γ + 1)u′j + h2

24 (4γ2 + 6γ + 3)u′′j + h3

48 (γ + 1)(2γ2 + 2γ + 1)u′′′j +O(h4),

uj−1 = uj − h
2 (β + 1)u′j + h2

24 (4β2 + 6β + 3)u′′j − h3

48 (β + 1)(2β2 + 2β + 1)u′′′j +O(h4).

The accuracy of the reconstruction of smooth data depends on the rate of
convergence to zero of the discrepancy between the optimal and the nonlinear
weights.

Lemma 1 If u is smooth enough in the stencil {Ωj−i, Ωj , Ωj+1}, then

Ij,L =
4

(1 + β)2
(uj − uj−1)2 =

= u′j
2
h2 − 1

3
(2β + 1)u′ju

′′
j h

3 +
1

36
[3(2β2 + 2β + 1)u′ju

′′′
j + (4β2 + 4β + 1)u′′j

2
]h4 +O(h5),

Ij,R =
4

(1 + γ)2
(uj+1 − uj)2 =

= u′j
2
h2 +

1

3
(2γ + 1)u′ju

′′
j h

3 +
1

36
[3(2γ2 + 2γ + 1)u′ju

′′′
j + (4γ2 + 4γ + 1)u′′j

2
]h4 +O(h5).

(9)
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Remark 1 When the two regularity indicators Ij,L and Ij,R are very close to each
other, procedure (5) gives nonlinear weights approximately equal to the linear ones
and thus the reconstruction polynomial corresponds to the central second order
polynomial. This is highly desirable for the reconstruction of smooth data. On
the other hand, when a jump discontinuity is present, the imbalance between the
regularity indicators will bias the reconstruction polynomial towards the smoothest
stencil (e.g. ω̃j,L ' 1 and ω̃j,R ' 0 if the jump is between xj and xj+1), avoiding
oscillations but lowering the accuracy by one order. Unfortunately this may happen
also close to local extrema of a smooth function, where both indicators would be
close to 0, but a slight imbalance between them may be amplified by the procedure
(5) for the computation of nonlinear weights.

Intuitively, if u′(xj+1/2) = 0, Ij,R = (uj+1 − uj)
2 would be much smaller

than Ij,L = (uj − uj−1)2 and the nonlinear weights will differ quite a lot from
the optimal ones, unless ε is chosen such that it dominates both Ij,R and Ij,L in
the denominators. Thus a value of ε that does not depend on h will give rise to
reconstructions that may change their order of convergence close to local extrema,
depending on whether Ij,L/R � ε or not. The following computations will make
this more precise and, for the above mentioned argument, we will concentrate on
the case of non-constant h-dependent ε.

Theorem 1 Let u be a smooth function on a stencil {Ωi−1, Ωi, Ωi+1}, with hj−1 =
βh, hj = h and hj+1 = γh. Let ω±j,L, ω

±
j,R be the nonlinear weights defined in (5) for

the cell Ωj . Then, we have

ω+
j,L = C+

j,L

[
1 +

2τ

3(ε̂+ pu′j
2)

(1 + β)u′ju
′′
j h
k +O(hk+1)

]
,

ω−j,L = C−j,L

[
1 +

2τ

3(ε̂+ pu′j
2)
βu′ju

′′
j h
k +O(hk+1)

]
,

ω+
j,R = C+

j,R

[
1− 2τ

3(ε̂+ pu′j
2)
γu′ju

′′
j h
k +O(hk+1)

]
,

ω−j,R = C−j,R

[
1− 2τ

3(ε̂+ pu′j
2)

(1 + γ)u′ju
′′
j h
k +O(hk+1)

]
,

(10)

with p = 0, k = 2 if ε = ε̂h, p = k = 1 if ε = ε̂h2.

Proof Let

ω̃±j,R =
C±j,R

(ε+ Ij,R)τ
, (11)

with τ ≥ 2. Then, following [1], we write

ω̃±j,L =
C±j,L

(ε+ Ij,L)τ
=

C±j,L
(ε+ Ij,R)τ

[
1 +

Ij,R − Ij,L
ε+ Ij,L

τ−1∑
s=0

(
ε+ Ij,R
ε+ Ij,L

)s]
. (12)

By using the Taylor expansions (9), we obtain

Ij,R − Ij,L
ε+ Ij,L

=
2(γ + β + 1)

3(ε̂+ pu′j
2)

u′ju
′′
j h
k +O(hk+1)
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where k = 2, p = 0 in the case ε = ε̂h and k = p = 1 if ε = ε̂h2, thus

τ−1∑
s=0

(
ε+ Ij,R
ε+ Ij,L

)s
=
τ−1∑
s=0

[
1 + s

γ + β + 1

3(ε̂+ pu′j
2)
u′ju
′′
j h
k +O(hk+1)

]

= τ +
τ(τ − 1)

2

γ + β + 1

3(ε̂+ pu′j
2)
u′ju
′′
j h
k +O(hk+1).

Now, substituting in the expression (12), we have

ω̃±j,L =
C±j,L

(ε+ Ij,R)τ

[
1 + 2

γ + β + 1

3(ε̂+ pu′j
2)
τu′ju

′′
j h
k +O(hk+1)

]
(13)

and

1

ω̃±j,L + ω̃±j,R
= (ε+ Ij,R)τ

[
1− 2τψ

3(ε̂+ pu′j
2)
u′ju
′′
j h
k +O(hk+1)

]
, (14)

with ψ = γ on the right of the cell, ψ = 1+γ on the left. Then, by using (11), (13)
and (14), with a simple computation, we obtain the desired results.

Remark 2 The result above establishes the Taylor expansion of ωλ −Cλ up to the
term that is enough for the proof of the third order accuracy of the reconstruction
in Theorem 2. However, it is also interesting to observe the decay rate of ωλ −Cλ
close to a local extrema, i.e. to study the term O(hk+1) in equation (10). Examining
the proof above (see also [1] for the finite difference case), one can easily see that

the accuracy order of ωλ − Cλ is the same as that of
Ij,R−Ij,L
ε+Ij,L

. From (9) we have

that

Ij,R − Ij,L =
2

3
(γ + β+ 1)u′ju

′′
j h

3 +
1

18
(γ − β)(γ + β+ 1)(3u′ju

′′′
j + 2u′′j

2
)h4 +O(h5)

and Ij,K = O(h2s+2), for K = L,R, where s = 0 if u′j(xj) 6= 0 and s = 1 if
u′j(xj) = 0, u′′j (xj) 6= 0.

So, for s = 0, we have

Ij,R − Ij,L
ε̂hν + Ij,L

=
O(h3)

ε̂hν +O(h2)
= O(h3−ν), ν = 0, 1, 2,

with the case ε = 10−6 corresponding to ν = 0. On the other hand, for s = 1 one
finds

Ij,R − Ij,L
ε̂hν + Ij,L

=
O(h4)

ε̂hν +O(h4)
= O(h4−ν), ν = 0, 1, 2.

in general, but

Ij,R − Ij,L
ε̂hν + Ij,L

=
O(h5)

ε̂hν +O(h4)
= O(h5−ν), ν = 0, 1, 2.

in the case β = γ, which always occours on uniform grids.



Third order WENO and CWENO reconstructions on nonuniform meshes 9

We denote with

u+j−1/2 = ω−j,LPj,L(xj−1/2) + ω−j,RPj,R(xj−1/2),

u−j+1/2 = ω+
j,LPj,L(xj+1/2) + ω+

j,RPj,R(xj+1/2),
(15)

the reconstructed values at the left and right boundary of cell Ωj and we prove a
result on the accuracy of these boundary extrapolated values.

Theorem 2 Let u be a smooth function in the stencil {Ωj−i, Ωj , Ωj+1}. Then,

u(xj+1/2) = u−j+1/2 +O(h3)

u(xj−1/2) = u+j−1/2 +O(h3).

Proof We can compute the reconstruction error in the right side of the cell as

u(xj+1/2)− u−j+1/2 = u(xj+1/2)− POPT
j (xj+1/2)︸ ︷︷ ︸

O(h3)

+POPT
j (xj+1/2)− u−j+1/2.

Indeed, the Taylor expansion gives

POPT
j (xj+1/2) = u(xj+1/2) +

γ

24
(β + 1)u′′′j h

3 +O(h4). (16)

Then, recalling that C+
j,R + C+

j,L = ω+
j,R + ω+

j,L = 1, and computing

Pj,R(xj+1/2) = u(xj+1/2) +
γ

6
u′′j h

2 +O(h3),

Pj,L(xj+1/2) = u(xj+1/2)− β + 1

6
u′′j h

2 +O(h3),
(17)

we estimate

POPT
j (xj+1/2)− u−j+1/2 =(

C+
j,R − ω

+
j,R

)
Pj,R(xj+1/2) +

(
C+
j,L − ω

+
j,L

)
Pj,L(xj+1/2) =(

C+
j,R − ω

+
j,R

)
︸ ︷︷ ︸

O(hk)

(
Pj,R(xj+1/2)− u(xj+1/2)

)︸ ︷︷ ︸
O(h2)

+
(
C+
j,L − ω

+
j,L

)
︸ ︷︷ ︸

O(hk)

(
Pj,L(xj+1/2)− u(xj+1/2)

)︸ ︷︷ ︸
O(h2)

.

Using (10) in the above formula we have that k = 1 in the case of ε = ε̂h2 and
k = 2 when ε = ε̂h. Thus, with both choices, the reconstruction error is of order
O(h3). In a similar way, we can compute the reconstruction error in the left side
of the cell Ωj .

We note that, when ε = ε̂h2, all terms in the reconstruction error are of or-
der O(h3), while, for ε = ε̂h, the interpolation error of POPT

j dominates and the
other terms are of higher order. This remark on the balance between the two
sources of error is what makes [1] state that the choice ε = ε̂h2 is optimal and the
computations above extend their result to non-uniform meshes.

Next, we want to stress an important difference between finite difference and
finite volume schemes. In fact, the accuracy of finite difference schemes depends
on the accuracy of the derivative 1

h (Fj+1/2 − Fj−1/2) which should be close to
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∂xf(u(xj)), while semi-discrete finite volume schemes have their accuracy con-
trolled by the discrepancy between Fj+1/2 and f(u(xj+1/2)), see [16, §17]. In the
following, we remark that, on uniform meshes, we have the correct accuracy of
the derivative in the case of the linear transport equation, while in the numerical
tests we will show that this may not maintained on non-uniform meshes, without
affecting the convergence order of the fully discrete finite volume scheme.

Remark 3 We have that in general

u−j+1/2 − u
−
j−1/2 = u(xj+1/2)− u(xj−1/2) +O(h3),

but it can be proven that there is an increased accuracy in the case of a uniform
grid. In fact

u−j+1/2 − u
−
j−1/2 =

(
POPT
j (xj+1/2)− POPT

j−1 (xj−1/2)
)

+
(
POPT
j−1 (xj−1/2)− u−j−1/2

)
−
(
POPT
j (xj+1/2)− u−j+1/2

)
and for a uniform grid

POPT
j (xj+1/2)− POPT

j−1 (xj−1/2) = u(xj+1/2)− u(xj−1/2) +O(h4), (18)

which raises the question if also the other terms can match this accuracy.

(
POPT
j−1 (xj−1/2)− u−j−1/2

)
−
(
POPT
j (xj+1/2)− u−j+1/2

)
=(

C+
j−1,R − ω

+
j−1,R

)
Pj−1,R(xj−1/2) +

(
C+
j−1,L − ω

+
j−1,L

)
Pj−1,L(xj−1/2)

−
(
C+
j,R − ω

+
j,R

)
Pj,R(xj+1/2)−

(
C+
j,L − ω

+
j,L

)
Pj,L(xj+1/2)

and introducing the Taylor expansion of the approximation error of the linear
polynomials the above expression becomes(

C+
j−1,R − ω

+
j−1,R

)(
u(xj−1/2) + 1

6u
′′
j h

2 +O(h3)
)

+
(
C+
j−1,L − ω

+
j−1,L

)(
u(xj−1/2)− 1

3u
′′
j h

2 +O(h3)
)

−
(
C+
j,R − ω

+
j,R

)(
u(xj+1/2) + 1

6u
′′
j h

2 +O(h3)
)

−
(
C+
j,L − ω

+
j,L

)(
u(xj+1/2)− 1

3u
′′
j h

2 +O(h3)
)
.

Finally, collecting terms for each power of h and recalling that C+
j,R + C+

j,L = 1 =

ω+
j,R + ω+

j,L, we find that the the approximation error is of order O(h4) if(
ω+
j,R − 2ω+

j,L

)
−
(
ω+
j−1,R − 2ω+

j−1,L

)
= O(h2). (19)

For ε = ε̂h the difference between linear and nonlinear weights are of order O(h2),
see (10) and thus the condition is trivially satisfied; furthermore, direct computa-
tion with ε = ε̂h2 shows that condition (19) is satisfied also in this case.

Note that condition (19) is analogous to the one found in [10, equation (29b)]
for the fifth order WENO reconstruction for finite difference schemes; there it was
not found useful to design an optimal form of the nonlinear weights, but in this
lower order case it is always satisfied.
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3 CWENO3

The third order Compact WENO reconstruction (CWENO3) was introduced in
[17] in the context of central schemes, originally in order to overcome the im-
possibility of finding linear weights for the reconstruction at cell centre using the
WENO3 approach. It is of course useful also in non-staggered schemes, for ex-
ample if a third order accurate reconstruction is needed at the centre of the cell,
like in the well-balanced quadratures of [20,22]. The main idea is to choose linear
weights Cj,L, Cj,R ∈ (0, 1) such that Cj,L + Cj,R < 1 and to define

Cj,0 = (1− Cj,L − Cj,R),

Pj,0(x) =
(
POPT
j (x)− Cj,LPj,L(x)− Cj,RPj,R(x)

)
/Cj,0,

(20)

so that POPT
j (x) = Cj,0Pj,0(x) + Cj,LPj,L(x) + Cj,RPj,R(x) at every point in the

cell. Unlike in the WENO3 setting, here the values of Cj,L and Cj,R do not have
to satisfy any accuracy-related requirement and thus can be in principle chosen
arbitrarily; in particular we can employ the same linear weights, independently on
the reconstruction point and on the local mesh geometry in the neighbourhood of
the cell.

With the choices Cj,L = Cj,R = 1
4 , Cj,0 = 1

2 of [17] one has that

Pj,0(x) = uj −
c

6
h2 + (2b−

σj,+ + σj,−
2

)(x− xj) + 2c(x− xj)2.

Lemma 2 For u sufficiently smooth in the stencil {Ωj−i, Ωj , Ωj+1}, we have

Ij,0 = h2(2b−
σj,+ + σj,−

2
)2 + 52

3 c
2h4 = u′j

2
h2 + 1

3 (β − γ)u′ju
′′
j h

3+

+

[(
13

3
+

1

36
(β − γ)2

)
u′′j

2 − 1

12
(β2 + γ2 − 4βγ − β − γ − 1)u′ju

′′′
j

]
h4 +O(h5).

Theorem 3 Let u be a smooth function on a stencil {Ωj−i, Ωj , Ωj+1} with hj−1 =
βh, hj = h and hj+1 = γh. We denote by ωj,L, ωj,R, ωj,0 the nonlinear weight

defined in (5) in the cell Ωj . Then,

ωj,L = Cj,L

[
1 +

2β + 1

3(ε̂+ pu′j
2)
τ u′ju

′′
j h
k +O(hk+1)

]
,

ωj,R = Cj,R

[
1− 2γ + 1

3(ε̂+ pu′j
2)
τ u′ju

′′
j h
k +O(hk+1)

]
,

ωj,0 = Cj,0

[
1 +

γ − β
3(ε̂+ pu′j

2)
τ u′ju

′′
j h
k +O(hk+1)

]
,

(21)

with p = 0, k = 2 for ε = ε̂h, and p = k = 1 for ε = ε̂h2.

Proof Following the same procedure employed to get (10) in the WENO3 case, we
obtain the Taylor expansions for the nonlinear weights. In particular, for ωj,0, we
find,

ω̃j,0 =
Cj,0

(ε+ Ij,0)τ
=

Cj,0
(ε+ Ij,R)τ

[
1 +

Ij,R − Ij,0
ε+ Ij,0

τ−1∑
s=0

(
ε+ Ij,R
ε+ Ij,0

)s]
. (22)
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By using the Taylor expansions (9), we obtain

Ij,R − Ij,0
ε+ Ij,0

=
3γ − β + 1

3(ε̂+ pu′j
2)
u′ju
′′
j h
k +O(hk+1)

where k = 2, p = 0 if ε = ε̂h and k = p = 1 if ε = ε̂h2. Thus,

τ−1∑
s=0

(
ε+ Ij,R
ε+ Ij,0

)s
=
τ−1∑
s=0

[
1 + s

3γ − β + 1

3(ε̂+ pu′j
2)
u′ju
′′
j h
k +O(hk+1)

]

= τ +
τ(τ − 1)

2

3γ − β + 1

3(ε̂+ pu′j
2)
u′ju
′′
j h
k +O(hk+1).

Now, substituting in (22)

ω̃j,0 =
Cj,0

(ε+ Ij,R)τ

[
1 +

3γ − β + 1

3(ε̂+ pu′j
2)
τu′ju

′′
j h
k +O(hk+1)

]

and

1

ω̃j,L + ω̃j,R + ω̃j,0
= (ε+ Ij,R)τ

[
1− 2γ + 1

3(ε̂+ pu′j
2)
τu′ju

′′
j h
k +O(hk+1)

]
.

Then, recalling (11), (13), with the different values for Cj,L and Cj,R, we obtain
the results by substituting in

ωj,0 =
ω̃j,0

ω̃j,L + ω̃j,R + ω̃j,0
, ωj,L =

ω̃j,L
ω̃j,L + ω̃j,R + ω̃j,0

, ωj,R =
ω̃j,R

ω̃j,L + ω̃j,R + ω̃j,0
.

Remark 4 Using the same notation of Remark 2, in this case we have that

Ij,R − Ij,0 =
1

3
(3γ − β + 1)u′ju

′′
j h

3+

+
1

12

[
(γ − β)(3γ − β + 1)u′ju

′′′
j +

3γ2 − β2 + 4γ + 2βγ − 155

3
u′′j

2
]
h4 +O(h5)

and thus Ij,R−Ij,0 = O(h3+s) independently of the grid employed. With the same
argument of Remark 2, using Ij,0 = O(h2s+2), one shows that, when u′j(xj) = 0,

Cλ − ωλ = O(h4−ν).

In the CWENO3 reconstruction, only one set of nonlinear weights is com-
puted and then u−

j+1/2
and u+

j−1/2
are simply obtained by evaluation of P̃j(x) =

ωj,LPj,L(x) + ωj,RPj,R(x) + ωj,0Pj,0(x) at the boundaries of the cell.

Theorem 4 Let u be a smooth function in the stencil {Ωj−i, Ωj , Ωj+1}. Then,

u(xj+1/2) = u−j+1/2 +O(h3),

u(xj−1/2) = u+j−1/2 +O(h3).
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Proof Similarly to the WENO3 case, from (16), we can compute the reconstruction
error as

u(xj+1/2)− u−j+1/2 = u(xj+1/2)− POPT
j (xj+1/2)︸ ︷︷ ︸

O(h3)

+POPT
j (xj+1/2)− u−j+1/2.

Then, recalling that Cj,R + Cj,L + Cj,0 = ωj,R + ωj,L + ωj,0 = 1, from (17), and
using the Taylor expansion of the quadratic polynomials

Pj,0(xj+1/2) = u(xj+1/2) +
β − γ + 1

12
u′′j h

2 +O(h3), (23)

we estimate

POPT
j (xj+1/2)− u−j+1/2 =(

Cj,R − ωj,R
)
Pj,R(xj+1/2)+

(
Cj,L − ωj,L

)
Pj,L(xj+1/2)+(Cj,0 − ωj,0)Pj,0(xj+1/2) =(

Cj,R − ωj,R
)︸ ︷︷ ︸

O(hk)

(
Pj,R(xj+1/2)− u(xj+1/2)

)︸ ︷︷ ︸
O(h2)

+
(
Cj,L − ωj,L

)︸ ︷︷ ︸
O(hk)

(
Pj,L(xj+1/2)− u(xj+1/2)

)︸ ︷︷ ︸
O(h2)

+

+ (Cj,0 − ωj,0)︸ ︷︷ ︸
O(hk)

(
Pj,0(xj+1/2)− u(xj+1/2)

)︸ ︷︷ ︸
O(h2)

.

Thanks to (21), in the formula above k = 1 in the case of ε = ε̂h2, while k = 2
when ε = ε̂h.

We note that, with both choices, the reconstruction error is of order O(h3),
but, when ε = ε̂h2, all terms in the reconstruction error are of order O(h3), while
for ε = ε̂h, the interpolation error of POPT

j dominates and the other terms are
of lower order. These computations extend the results of [14] to the non-uniform
case.

We conclude this section with the analogous of Remark 3 in the case of the
CWENO3 reconstruction. As for the previous case, this result should be contrasted
with the numerical evidence of §4.2.

Remark 5 Proceeding as in Remark 3, we obtain that, using a uniform grid,

u−j+1/2 − u
−
j−1/2 = u(xj+1/2)− u(xj−1/2) +O(h4).

In the CWENO3 approximation we have

(
POPT
j−1 (xj−1/2)− u−j−1/2

)
−
(
POPT
j (xj+1/2)− u−j+1/2

)
=(

Cj−1,R − ωj−1,R

)
Pj−1,R(xj−1/2) +

(
Cj−1,L − ωj−1,L

)
Pj−1,L(xj−1/2)

+ (Cj−1,0 − ωj−1,0)Pj−1,0(xj−1/2)− (Cj,0 − ωj,0)Pj,0(xj+1/2)

−
(
Cj,R − ωj,R

)
Pj,R(xj+1/2)−

(
Cj,L − ωj,L

)
Pj,L(xj+1/2).

Using the Taylor expansion of the quadratic polynomials

Pj−1,0(xj−1/2) = u(xj−1/2) + 1
12u
′′
j h

2 +O(h3),

Pj,0(xj+1/2) = u(xj+1/2) + 1
12u
′′
j h

2 +O(h3),
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collecting terms for each power of h, recalling (18) and that Cj,R + Cj,L + Cj,0 =
ωj,R + ωj,L + ωj,0 = 1, we find that the the approximation error is of order O(h4)
if

(ωj,0 − ωj−1,0) + 2
[ (
ωj,R − 2ωj,L

)
−
(
ωj−1,R − 2ωj−1,L

) ]
= O(h2). (24)

For ε = ε̂h the difference between linear and nonlinear weights are of order O(h2),
see (21) with k = 2, so the condition is trivially satisfied; furthermore, in the case
ε = ε̂h2, the condition (24) is satisfied by using (21) with k = 1. Note that equation
(24) is analogous to (19) in the case of CWENO3 reconstruction.

4 Numerical tests

First we describe the meshes used in the numerical tests, on the reference interval
[0, 1]. Uniform grids with N cells, have cells of size h = 1/N and cell centres
xj+1/2 = (j + 1

2 )h. A quasi regular grid is obtained transforming the cell centres of
a uniform grid with the map

ϕ(x) = x+ 0.1 ∗ sin(10πx)/5.

The grid spacing in quasi-regular grids is asymptotically described by ϕ′(x). In
this way, we obtain a grid with cell sizes hj such that

(1− π
5 ) 1

N ≤ hj ≤ (1 + π
5 ) 1

N .

Note that the ratio of consecutive cells approaches 1:

hk+1

hk
'
ϕ′(k+1

N )

ϕ′( kN )
' 1 +

1

N

ϕ′′( kN )

ϕ′( kN )
. (25)

In the notation of Sections 2 and 3, this means that, for increasing N , the pa-
rameters β and γ approach the value 1 that characterise uniform meshes. We will
observe that the numerical schemes on quasi-regular grids behave very much like
on uniform ones.

Next, we consider random grids that are obtained moving randomly the inter-
faces of a uniform grid. We start from a uniform grid with cells of size h = 1/N
and then we consider grids with interfaces at

x̃j+1/2 = xj+1/2 + ξj
h
4 ,

where ξj are random numbers uniformly distributed in [−0.5, 0.5]. We have

3
4

1
N ≤ hj ≤

5
4

1
N .

We use this grid for the purpose of illustration even if, of course, one would not
use such irregular grid in an application.

Finally, observe that in binary-tree mesh refinement in d spatial dimensions,
one starts with a uniform mesh and then, guided by some error indicator, each
cell may be split (recursively) in 2d equal parts, see [21,23] . The ratio of the sizes
of adjacent cells is thus a positive power of 2 and does not approach 1. In order
to test the schemes on meshes that may be employed by such AMR techniques,
we consider the αβγδ meshes, that are composed by adjoining building blocks of
5 cells of size αh, βh, h, γh, δh respectively.
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Reconstruction error for u(x) = ex

h ε = 10−30 ε = 10−6 ε = h ε = h2

error rate error rate error rate error rate
5.00e-02 1.16e-05 1.16e-05 2.31e-06 4.70e-06
2.50e-02 1.43e-06 3.02 1.42e-06 3.03 3.08e-07 2.91 5.65e-07 3.06
1.25e-02 1.78e-07 3.01 1.72e-07 3.04 3.96e-08 2.96 6.92e-08 3.03
6.25e-03 2.21e-08 3.00 1.96e-08 3.13 5.02e-09 2.98 8.56e-09 3.01
3.12e-03 2.76e-09 3.00 1.78e-09 3.47 6.32e-10 2.99 1.07e-09 3.01
1.56e-03 3.45e-10 3.00 8.15e-11 4.45 7.92e-11 3.00 1.33e-10 3.00
7.81e-04 4.31e-11 3.00 2.92e-12 4.80 9.92e-12 3.00 1.66e-11 3.00
3.90e-04 5.38e-12 3.00 9.99e-13 1.55 1.24e-12 3.00 2.07e-12 3.00
1.95e-04 6.73e-13 3.00 1.48e-13 2.78 1.55e-13 3.00 2.59e-13 3.00
9.76e-05 8.39e-14 3.00 1.91e-14 2.95 1.95e-14 3.00 3.22e-14 3.00

Reconstruction error for u(x) = cos (2πx) + x3

h ε = 10−30 ε = 10−6 ε = h ε = h2

error rate error rate error rate error rate
5.00e-02 7.91e-03 7.91e-03 7.61e-04 6.79e-03
2.50e-02 2.00e-03 1.99 1.99e-03 1.99 3.12e-05 4.61 1.06e-03 2.68
1.25e-02 5.01e-04 2.00 4.75e-04 2.07 1.41e-06 4.47 9.72e-05 3.45
6.25e-03 1.25e-04 2.00 4.91e-05 3.28 8.19e-08 4.10 6.77e-06 3.84
3.12e-03 3.13e-05 2.00 1.04e-06 5.55 6.35e-09 3.69 4.36e-07 3.96
1.56e-03 7.84e-06 2.00 1.71e-08 5.93 6.14e-10 3.37 2.77e-08 3.98
7.81e-04 1.96e-06 2.00 3.26e-10 5.72 6.75e-11 3.19 1.76e-09 3.97
3.90e-04 4.90e-07 2.00 1.20e-11 4.77 7.92e-12 3.09 1.14e-10 3.95
1.95e-04 1.22e-07 2.00 1.02e-12 3.55 9.60e-13 3.04 7.59e-12 3.91
9.76e-05 3.06e-08 2.00 1.19e-13 3.10 1.18e-13 3.01 5.33e-13 3.83

Table 1 WENO3. Reconstruction errors at x = 0 + h/2 for a grid of five cells of size
h, 2h, h, h/2, h/2 with x = 0 in the centre of the middle cell. In the first test u′ 6= 0 in
the reconstruction stencil, while u′(0) = 0 in the second case.

4.1 Comparing ε’s

The first set of tests is on the reconstruction error of WENO3 and CWENO3
on non-uniform meshes. An αβγδ-grid is set up with cells of size h, 2h, h, h/2, h/2
with x = 0 at the centre of the middle cell. In all our tests, we consider nonlinear
weights (5) with τ = 2. For decreasing values of h, cell averages of a function u(x)
were set using the fifth order gaussian quadrature rule and the reconstruction at
the right boundary of the middle cell was computed and compared with the exact
values u(h/2).

In Table 1 we show the reconstruction errors and convergence rates for WENO3
on non-uniform meshes, with different choices of ε. It is clear that the non-
uniformity of the mesh has no influence on the convergence rates. In fact, as in the
uniform grid tests of [1], an irregular convergence rate appears for constant ε when
u′ vanishes in the central cell, but a regular convergence history can be recovered
by employing an h-dependent ε. We remark that ε = h gives slightly lower errors
than ε = h2. We also point out that repeating the test of Table 1 for a function
such that u′(h/2) = 0, gives analogous results, indicating that convergence may
be degraded whenever u′ vanishes in the reconstruction stencil.

In Table 2 we show the same tests for CWENO3; we obtained analogous re-
sults and the remarks about the comparison with the uniform grid case could be
repeated.
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Reconstruction error for u(x) = ex

h ε = 10−30 ε = 10−6 ε = h ε = h2

error rate error rate error rate error rate
5.00e-02 4.60e-06 4.59e-06 2.50e-06 1.05e-06
2.50e-02 5.58e-07 3.04 5.53e-07 3.05 3.19e-07 2.97 1.19e-07 3.13
1.25e-02 6.88e-08 3.02 6.61e-08 3.06 4.03e-08 2.99 1.42e-08 3.07
6.25e-03 8.54e-09 3.01 7.28e-09 3.18 5.06e-09 2.99 1.74e-09 3.03
3.12e-03 1.06e-09 3.01 5.70e-10 3.67 6.34e-10 3.00 2.15e-10 3.02
1.56e-03 1.33e-10 3.00 9.70e-13 9.20 7.94e-11 3.00 2.67e-11 3.01
7.81e-04 1.66e-11 3.00 6.43e-12 -2.73 9.93e-12 3.00 3.32e-12 3.00
3.90e-04 2.07e-12 3.00 1.12e-12 2.52 1.24e-12 3.00 4.15e-13 3.00
1.95e-04 2.59e-13 3.00 1.52e-13 2.88 1.55e-13 3.00 5.15e-14 3.00
9.76e-05 3.22e-14 3.00 1.95e-14 2.96 1.95e-14 3.00 6.44e-15 3.00

Reconstruction error for u(x) = cos (2πx) + x3

h ε = 10−30 ε = 10−6 ε = h ε = h2

error rate error rate error rate error rate
5.00e-02 7.85e-03 7.85e-03 4.81e-04 6.38e-03
2.50e-02 1.98e-03 1.99 1.98e-03 1.99 2.05e-05 4.56 8.49e-04 2.91
1.25e-02 4.97e-04 2.00 4.64e-04 2.09 1.07e-06 4.27 6.06e-05 3.81
6.25e-03 1.24e-04 2.00 3.58e-05 3.70 7.11e-08 3.91 3.65e-06 4.05
3.12e-03 3.11e-05 2.00 5.48e-07 6.03 6.01e-09 3.56 2.25e-07 4.02
1.56e-03 7.78e-06 2.00 8.89e-09 5.94 6.04e-10 3.31 1.42e-08 3.98
7.81e-04 1.94e-06 2.00 1.96e-10 5.50 6.72e-11 3.17 9.16e-10 3.95
3.90e-04 4.86e-07 2.00 9.93e-12 4.31 7.92e-12 3.09 6.10e-11 3.91
1.95e-04 1.22e-07 2.00 9.91e-13 3.32 9.60e-13 3.04 4.28e-12 3.83
9.76e-05 3.04e-08 2.00 1.19e-13 3.06 1.18e-13 3.01 3.25e-13 3.72

Table 2 CWENO3. Reconstruction errors at x = 0 + h/2 for a grid of five cells of size
h, 2h, h, h/2, h/2 with x = 0 in the centre of the middle cell. In the first test u′ 6= 0 in the
reconstruction stencil, while u′(0) = 0 in the second case.

In Figure 1, we show the distance |ωλ − Cλ| observed when reconstructing
u(x) = x3 + cosx on a non-uniform grid of type α, β, γ, δ. As expected, in both
the WENO3 and CWENO3 cases, the choice ε = 10−30 does not give weights
converging to their optimal values, the choice ε = 10−6 behaves similarly on coarse
meshes and changes to a convergent regime at about h = 2× 10−3. On the other
hand, the choices ε = h and ε = h2 give rise to a more regular convergence histories,
with the former giving lower discrepancies between nonlinear and optimal weights.

Furthermore, Tables 3 and 4 report the asymptotic behaviour of the nonlinear
weights for the WENO3 and CWENO3 recontruction, comparing the case u′j 6= 0
and the case with a smooth extremum in the reconstruction stencil. The behaviours
follow the results of Remarks 2 and 4.

Finally, in order to investigate more deeply the behaviour of the reconstruc-
tion procedure, we denote by R(uj−1, uj , uj+1) the map from the three cell av-
erages to the reconstructed boundary value u−

j+1/2
and by P2(uj−1, uj , uj+1) =

POPT
j (xj+1/2) the reconstruction operator that employs the central parabola. The

previous test confirmed that R(uj−1, uj , uj+1) → P2(uj−1, uj , uj+1) for h → 0. In
Figure 2 we test the convergence ∇R → ∇P2. The plots show that for h-dependent
ε, ∂R/∂uk converge quickly to ∂P2/∂uk for k = j−1, j, j+1. At the opposite hand,
for ε = 10−30 we do not observe such a convergence (note that ∂R/∂uk 6→ ∂P2/∂uk,
k = j − 1, j, j + 1) and ε = 10−6 shows an hybrid behaviour that changes regime
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u(x) = x3 + cos(2πx)
ε = 10−6 ε = h ε = h2

h C+
R − ω

+
R rate C+

R − ω
+
R rate C+

R − ω
+
R rate

5.00e-02 1.38e-01 2.27e-02 1.67e-01
2.50e-02 1.38e-01 0.00 3.37e-03 2.75 7.45e-02 0.65
1.25e-02 1.37e-01 0.02 4.33e-04 2.96 2.89e-02 1.37
6.25e-03 1.06e-01 0.36 5.44e-05 2.99 8.29e-03 1.80
3.12e-03 1.89e-02 2.49 6.80e-06 3.00 2.15e-03 1.95
1.56e-03 1.32e-03 3.84 8.50e-07 3.00 5.42e-04 1.99
7.81e-04 8.29e-05 3.99 1.06e-07 3.00 1.36e-04 2.00
3.90e-04 5.18e-06 4.00 1.33e-08 3.00 3.40e-05 2.00
1.95e-04 3.24e-07 4.00 1.66e-09 3.00 8.49e-06 2.00
9.76e-05 2.02e-08 4.00 2.07e-10 3.00 2.12e-06 2.00

u(x) = ex

ε = 10−6 ε = h ε = h2

h C+
R − ω

+
R rate C+

R − ω
+
R rate C+

R − ω
+
R rate

5.00e-02 3.08e-02 1.33e-03 1.47e-02
2.50e-02 1.48e-02 1.06 3.44e-04 1.95 7.22e-03 1.02
1.25e-02 7.23e-03 1.03 8.75e-05 1.97 1.79e-03 1.01
6.25e-03 3.51e-03 1.04 2.21e-05 1.99 8.94e-04 1.00
3.12e-03 1.63e-03 1.11 5.55e-06 1.99 4.47e-04 1.00
1.56e-03 6.34e-04 1.36 1.39e-06 2.00 2.23e-04 1.00
7.81e-04 1.69e-04 1.91 3.48e-07 2.00 1.12e-04 1.00
3.90e-04 2.95e-05 2.52 8.71e-08 2.00 5.58e-05 1.00
1.95e-04 4.10e-06 2.85 2.18e-08 2.00 2.79e-05 1.00
9.76e-05 5.27e-07 2.99 5.45e-09 2.00 1.39e-05 1.00

Table 3 WENO3. Distance and order of convergence of the optimal weights C+
R and the

nonlinear weights ω+
R , as a function of the mesh width h, in the cell centered in x = 0.
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Fig. 1 Distance between the optimal weights Cλ and the nonlinear weights ωλ as a function
of the mesh width h, for different choices of ε. WENO3 (left) and CWENO3 (right)

when h falls below a threshold. (These tests were performed on uniform meshes
for u(x) = x3 + cosx).
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u(x) = x3 + cos(2πx)
h ε = 10−6 ε = h ε = h2

C0 − ω0 rate C0 − ω0 rate C0 − ω0 rate
5.00e-02 4.99e-01 2.43e-01 4.89e-01
2.50e-02 4.99e-01 0.00 4.55e-02 2.42 4.42e-01 0.15
1.25e-02 4.98e-01 0.00 6.02e-03 2.92 2.82e-01 0.65
6.25e-03 4.81e-01 0.05 7.59e-04 2.99 1.05e-01 1.43
3.12e-03 2.10e-01 1.20 9.50e-05 3.00 2.93e-02 1.84
1.56e-03 1.81e-02 3.53 1.19e-05 3.00 7.53e-03 1.96
7.81e-04 1.16e-03 3.97 1.48e-06 3.00 1.90e-03 1.99
3.90e-04 7.24e-05 4.00 1.85e-07 3.00 4.75e-04 2.00
1.95e-04 4.53e-06 4.00 2.32e-08 3.00 1.19e-04 2.00
9.76e-05 2.83e-07 4.00 2.90e-09 3.00 2.97e-05 2.00

u(x) = ex

h ε = 10−6 ε = h ε = h2

C0 − ω0 rate C0 − ω0 rate C0 − ω0 rate
5.00e-02 3.16e-02 1.40e-03 1.52e-02
2.50e-02 1.42e-02 1.16 3.32e-04 2.08 6.96e-03 1.13
1.25e-02 6.64e-03 1.10 8.06e-05 2.04 3.30e-03 1.07
6.25e-03 3.15e-03 1.07 1.98e-05 2.02 1.61e-03 1.04
3.12e-03 1.44e-03 1.13 4.92e-06 2.01 7.93e-04 1.02
1.56e-03 5.59e-04 1.37 1.22e-06 2.01 3.93e-04 1.01
7.81e-04 1.49e-04 1.91 3.06e-07 2.00 1.96e-04 1.01
3.90e-04 2.59e-05 2.52 7.64e-08 2.00 9.78e-05 1.00
1.95e-04 4.59e-06 2.85 1.90e-08 2.00 4.89e-05 1.00
9.76e-05 4.61e-07 2.96 4.77e-09 2.00 2.44e-05 1.00

Table 4 CWENO3. Distance and order of convergence of the optimal weights C0 and the
nonlinear weights ω0 , as a function of the mesh width h, in the cell centered in x = 0.
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Fig. 2 Components of ∇R(uj−1, uj , uj+1) as a function of the uniform mesh size h for
different choices of ε. The circles on the left vertical axes represent the components of
∇P2(uj−1, uj , uj+1)

4.2 Numerical derivative and linear transport

In this set of tests we investigate the effects of the choice of ε in a numerical scheme
for the linear transport equation. Recall that, for ut + ux = 0, when using upwind
numerical fluxes, the semidiscrete scheme (2) boils down to

d

dt
Uj = − 1

hj

(
U−j+1/2 − U

−
j−1/2

)
.
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Fig. 3 Linear transport of smooth data on random grids. Discrete 1-norm error (left) and
discrete maximum norm (right).

This system of ODE is discretized with the third order, three stages SSPRK, see
[9]. For these tests, a non uniform grid obtained repeating groups of four cells of size
h, h/2, h/4, h/4 was generated. We point out that cells of size h have a neighbour-
hood of type α, β, γ, δ = 1/4, 1/4, 1/2, 1/4, cells of size h/2 have a neighbourhood
with α, β, γ, δ = 1/2, 2, 1/2, 1/2, while cells of size h/4 have α, β, γ, δ = 4, 2, 1, 4
or α, β, γ, δ = 2, 1, 4, 2.

We recall that, if the numerical flux function F appearing in (3) is consistent
and Lipschitz continuous, the reconstructions are third order accurate and the
ODEs (2) are discretized using a third order accurate method, then the numerical
finite volume scheme is third order accurate in time as well in space, see [16, §17].

These tests compute also the spatial discretization error(
u(xj+1/2)− u(xj−1/2)

)
/hj −

(
U−j+1/2 − U

−
j−1/2

)
/hj ,

which is the finite volume error analogue of the finite difference truncation error
u′(xj)−

(
U−
j+1/2

− U−
j−1/2

)
/hj studied in [1].

We integrate ut + ux = 0 on the domain [0, 1] until t = 1, with periodic
boundary conditions and the smooth initial datum u0(x) = sin(2πx−sin(2πx)/2π).
The maximum norm error for the numerical derivative of u0(x) on this grid and
the 1-norm error at final time in the linear transport test were recorded. The
results for ε = h2 are shown in Table 5 (WENO3) and Table 6 (CWENO3).
Uniform and quasi-regular grids showed the expected convergence rates ((25) and
Remarks 3 and 5) in both the spatial discretization error and the linear transport
test. Random and αβγδ-grids show irregular and degraded convergence rates for
the spatial discretization error, but the order of convergence is 3 in the linear
transport test.

Having shown that random and αβγδ-grids are the most troublesome, but that
in the linear transport test the theoretical order of convergence is easily reached
with an h-dependent ε, next we compare the different combinations of WENO3
and CWENO3 with ε = h2 and ε = h on linear transport test for smooth and
discontinuous data.

The error at final time in both the 1-norm and the maximum norm are reported
in Figure 3. On all grid types (only random ones are shown) and for both norms,
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Maximum norm error on the numerical derivative on u0(x)
N uniform quasi-unif random [1,1/2,1/4,1/4,1]

error rate error rate error rate error rate
20 6.30e-01 6.20e-01 7.20e-01 3.90e-04
40 3.06e-01 1.04 2.58e-01 1.26 2.83e-01 1.34 1.56e-04 1.32
80 5.46e-02 2.49 5.93e-02 2.12 5.21e-02 2.44 4.27e-05 1.87

160 7.52e-03 2.86 9.00e-03 2.72 8.37e-03 2.63 1.09e-05 1.97
320 9.78e-04 2.94 1.18e-03 2.92 1.34e-03 2.63 2.74e-06 1.99
640 1.23e-04 2.99 1.47e-04 3.00 4.03e-04 1.73 6.86e-07 2.00

1280 1.54e-05 3.00 1.83e-05 3.00 9.11e-05 2.14 1.71e-07 2.00
2560 1.92e-06 3.00 2.27e-06 3.00 2.34e-05 1.95 4.29e-08 2.00

1-norm error on the linear transport at t = 1
N uniform quasi-unif random [1,1/2,1/4,1/4,1]

error rate error rate error rate error rate
20 8.20e-02 9.69e-02 8.31e-02 4.10e-02
40 2.75e-02 1.57 4.20e-02 1.20 2.76e-02 1.58 8.33e-03 2.30
80 4.95e-03 2.48 9.47e-03 2.15 5.01e-03 2.46 1.25e-03 2.73

160 7.35e-04 2.75 1.56e-03 2.60 7.40e-04 2.75 1.61e-04 2.96
320 9.36e-05 2.97 2.10e-04 2.88 9.40e-05 2.97 1.94e-05 3.06
640 1.14e-05 3.04 2.57e-05 3.03 1.14e-05 3.03 2.38e-06 3.03

1280 1.41e-06 3.01 3.16e-06 3.02 1.41e-06 3.01 2.97e-07 3.00
2560 1.76e-07 3.00 3.94e-07 3.00 1.76e-07 3.00 3.71e-08 3.00

Table 5 Discrete maximum norm error on numerical derivative (top) and discrete 1-norm
error in linear transport equation with WENO3. ε = h2, u0(x) = sin (2πx− sin(2πx)/2π) .

Maximum norm error on the numerical derivative on u0(x)
N uniform quasi-unif random [1,1/2,1/4,1/4,1]

error rate error rate error rate error rate
20 4.83e-01 8.77e-01 6.55e-01 5.13e-04
40 3.14e-01 0.62 2.62e-01 1.74 3.06e-01 1.09 1.64e-04 1.64
80 5.05e-02 2.64 5.48e-02 2.26 7.18e-02 2.09 4.32e-05 1.92

160 5.46e-03 3.21 6.59e-03 3.06 8.61e-03 3.06 1.09e-05 1.98
320 5.98e-04 3.19 7.58e-04 3.12 1.51e-03 2.51 2.74e-06 1.99
640 7.10e-05 3.07 8.83e-05 3.10 2.77e-04 2.44 6.86e-07 2.00

1280 8.73e-06 3.02 1.06e-05 3.05 6.43e-05 2.10 1.72e-07 2.00
2560 1.09e-06 3.01 1.31e-06 3.02 1.61e-05 1.99 4.29e-08 2.00

1-norm error on the linear transport at t = 1
N uniform quasi-unif random [1,1/2,1/4,1/4,1]

error rate error rate error rate error rate
20 8.22e-02 9.91e-02 8.27e-02 3.90e-02
40 2.40e-02 1.78 4.02e-02 1.30 2.41e-02 1.77 6.55e-03 2.57
80 3.57e-03 2.75 7.68e-03 2.38 3.60e-03 2.74 8.54e-04 2.94

160 4.57e-04 2.97 1.05e-03 2.87 4.64e-04 2.95 9.91e-05 3.11
320 5.36e-05 3.09 1.25e-04 3.06 5.45e-05 3.09 1.07e-05 3.20
640 6.35e-06 3.08 1.45e-05 3.10 6.49e-06 3.07 1.25e-06 3.11

1280 7.80e-07 3.02 1.76e-06 3.04 7.97e-07 3.02 1.52e-07 3.03
2560 9.72e-08 3.00 2.18e-07 3.01 9.94e-08 3.00 1.89e-08 3.01

Table 6 Discrete maximum norm error on numerical derivative (top) and discrete 1-norm
error in linear transport equation with CWENO3. ε = h2, u0(x) = sin (2πx− sin(2πx)/2π) .
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Fig. 4 Linear transport of discontinuous data on random grids. Zoom of the solution close to
the discontinuity (top), the discrete 1-norm and the total variation, respectively (bottom).

the choice ε = 10−6 gives the biggest errors, ε = h2 is slightly better, while ε = h

yields errors that are lower by about a factor of 2. In all cases, the CWENO3
reconstruction yields slightly lower errors than the WENO3 reconstruction.

Next we repeat the previous test with the square wave initial datum u0(x) =
χ[1/2,1](x), where χ denotes the characteristic function. At final time we computed
the 1-norm of the error and the total variation: the results are reported in Figure
4. The errors in 1-norm are much closer to each other than in the smooth case,
with ε = h still being slightly better than the other choices. The test on the total
variation shows that the increased resolution in the smooth case is obtained when
the reconstructions stay closer to the central one and in fact the choices giving
the lower errors in the previous test (i.e. CWENO3 and ε = h) produce more total
variations than the other ones. In any case the total variation is diminishing under
grid refinement.

4.3 Stability

In Figure 5 we compare the stability region of the third order SSPRK used for time
advancement and the spectrum of the operator that computes numerically the first
order derivative in the approximation of the linear transport equation ut+ux = 0.
The spectrum represented in the figure is the spectrum of the linearization of
the nonlinear operator in the Fourier basis, which represents an analogue of the
classical Von Neumann analysis that is applied to linear schemes. In particular,
on a grid of 65 cells, we compute column-wise a 65× 65 matrix M as follows: for
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Fig. 5 Stability region of SSP-RK3 and spectrum of first derivative operator computed with
upwind flux and WENO3 reconstructions (left) and CWENO3 reconstruction (right). The
boundary of the stability region is marked with the black solid line.

each column, we set up initial data coinciding with one of the real-valued Fourier
basis with frequency between 0 and 32, compute the boundary extrapolated data,
the numerical fluxes, the vector of differences u−

j+1/2
−u−

j−1/2
and decompose this

latter quantity along the real-valued Fourier basis. The eigenvalues of M are shown
in the picture, for WENO3 (left) and CWENO3 (right) and different choices of ε.
Linear stability is achieved if all the eigenvalues stay within the stability region
of the Runge-Kutta scheme, i.e. in the white region of the plot. By symmetry,
only the positive imaginary half-plane is shown. The CFL number was chosen
so that the eigenvalues are very close to the boundary of the absolute stability
region, showing that, for both WENO3 and CWENO3, the choice ε = h has a
slight stability advantage over the other three. We also observe that the spectrum
obtained with the CWENO3 reconstruction is less elongated in the imaginary
axis direction than the one obtained with WENO3, as indicated by the different
location at which the spectrum touches the boundary of the stability region of the
Runge-Kutta scheme.

4.4 Nonlinear conservation and balance laws

Interplay with h-adaptive schemes The use of non uniform meshes is very important
for non-linear conservation laws, since in the area around shocks, the truncation er-
ror can not be better than O(h) irrespectively of the order of the scheme employed
and thus grid refinement is the only available tool to reduce the computational
error in that area. The results of this paper are relevant for moving mesh methods
(quasi-uniform grids) and for locally refined αβγδ-grids. Here we present tests in
the latter setting, using the third order generalization of the h-adaptive scheme
presented in [21], which was analized in [23]. The scheme employs a single non-
uniform mesh, built from an initial uniform one by locally and recursively splitting
in two the troubled cells according to some error indicator. As in [21], the numer-
ical entropy production is employed as an error indicator, but we believe that this
result are rather independent on the details of the adaptive strategy, since in any
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Fig. 6 Efficiency diagrams for ut + ux = 0 with periodic boundary conditions and smooth
data. The initial datum is slowly varying on the left and quite oscillating on the right.
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Fig. 7 Efficiency diagrams for the Burgers’ equation. The initial datum on the left is u3 and
gives rise to a standing shock (final time 0.35), while the one on the right is u4, which is much
more oscillating and gives rise to a complex solution structure with moving shocks (final time
0.45).

case the numerical scheme would have to deal with nearby cells whose size ratio
is a power of two and are thus not quasi-uniform.

In Figure 6 we present the results obtained integrating the linear transport
equation with periodic boundary conditions on [0, 1] and initial datum u1(x) =

sin(πx− sin(πx)/π) (left) and u2(x) = sin(πx) + 0.25 sin(15πx)e−20x2

(right). The
grid is adaptively refined during the numerical integration, using cells of three
(four) sizes respectively, thus with maximum grid ratio of 1/8 or 1/16. The discrete
1-norm error is plotted against the average number of cells that were used during
the computation, which is a proxy of the computational effort of the scheme. Since
the flow is smooth, in this test there are no theoretical reasons why non-uniform
grids would outperform uniform ones. However, the figure shows that choosing an
h-dependent ε yields consistently lower errors and that the choice ε = h clearly
outperforms the other two.

In Figure 7 we present the results obtained integrating the Burgers’ equation
ut + 1

2 (u2)x = 0 on the domain [0, 1] with the initial datum u3(x) = − sin(πx)
(left) and u4(x) = − sin(πx) + 0.2 sin(5.0πx) (right). The adaptive scheme clearly
converges at a faster rate than the uniform grid one which is locked into first order
behaviour by the presence of the shocks. In the tests shown on the left, u3 gives
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Fig. 8 Shock-acoustic interaction test. Top-left: efficiency diagram. Top-right: plot of the
density (reference solution). Bottom: comparison of the numerical solutions obtained with
different choices of ε in the areas marked with dashed rectangles in the top-right panel.

rise to a standing shock in the middle of the domain and we employed a coarse
grid of 16 · 2k cells with 3 + 2k cell sizes (k=0. . . 3) as this is the choice that could
recover third order convergence with respect to the average number of cells (see
[23]). In the test on the right, u4 gives rise to a richer solution structure with two
moving shocks converging towards the middle and four little waves where third
order accuracy plays an important role. Here we employed 16 · 2k cells with 4 + 2k
cell sizes (k=0,. . . , 4). In both cases, choosing an h-dependent ε yields consistently
lower errors and the choice ε = h clearly outperforms the other two, especially in
the more complex situation depicted on the right.

Finally, we consider the classic problem from [26] of the interaction of a shock
with a standing acoustic wave. The conservation law is the one-dimensional Euler
equations with γ = 1.4 and the initial data is

(ρ, v, p) =

{
(3.857143, 2.629369, 10.333333), x ∈ [0, 0.25],

(1.0 + 0.2 sin(16πx), 0.0, 1.0), x ∈ (0.25, 1.0].

The evolution was computed up to t = 0.2 and the results are presented in Figure
8. As the right moving shock impinges in the stationary wave, a very complicated
smooth structure emerges and then gives rise to small shocks and rarefactions (top
right). The evolution was computed with uniform grids and also with the adaptive
algorithm, using coarse grids of 32, 64, 128 cells, with respectively 6, 8, 10 refine-
ment levels. The plot of the error versus the average number of cells employed in
each run shows the effectiveness of the h-adaptive procedure and the considerably
lower errors obtained when ε = h is employed in the reconstruction procedure
(top-left). Three significant portions of the numerical solutions obtained with the
h-adaptive algorithm (128 coarse cells and 10 levels) are shown in the lower part
of the figure. It is evident that the choice ε = h gives the best results in the ap-
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N = 100 N = 200 N = 400 N = 800
WENO3+P2 1.63 · 10−2 1.09 · 10−2 1.51 · 10−2 1.06 · 10−2

CWENO3 6.29 · 10−4 1.27 · 10−4 3.00 · 10−5 6.88 · 10−6

Table 7 Test on the violation of the passivity constraint. Conservation errors of numerical
schemes modified by truncating to 0 all negative water height values.

proximation of both the high frequency waves and of the little shocks on the left,
in particular avoiding the formation of spurious waves, which occour when using
ε = 10−6 or ε = h2.

Third order well-balancing We now consider the finite volume discretization of the
shallow water equations. It is well known that a second order accurate scheme
which is well-balanced for the lake at rest steady state can be constructed with
the classical hydrostatic reconstruction technique of [2]. In this scheme, the cell
average of the source term is computed as

S1 = 1
2

(
hj−1/2 + hj+1/2

) (
zj+1/2 − zj−1/2

)
where hj±1/2 and zj±1/2 are the point values for the water height and the bottom
elevation at the boundaries of the j-th cell that were employed in the compu-
tation of the numerical fluxes. A third order accurate scheme may be obtained
replacing the original linear, slope-limited, reconstruction with an higher order
non-oscillatory one and replacing the original second-order accurate quadrature of
the source term with a third-order accurate one. A simple way to obtain such a
formula is to apply the Richardson extrapolation technique to S1, as proposed in
[20]. Namely, denoting with S2 the same quadrature rule applied with two sub-
intervals, we have that the combination (4S2 − S1)/3 is a fourth-order accurate
quadrature for the source term. However, since

S2 = 1
2

(
hj−1/2 + hj

) (
zj − zj−1/2

)
+ 1

2

(
hj + hj+1/2

) (
zj+1/2 − zj

)
the point-value reconstructions at the cell center must be available as well.

As mentioned at the beginning of §3, WENO3 cannot be applied to compute
third order accurate reconstruction at cell centres hj and zj . Since these values are
needed in the well-balanced quadratures, one could use hj = hj and zj = zj instead
of the third order accurate value, but this would reduce the convergence order to
2 as it can be easily checked on the smooth flow suggested in [27]. Alternatively,
one may reconstruct the point values hj and zj by evaluating the central optimal
polynomial at the cell center. Let’s call this reconstruction WENO3+P2 and com-
pare it with CWENO3. Neither CWENO3 nor WENO3+P2 give rise to positive
schemes, but the latter causes more oscillations, especially close to wet-dry fronts.
In order to show the differences, we consider and compare the positive schemes
obtained by artificially setting hn+1

i = 0 whenever hn+1
i < 0 after each timestep.

These schemes are of course not conservative, but their conservation error accu-
mulates over time and gives a measure of the violation of the positivity constraint.
Table 7 shows the conservation errors registered for the simulation of a pond with
bottom z(x) = 2x2, initial water level H(x) = z(x)+h(x) = max(1+0.4x, z(x)) and
q(x) = 0. At time t = 4.0 the water surface has inverted its movement four times,
each time giving rise to spurious waves at the dry points. The scheme based on
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WENO3+P2 does not show any convergence of the conservation error, indicating
that the positivity constraint violations are much severe than those caused by the
CWENO3 scheme, which gives rise to a conservation error that decays as N−2

with the increase of the number of points. The results in the Table 7 refer to the
case of quasi-uniform meshes, but we point out that similar ones were observed
on uniform ones.

4.5 Two-dimensional tests

A generalisation of the CWENO reconstruction to locally-refined quad-tree grids
was described in [23]. Here we present a comparison of the different choices for ε
in this setting.

The reconstruction presented in [23] is a truly two-dimensional reconstruction
that generalises the one of [18] to non-uniform meshes. In brief, for the cell Ωj
one considers as “optimal” second order polynomial POPT

j (x, y) that interpolates
the cell average in Ωj exactly and all the cell averages in the neighbours in a
least-squares sense (this approach is of course needed since in a two-dimensional
h-adapted grid the number of neighbours is variable). Additionally the recon-
struction considers four “directional planes”, i.e. first order polynomials that fit
exactly the cell average in Ωj and, in a least squares sense, the cell averages of the
neighbours in the north-east, north-west, south-west and south-east sector. For
the precise definition of the neighbourhoods and stencils, see [23]. Then a second
order polynomial PC

j (x, y) is defined by requiring that

POPT
j (x, y) = 1

2P
C
j (x, y) + 1

8P
NE
j (x, y) + 1

8P
NW
j (x, y) + 1

8P
SW
j (x, y) + 1

8P
SE
j (x, y),

non-linear weights are computed from the optimal weights CC = 1
2 and CNE =

CNW = CSW = CSE = 1
8 with the help of the Jiang-Shu indicators and a recon-

struction polynomial is defined by

PREC
j (x, y) = ωCP

C
j (x, y)+ωNEP

NE
j (x, y)+ωNWPNW

j (x, y)+ωSWPSW
j (x, y)+ωSEP

SE
j (x, y).

This latter polynomial is uniformly third order accurate in the cell (for smooth
data) and it can be evaluated where needed. For non-smooth data, the procedure
of computing the nonlinear weights from the linear one by using the regularity
indicators, ensures that data from non-smooth sub-stencils are not relevant for
the coefficients of PREC

j and the reconstruction is non-oscillatory. For more tests,
see [23].

In this paper we want to test the influence of the choice of ε in the accuracy of
the reconstruction for smooth data. We remark that the role of ε is quite important
in h-adapted meshes, since the grid includes cells of very different size and it is
thus quite difficult to choose a fixed value of ε that works well on every cell.

To this end we consider the function u(x, y) = sin(2πx) cos(2πy) on the unit
square with periodic boundary conditions on a uniform coarse grid. The grid is
locally refined with a simple gradient indicator, obtaining the locally adapted
grid G0 depicted in Table 8. Finer grids Gk are then obtained from this one by
splitting each cell of G0 into 4k equal parts. For each grid, the cell averages of u are
computed with a fifth-order gaussian quadrature rule and then the reconstruction
of boundary extrapolated data is performed using the two-dimensional CWENO
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N ε(h) = 10−6 ε(h) = h2 ε(h) = h
error rate error rate error rate

G0 1.03e4 1.82e-02 1.30e-02 2.94e-03
G1 4.13e4 4.59e-03 1.98 1.93e-03 2.75 2.03e-04 3.86
G2 1.65e5 1.10e-03 2.06 2.16e-04 3.16 2.31e-05 3.13
G3 6.62e5 1.20e-04 3.19 2.04e-05 3.40 2.91e-06 2.99
G4 2.65e6 4.97e-06 4.59 2.08e-06 3.30 3.65e-07 3.00

Table 8 Maximum norm errors for the two-dimensional CWENO reconstruction on h-adapted
grids. The error decay rates are computed with respect to

√
N , where N is the number of cells

in the grid. (Due to the choice of grids Gk, N scales as the inverse of the size of the smallest
cell in the grid). The grid G0 and the function u is depicted on top.

reconstruction. The reconstruction polynomials are computed in each cell and
evaluated at the quadrature nodes of the third-order gaussian quadrature, which
would be the quadrature of choice for computing fluxes of a finite-volume scheme
on such grids. These values are then compared with the exact values of the function
u and the maximum-norm error is reported in Table 8.

We observe that the choice ε(h) = h gives the best results both in terms of
error decay rates and in terms of absolute values of the error. In fact, the last
column of Table 8 consistently records lower errors than the other two and has a
more regular behaviour of the decay rates.

5 Conclusions

[1] and [14] discussed the advantage of choosing the parameter ε in WENO and,
respectively, CWENO boundary value reconstruction procedures. In this work we
extended their results to non-uniform meshes and concentrate on finite volume
schemes, whereas [1] worked in the finite differences approach.

Our work shows that, also for a non-uniform grid, choosing ε as a function of
the local mesh size (i.e. ε = ε(hj) for the reconstruction of u+

j−1/2
and u−

j+1/2
)

allows one to recover the optimal error of convergence even close to local extrema
of the function being reconstructed and in general provides a much more regular
pattern of error decay, which is a quite important feature for the good performance
of error indicators.

We compared the choices ε = h and ε = h2, showing that both can yield the
aforementioned improvements and that the former is slightly better on smooth
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tests, while the latter gives a slightly lower total variation increase in discontinuous
cases.

Furthermore, we compared the performance of the different choices for ε in an
h-adaptive context, with third order scheme that employs the CWENO3 recon-
struction and, at each timestep, locally refines and coarsens the grid according to
the numerical entropy production error indicator. We observed that reconstruct-
ing in each cell Ωj with εj = hj (where hj here is the local cell size) yields the
best results also in the shocked cases. The paper is completed by a test on the
performance of the CWENO3 reconstruction for the shallow water equation with
dry states.

Finally, we point out that εj = hj has been already successfully employed
in the h-adaptive scheme for conservation laws in two space dimensions based
on a two-dimensional generalisation of the CWENO3 reconstruction on locally
adapted meshes presented in [23] and that more testing on the comparison of
different choices for ε is presented here. Since that reconstruction is based on local
approximation and not on interpolation, the analysis of that more general situation
goes beyond the scope of this paper, but constitutes an interesting line of research.
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