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ABSTRACT 23 

 24 

G. Lione, and P. Gonthier, 2015. A permutation-randomization approach to test the spatial 25 

distribution of plant diseases. Phytopathology xx:xxxx-xxxx. 26 

 27 

The analysis of the spatial distribution of plant diseases requires the availability of 28 

trustworthy geostatistical methods. The MDT (Mean Distance Tests) are here proposed as a series 29 

of permutation and randomization tests to assess the spatial distribution of plant diseases when the 30 

variable of phytopathological interest is categorical. A user-friendly software to perform the tests is 31 

provided. Estimates of power and type I error, obtained with Monte Carlo simulations, showed the 32 

reliability of the MDT (power>0.80; type I error<0.05). A biological validation on the spatial 33 

distribution of spores of two fungal pathogens causing root rot on conifers was successfully 34 

performed by verifying the consistency between the MDT responses and previously published data. 35 

An application of the MDT was carried out to analyze the relation between the plantation density 36 

and the distribution of the infection of Gnomoniopsis castanea, an emerging fungal pathogen 37 

causing nut rot on sweet chestnut. Trees carrying nuts infected by the pathogen were randomly 38 

distributed in areas with different plantation densities, suggesting that the distribution of G. 39 

mailto:paolo.gonthier@unito.it


 

 

Lione Guglielmo 3 Phytopathology   

castanea was not related to the plantation density. The MDT could be used to analyze the spatial 40 

distribution of plant diseases both in agricultural and natural ecosystems. 41 

 42 

Additional keywords: geostatistics, Gnomoniopsis castanea, Mean Distance Tests, permutation, 43 

randomization, resampling, spatial pattern. 44 

 45 

INTRODUCTION 46 

 47 

Analyzing the spatial pattern of plant diseases may be pivotal to elucidate the ecology, the 48 

epidemiology and the infection biology of pathogens as well as the mechanisms underlying host-49 

pathogen interactions and the spread of epidemics (Nelson et al. 1999). A large body of literature 50 

deals with the application of Geographic Information Systems (GIS) in conjunction with statistical 51 

and geostatistical methods to investigate peculiar traits of plants diseases, to test biologically 52 

relevant hypotheses and to build predictive and/or explicative models (Nelson et al. 1999). 53 

Examples of GIS and geostatistical applications can be found in both agriculture and forestry on a 54 

broad range of diseases, hosts and pathogens, including viruses, bacteria and fungi. For instance, 55 

GIS and geostatistical analyses were used to relate the presence of tomato virus vectors to the 56 

spatial pattern of the symptoms in tomato (Solanum lycopersicum L.) crops (Nelson et al. 1999). 57 

Analogous analyses were performed to test the association between genetic variations in cotton leaf 58 

curl viruses and the disease severity in Gossypium spp. fields (Nelson et al. 1999) and to investigate 59 

the dispersion mechanisms of the plum pox potyvirus in orchards of Prunus armeniaca L. and P. 60 

persica (L.) Batsch (Gottwald et al. 1995). Similar approaches were carried out to elucidate the role 61 

of pedoclimatic factors on the incidence of the bacterial blight caused by Xanthomonas arboricola 62 

pv. corylina on Corylus avellana L. (Lamichhane et al. 2013). GIS and geostatistics were also used 63 

to explore the spatial distribution of genotypes of Phytophthora infestans (Mont.) de Bary in 64 

orchards of S. lycopersicum and Solanum tuberosum L. affected by late blight disease (Jaime-65 
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Garcia et al. 2000) and of P. nicotianae B. de Haan var. parasitica (Dast.) Waterh. in crops of 66 

Ananas comosus (L.) Merr. (Chellemi et al. 1988). A GIS and geostatistical-based technique was 67 

used to model the spatio-temporal dynamics of the leaf spot associated with Ramularia areola G. F. 68 

Atk. in Gossypium spp. crops (Pizzato et al. 2014) and to test the relation between climatic factors 69 

and the incidence of the nut rot caused by Gnomoniopsis castanea Tamietti  in orchards of 70 

Castanea sativa Miller (Lione et al. 2014). GIS and geostatistics were also applied to the study of 71 

the ecological association between the alien forest pathogen Heterobasidion irregulare Garbel. & 72 

Otrosina and the habitats of its invasion area in Europe (Gonthier et al. 2012), as well as to define 73 

adequate management prescriptions to thwart the invasion (Gonthier et al. 2014).  74 

As shown in this overview, regardless of the spatial scale of the study and of the 75 

pathosystem under investigation, many experimental designs in plant pathology are characterized 76 

by a recurring pattern. Within this pattern, points (e.g. individual plants, sampling sites or spore 77 

trapping devices) are defined by spatial coordinates and by a variable of phytopathological 78 

relevance. This variable can be either quantitative (e.g. disease incidence, disease severity, amount 79 

of inoculum) or categorical (e.g. infected/healthy plant, plant showing heavy/moderate/mild 80 

symptoms, infested/not infested site). The analysis of the spatial distribution of points and of the 81 

associated variable relies on different conceptual and computational approaches.  82 

Several methods are available to assess whether the spatial distribution of points is clustered, 83 

random or dispersed, including the Nearest Neighbor Index (NNI), the Ripley’s K function and the 84 

Nearest Neighbor Hierarchical Clustering (NNHC), whose significance is generally estimated with 85 

Monte Carlo (MC) simulations (Mitchell 2009). The rationale of MC simulations lies in the 86 

comparison between the observed points location and the location of a large number of points 87 

samples drawn from a predefined data generating process (DGP) known as point process (Crawley 88 

2013; Carsey and Harden 2014). The choice of the appropriate point process depends upon the null 89 

hypothesis being tested (de Smith et al. 2007).  90 
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The spatial distribution of the quantitative variable associated with points is generally 91 

assessed through spatial autocorrelation analyses involving the Mantel test, the estimation of 92 

variograms and the calculation of autocorrelation indexes such as the Geary’s c, the Moran’s I and 93 

the Getis-Ord general G-statistic at global or local scale (Mantel 1967; Mitchell 2009; Webster and 94 

Oliver 2001). To account for the stochastic uncertainty related to these methods, asymptotic theory 95 

and heuristic procedures are available (Goslee and Urban 2007; Marchant and Lark 2004; Mitchell 96 

2009). While the above cited techniques are routinely applied and embedded in some major GIS 97 

and statistical software (Mitchell 2009), the spatial distribution of a categorical variable associated 98 

with points is still a topic of active research and ongoing development. In the last decades plant 99 

pathologists have proposed and validated some conceptual and technical solutions to this issue. For 100 

instance, the software package 2DCLASS was designed to perform the Gray’s analysis aimed at 101 

detecting the spatial pattern of plant diseases (Gray et al. 1986; Nelson et al. 1992). 2DCLASS was 102 

further improved by the STCLASS package (Nelson 1995) and by a MC-based approach to 103 

investigate the spatiotemporal pattern of the spread of epidemics (Thébaud et al. 2005). A 104 

correlation-based technique was also proposed to detect the spatial distribution of discrete data 105 

through the 2DCORR package (Ferrandino 1997). More recently, an extension of local measures of 106 

spatial association was suggested to deal with the same kind of data (Boots 2003). The above cited 107 

solutions were designed to analyze binomial categorical data (e.g. infected/healthy plant) in lattices, 108 

where points were approximated to cells in a regular grid, including missing points (e.g. missing 109 

plants). While this approximation is suitable to model many field conditions where plants are 110 

located in the space according to a predefined geometric pattern, like in nurseries, in orchards and in 111 

regular plantations, no application to forestry, to irregular plantations and to natural seedlings 112 

regeneration has been reported so far. Despite transiogram analyses were proposed to overcome the 113 

constraints related to the plants plantation scheme, the discrepancy between experimental 114 

transiograms and idealized ones can occur, affecting the interpretation of the results (Weidong 115 

2006).  116 
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The goal of this study was to develop and validate a permutation and randomization-based 117 

approach, hereafter called Mean Distance Tests (MDT), to assess the spatial pattern of a plant 118 

disease when this is defined as a categorical variable. The MDT algorithms were embedded in a 119 

user-friendly application for personal computer. 120 

 121 

MATERIALS AND METHODS 122 

 123 

Overview and software design. Let  ntttT ,...,, 21  be a finite set of n  points with known 124 

x and y coordinates in a Cartesian plane and let TI   be a subset of T including m  22  nm  125 

points. For instance, the points in the set T could be plants and the points in the subset I could be the 126 

plants infected by some pathogens. In other terms, the m points in the subset I are those points of 127 

the set T which a level γ (i.e. “infected”) of a categorical variable Γ (e.g. “health status”) has been 128 

assigned to. Let d  be an overall index of the distances that separate m points in a plane, calculated 129 

as the mean of the values stored in the m × m triangular Euclidean distance matrix of the points. Let 130 

0d  be the observed value of d , which is calculated for the m points included in the subset I. Finally, 131 

let be 








m

n
 a binomial coefficient, representing the number of possible arrangements of m elements 132 

drawn from a set of n elements. Within the permutation tests framework, the probability mass 133 

function (PMF) of d  is obtained by calculating d  for each ith combination 

















m

n
i1  through 134 

which m points of the set T can be randomly assigned to the subset I (Carsey and Harden 2014). 135 

Instead, within the randomization tests framework, the PMF is estimated by calculating d  on a 136 

random sample without replacement of B combinations 

















m

n
B1  (Carsey and Harden 2014). 137 

The main core of this work is to determine from the PMF, with a predefined significance level cut-138 
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off α, whether 0d  is either significantly lower (i.e. located towards the left tail) or higher (i.e. 139 

located towards the right tail) than expected under the random assignment of γ (i.e. random 140 

definition of the subset I within the set T). The first case indicates a clustered spatial pattern of the 141 

level γ, while the second occurs in a dispersed spatial pattern of the same level. This is equivalent to 142 

test if the infected plants are nearer or further apart than expected according to a random 143 

distribution of the infected plants within the sampled plants. To deal with this issue the Mean 144 

Distance Tests (MDT) approach is proposed here.  145 

MDT are based on the assumption that the x and y coordinates of points in the set T are fixed 146 

and that only the assignment of the level γ is a stochastic process. The MDT consist of 3 147 

permutation tests (Mean Distance Permutation Tests - MDPT) and 3 randomization tests (Mean 148 

Distance Randomization Tests -  MDRT). Both permutation and randomization tests are divided 149 

according to the tails of the PMF they refer to (Hartwig 2013). MDPT2T is the two-tailed (2T) 150 

permutation test, MDPTLT the left-tailed (LT) and MDPTRT the right-tailed (RT), respectively. 151 

Similarly, the MDRT are designed in the two-tailed version (MDRT2T), in the left-tailed 152 

(MDRTLT) and in the right-tailed (MDRTRT) ones (Table 1). Once the above described steps to 153 

obtain the PMF and to calculate 0d  are performed, the mean value D  of the PMF is calculated, the 154 

exact p-value (pe) is determined for MDPT and the randomization p-value (pr) is determined for 155 

MDRT as reported in Carsey and Harden (2014) and Ernst (2004). The adequacy of the number B 156 

selected to perform the MDRT is assessed by calculating the lower (Lpr) and upper (Upr) bounds of 157 

the confidence interval for pr at user-defined level λ (e.g. 0.95). The confidence interval is 158 

calculated from the binomial distribution as described in Ernst (2004). Whenever the condition 159 

prpr UL   is verified, pr is deemed to be ambiguous and B is increased until the sampling 160 

adequacy is achieved and, thus, ambiguity is solved (Ernst 2004).   161 
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The algorithms performing the MDT were compiled and run in R 3.1.2 environment (R Core 162 

Team, Vienna, Austria) and subsequently embedded in a software for personal computer designed 163 

with Shiny, a hybrid R-HTML environment for personal computer (Beeley 2013).  164 

Monte Carlo estimates of MDPT power and type I error. MC simulations were 165 

performed to assess the power and the type I error of MDPT2T, MDPTLT and MDPTRT. 166 

According to the null hypothesis of each test (Table 1), three DGPs were designed. Every DGP 167 

consisted in a point process realized both in a squared 4 × 4 units window and in a 6 × 6 one. The 168 

point processes included n=15 points for the set T and from m=2 to m=13 points for the subset I. 169 

The origin of the Cartesian system was located in the windows centre and the points coordinates 170 

were expressed in polar form (R, θ). The first DGP (point process 1 - PP1) was designed to simulate 171 

a random spatial distribution of γ. At each MC simulation, the set T was generated by sampling for 172 

n times R from a uniform distribution (Carsey and Harden 2014) bounded between 0 and half the 173 

window edge and θ from a uniform distribution bounded between 0 and 2π radians. A random 174 

number generator was used to define the subset I by drawing m out of n points without replacement, 175 

with the extraction probability set constant for each point (Carsey and Harden 2014). The level γ 176 

was assigned to the sampled m points. The second DGP (PP2) was planned to simulate a clustered 177 

spatial distribution of γ. The level γ was assigned to m points whose R was sampled from a beta 178 

distribution with shape parameters a=0.5 and b=10 (Crawley 2013) and whose θ was generated 179 

from the same uniform distribution described for PP1. The remaining points were drawn in the 180 

same way but inverting the a and b shape parameters. In the last DGP (PP3) a dispersed spatial 181 

distribution of γ was simulated. PP3 was set as described for PP2 with the exception of the shape 182 

parameters of the beta distribution, which were inverted.  183 

To gather the estimates of permutation tests power and type I error, two blocks of MC 184 

simulations (hereafter blocks), each one consisting in 1·104 simulations, were performed for both 185 

windows, for every m value and for any MDPT, resulting in a total of 1.44·106 simulations. For 186 

each block either a single DGP or a couple of DGPs selected among PP1, PP2 and PP3 was run. 187 
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The number of simulations based on PP1, PP2 or PP3 within a single block varied depending on the 188 

MDTP (Table 2). For every simulation within the block the same permutation test was performed 189 

on the γ level with the α value set to 0.05. As proposed by Thébaud et al. (2005), the proportion of 190 

simulations resulting in the rejection of a false null hypothesis was used as an estimate of power. 191 

Similarly, the estimate of type I error was calculated as the proportion of simulations within a single 192 

block in which MDPT rejected the null hypothesis when it was true. The estimates of power and 193 

type I error were averaged to be compared among tests and windows size. The above estimates 194 

were also correlated with the Spearman ρ correlation coefficient to m [i.e. testing ρ(m)] and to 








m

n
 195 

[i.e. testing ρ 








m

n
] , with a p-value cut-off set to 0.05. 196 

Biological validation. The MDRT were validated on data gathered from Gonthier et al. 197 

(2012). In this study, 44 sampling points equipped with spores trapping devices were located within 198 

a 3030 ha forest in the Circeo National Park, in central Italy. Spore trapping devices allowed to 199 

determine the spores deposition rate (DR), expressed as the number of viable spores per squared 200 

meter per hour (spores·m-2·h-1), of two fungal pathogens causing root rot on conifers. The first 201 

pathogen, Heterobasidion annosum (Fr.) Bref., is native in the area, while the second one, H. 202 

irregulare, is an alien invasive species. Geostatistical analyses of spatial autocorrelation performed 203 

on the DR showed that H. irregulare was ubiquitous and distributed in the area according to a 204 

random spatial pattern, while H. annosum showed significant clustering around patches of conifers.  205 

To validate the MDRT, the set T was defined including all n=44 sampling points. Two 206 

categorical variables Γ1 (i.e. “presence of H. annosum spores”) and  Γ2 (i.e. “presence of H. 207 

irregulare spores”) were defined. For Γ1 the γ1 level (i.e. “H. annosum spores are present”) was 208 

assigned to the m1 sampling points with H. annosum DR>0, which were included in the subset I1. 209 

Similarly, the γ2 level (i.e. “H. irregulare spores are present”) was assigned to the m2 sampling 210 
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points with H. irregulare DR>0 to define the subset I2. MDRT2T, MDRTLT and MDRTRT with 211 

α=0.05, B=104 and λ=0.95 were performed on both γ1 and γ2 levels. 212 

Application to a case study. An application of the MDT to a case study was carried out to 213 

test the relation between the plantation density and the incidence of Gnomoniopsis castanea, an 214 

emerging fungal pathogen causing the nut rot of chestnut (Visentin et al. 2012). During October 215 

2013, the coordinates of 203 sweet chestnuts (C. sativa) were recorded in UTM WGS84 zone 32 N 216 

system (m) with a GPS device (Magellan Mobile Mapper 6, Magellan Navigation Inc., Santa Clara, 217 

CA, USA). The trees grew in the sweet chestnut orchard “Vivaio Gambarello”, set in the north-west 218 

of Italy (E 394,925; N 4,906,885). A NNHC analysis (Mitchell 2009) was performed on CrimeStat 219 

3.3. (Ned Levine & Associates, Houston, TX, USA) with 2·103 iterations and significance level cut-220 

off set to 0.05. The two clusters of sweet chestnuts including the largest number of trees (areas C1 221 

and C2, see results) were selected and two not clustering groups (areas NC1 and NC2) with the 222 

same number of sweet chestnuts were randomly chosen. The mean value of the triangular Euclidean 223 

distance matrix among all the sweet chestnuts was calculated for areas C1, C2, NC1 and NC2. Up 224 

to 40 nuts per tree were collected from the crown of each sweet chestnut in the above mentioned 225 

areas. Fragments of the nuts kernel were plated in Petri dishes on Malt Extract Agar (MEA) to 226 

assess the presence/absence of G. castanea in the fruit tissues at the tree level. Isolations and fungal 227 

identification were performed as described by Lione et al. (2014). The incidence of G. castanea was 228 

calculated as the ratio, in percent, between the mC1, mC2, mNC1  and mNC2 trees carrying at least one 229 

infected nut (i.e. subsets IC1, IC2, INC1 and INC2 of areas C1, C2, NC1 and NC2) and the nC1, nC2, nNC1  230 

and nNC2 trees growing in each area (i.e. sets TC1, TC2, TNC1 and TNC2). The categorical variable Γ 231 

(i.e. “presence of G. castanea in at least one nut”) was defined and the level γ (i.e. “G. castanea is 232 

present in at least one nut”) was assigned to the mC1, mC2, mNC1  and mNC2 trees. The incidence of the 233 

pathogen was compared among the four above mentioned areas with a χ2 test performed with a 234 

significance cut-off of 0.05. For each area 0d  and 








m

n
 were calculated. MDRT2T, MDRTLT and 235 
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MDRTRT with α=0.05 and MDRT2T, MDRTLT and MDRTRT with α=0.05, B=102, B=5·102 and 236 

λ=0.95 were performed on the γ level for every area.  237 

 238 

RESULTS 239 

 240 

Software design. MDT algorithms are provided as scripts to run in R environment 241 

(Supplementary file 1). The algorithms have also been embedded in the MDT software, a “point-242 

and-click” graphic user interface (GUI) running on the internet browser. The user is supposed to 243 

provide the input data as a spreadsheet .csv file with as many rows as the points in the set T, one 244 

column for each spatial coordinate, one column for the Γ variable. Cells included in this last column 245 

indicate for all points the assigned levels of Γ. The other inputs required (Table 1) should be 246 

specified directly in the GUI. The MDT software, its user manual and the installation instructions 247 

are freely available from the e-Xtras (Supplementary file 2).  248 

Monte Carlo estimates of MDPT power and type I error. On average the estimates of 249 

power of MDPT ranged from 0.8884 to 0.9917, while the estimates of type I error were comprised 250 

between 0.0247 and 0.0496 depending on the test. The maximum average power was attained by 251 

MDPTLT, followed by MDPT2T and MDPTRT. The minimum values of type I error were 252 

observed in MDPTLT and MDPTRT, followed by MDPT2T. Within the same test, the window size 253 

affected the average values of the power and of the type I error estimates resulting in a maximum 254 

absolute difference of ±0.001. Significant correlations [ρ(m)=0.6504; P=0.0220] were detected 255 

between the power estimates and m in MDPTLT, regardless of the window size. Significant values 256 

of ρ 








m

n
 were observed in the correlation tests between the power estimates and 









m

n
 in MDPT2T 257 

and MDPTRT for both windows sizes [ρ 








m

n
>0.8600; P<0.05]. No significant correlations 258 
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(P>0.05) were observed between the estimates of type I error and either m or 








m

n
, with the 259 

exception of MDPTRT in the 6 × 6 units window (Table 3). 260 

Biological validation. For the variable Γ1, the level γ1 was assigned to m1=16 sampling 261 

points that fulfilled the condition H. annosum DR>0, defining the subset I1 (Fig. 1A). For γ1, the 262 

value of 0d  attained 2767 m, while D  was 3449 m in MDRT2T and 3443 m in both MDRTLT and 263 

MDRTRT. Based on MDRT2T, sampling points where spores of H. annosum had been detected 264 

were not randomly distributed within the sampling points (pr=0.0122, Lpr=0.0117, Upr=0.0158). 265 

MDRTLT indicated a clustered spatial pattern of the points with H. annosum DR>0 within the 266 

sampling points (pr=0.0092, Lpr=0.0065, Upr=0.0113). Finally, MDRTRT was not significant, 267 

showing a not dispersed spatial distribution of the points with H. annosum DR>0 within the 268 

sampling points (pr=0.9892, Lpr=0.9875, Upr=0.9918). The subset I2 was defined by assigning the 269 

level γ2 of the variable Γ2 to the m2=29 points that satisfied the condition H. irregulare DR>0 (Fig. 270 

1B). In this case, 0d  attained a value of 3281 m, while D  ranged from 3445 m in MDRTLT to 3446 271 

m in MDRT2T and MDRTRT. MDRT2T output indicated that sampling points where spores of H. 272 

irregulare had been identified were randomly distributed within the sampling points (pr=0.2554, 273 

Lpr=0.2422, Upr=0.2699). According to MDRTLT, points with H. irregulare DR>0 were not 274 

clustered within the sampling points (pr=0.1278, Lpr=0.1272, Upr=0.1402), while the MDRTRT 275 

showed a not dispersed spatial pattern for the same points (pr=0.8739, Lpr=0.8636, Upr=0.8781). In 276 

all MDRT performed the condition prpr UL   was not verified for B=104.  277 

Application to the case study. The NNHC showed the presence of 24 first order clusters, 278 

comprising two to five trees, and two second order clusters (areas C1 and C2), composed by four 279 

and five first order clusters with a total of nC1=14 and nC2=17 sweet chestnuts, respectively (P<0.05)  280 

(Fig. 2A and 2B). The same number of trees was used to define the areas NC1 (nNC1=14) and NC2 281 

(nNC2=17) (Fig. 2C and 2D). The mean value of the triangular Euclidean distance matrix among all 282 

trees attained 12.8 m in C1, 9.9 m in C2, 13.1 m in NC1 and 26.3 m in NC2. The level γ was 283 
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assigned to the mC1=10, mC2=9, mNC1=8  and mNC2=11 sweet chestnuts carrying at least one nut 284 

infected by G. castanea (Fig. 2). The incidence of G. castanea was 71.4% in C1, 52.9% in C2, 285 

57.1% in NC1 and 64.7% in NC2. The χ2 test indicated no significant differences among the 286 

incidence level of the four areas (P=0.7312). The 0d  distance ranged from 18.8 m to 32.7 m, with 287 

the lowest values observed in C1 and C2, while 








m

n
 was comprised between 1,001 and 24,310, 288 

depending on the area. The MDT performed were never significant (pe>0.05; pr>0.05), regardless of 289 

the area, indicating a random (2T), not clustered (LT) and not dispersed (RT) spatial distribution of 290 

sweet chestnuts infected by G. castanea within the sampled trees. The B values were adequate to 291 

perform the MDRT since the condition prpr UL  was not verified, with the exception of the 292 

MDRTLT carried out in NC1 for B=102. Increasing B values reduced the width of the interval [Lpr, 293 

Upr] for every MDRT in all areas (Table 4).  294 

 295 

DISCUSSION 296 

 297 

The analysis of the spatial pattern of plant diseases is a pivotal issue in plant pathology since 298 

it is aimed at gathering relevant information about biological, epidemiological and ecological 299 

aspects of pathogens. In this regard, during the last decades, an increasing interest has been 300 

addressed by plant pathologists to the development and the use of statistical and geostatistical 301 

methods. It is worth noting that the majority of these methods was mainly designed to analyze 302 

specific kinds of variables in a limited range of field conditions. A large body of literature dealt 303 

with the spatial distribution of relevant phytopathological measures on the continuous or ordinal 304 

scale, while few studies were focused on the spatial pattern of categorical variables. Moreover, 305 

many researches carried out on categorical variables proposed geostatistical methods aimed at 306 

analyzing diseases in lattices and in regular plantations. The application of such methods often 307 

requires the user to own a solid background in mathematics, advanced statistics and information 308 
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technology, since the algorithms performing the tests are rarely wrapped into a user-friendly “point-309 

and-click” interface. These aspects may thwart the diffusion of some statistical and geostatistical 310 

tests in phytopathology, despite they were designed explicitly to analyze plant diseases. Within this 311 

framework, the main goal of our study was to propose the MDT as a series of geostatistical tests to 312 

assess the spatial pattern of plant diseases when the variable of phytopathological interest is 313 

categorical and to provide the user with an intuitive “point-and-click” software to perform the tests.  314 

It is worth noting that the MDT assumptions are not constrained by the spatial pattern of the 315 

points in the set T, thus the MDT are virtually suitable to be applied in a wide range of situations, 316 

encompassing agricultural, forest and natural ecosystems. Unlike other geostatistical tests, the MDT 317 

do not require a grid-based approximation to represent the points location, hence they can be 318 

performed on the actual vector features of the points (e.g. shape files in a GIS environment).  319 

The MDT are based on a permutation and randomization approach, in the acceptation 320 

proposed by Carsey and Harden (2014), and consequently they are included in the broader category 321 

of non parametric techniques known as resampling methods. These methods can be profitably 322 

employed when the stochastic process underlying the phenomenon under investigation may be 323 

assumed to be well mimicked by the resampling process (Carsey and Harden 2014). This may be 324 

often the case in plant pathology. For instance, a researcher may be interested in the investigation of 325 

the spatial distribution of plants infected by some pathogens within a regular plantation. In such a 326 

situation, the location of plants is the result of a predetermined design, while the occurrence of the 327 

pathogen may be realistically assumed as a stochastic event, which could have resulted in a 328 

different outcome depending on the random factors influencing the disease (e.g. environmental 329 

variables, inoculum pressure). In natural and semi-natural ecosystems a certain level of stochasticity 330 

is intrinsic in the distribution of plants, yet it may often be considered negligible in relation to the 331 

stochasticity involved in the epidemiological processes. Moreover, a plant pathologist is generally 332 

more interested in the dynamics of the disease rather than in the dynamics underlying the actual 333 

distribution of plants within the study area. For the above cited reasons, the MDT permute (i.e. 334 
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MDPT) or randomize (i.e. MDRT) the location of the points included in the subset I, while keeping 335 

constant the coordinates of the points in the set T. This approach equals to permute or randomize the 336 

assignment of the level γ of the categorical variable Γ to m out of n points, where m and n are the 337 

points included in the subset I and in the set T, respectively. In any case, it is up to the researcher 338 

ascertaining whether the above assumptions about the stochasticity of the phytopathological process 339 

under investigation hold reasonably true according to the experimental pattern and the goals of the 340 

study.  341 

The algorithms proposed for the MDT are largely based on the estimation of the PMF of the 342 

distance parameter d through either permutation or randomization. Both permutation and 343 

randomization are currently considered robust and flexible standards for the assessment of the PMF 344 

of parameters lacking a solid distributional theory (Carsey and Harden 2014; Ernst 2004; Peres-345 

Neto and Olden 2001). Whenever possible, the permutation approach should be preferred, since the 346 

randomization leads to an estimate of the permutation results, implying a higher degree of 347 

uncertainty in the response. However, permutation methods may pose heavy computational issues 348 

in terms of time consumption and technical feasibility (Ernst 2004). Combinatorics shows that, even 349 

for moderate sample sizes, the amount of data generated during a permutation test may be 350 

extremely large, requiring an excessively long time to be processed, or even exceeding the available 351 

computational power of the computer. Thus, the limits of the computer performances may impose 352 

the switch from the permutation to the randomization approach (Carsey and Harden 2014). This 353 

switch implies a cost in terms of uncertainty, that in the case of the MDRT affects the value of pr. 354 

To deal with this issue, the calculation of confidence intervals for pr were embedded in the MDRT 355 

algorithms as indicated by Ernst (2004). It is worth noting that the theory of resampling methods 356 

suggests that a higher accuracy in the results of randomization may be acquired by increasing the 357 

number of combinations randomly selected to perform the test (Carsey and Harden 2014; Ernst 358 

2004). This is remarkably relevant when the randomization p-value tends to approach α, the cut-off 359 

level dividing the regions of acceptance/rejection of the null hypothesis under the estimated PMF. 360 



 

 

Lione Guglielmo 16 Phytopathology   

In fact, if the confidence interval of the randomization p-value includes α, there is no possibility of 361 

discriminating between the two regions. As shown for G. castanea in this study, the ambiguity in 362 

the application of the MDRTLT to the area NC1 was solved by using a 5-fold larger value of B, that 363 

excluded the value α from the 95% confidence interval of pr. Besides, in the same case study, the 364 

reduction of the 95% confidence interval width of pr, as well as the trend to the convergence of the 365 

randomization results to the permutation ones could be observed empirically, in agreement with the 366 

above mentioned theory of resampling methods.  367 

Both MDPT and MDRT were designed in the two-tailed, left-tailed and right-tailed 368 

versions. Since the points included in the subset I can be mapped on a GIS and can be visually 369 

differentiated from the rest of the points of the set T, the researcher may be induced to perform a 370 

one-tailed, rather than a two-tailed test, on the basis of the spatial pattern qualitatively observed on 371 

the map. The preference accorded to the one-tailed tests may also derive from some biologically 372 

relevant information. For instance, depending on the epidemiology and infection biology of the 373 

pathogen, the researcher could be interested in investigating either clustering or dispersion rather 374 

than randomness of the infected plants within the set of sampled plants. Separate algorithms were 375 

provided depending on the tails of the PMF, because the extension of the asymptotic approach to 376 

switch from the one-tailed p-value to the two-tailed one is not recommended (Hartwig 2013).  377 

The null hypothesis of each test was formulated according to the general principles 378 

underlying the permutation and randomization approach (Carsey and Harden 2014; Hartwig 2013) 379 

using the statistic d  as overall index of the distances that separate a set of points in a plane. The 380 

definition of d  is consistent with the assumptions about the spatial differences among clustered, 381 

randomized and dispersed point patterns (Crawley 2013; Mitchell 2009) and it is included in 382 

standard statistical methods dealing with clustering problems (Aldenderfer and Blashfield 1987). 383 

Accordingly, the case study of G. castanea showed that the values achieved by d for all trees 384 

growing in each clustering areas were lower than the values observed in non clustering areas, 385 

despite the NNHC performed for clusters identification was based on another distance index 386 
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(Mitchell 2009). It is worth noting that the statistic d  is only one among the distance measures that 387 

could have been calculated as overall index of the distances that separate a set of points in a plane, 388 

yet the comparison among different distance indexes was not a goal of this study.  389 

The MDT do not include ad hoc procedures to account for scale dependency of the spatial 390 

pattern of the points in the subset I within the set T. On one side, the scale dependency should not 391 

be an issue, since the scale is non included in the definition of d and it is consequently determined 392 

by the spatial extension covered by the points of the set T. However, since the definition of T is 393 

arbitrary, the MDT approach could be applied at both global and local scale (Mitchell 2009). In the 394 

latter case, the MDT could be performed on partitions of the original set T including contiguous 395 

points, yet it is worth noting that the disagreement between outputs obtained from global and local 396 

applications cannot be excluded, since it was reported as a common feature in the framework of 397 

geostatistical tests (Mitchell 2009), despite it was not tested in this study. 398 

 The assessment of power and type I error of permutation tests requires an heuristic 399 

approach based on MC simulations (Peres-Neto and Olden 2001; Thébaud et al. 2005). The average 400 

and the single values obtained for power and type I error estimates of MDPT were in agreement 401 

with those reported for analogous geostatistical tests by Thébaud et al. (2005). On average the 402 

power of both two-tailed and one-tailed tests was larger than 0.80, while the type I error was lower 403 

than 0.05, as generally recommended to ensure the trustworthiness of statistical tests (Crawley 404 

2013). The number of simulations performed within each block and the number of blocks were 405 

deemed to be largely sufficient to provide reliable estimates of the power and the type I error, in 406 

agreement with previously reported data (Carsey and Harden 2014; Ernst 2004; Thébaud et al. 407 

2005). The window sizes seemed not to be influential on the estimates of the power and of the type 408 

I error, as demonstrated by the small differences detected between the results obtained from the two 409 

windows selected to perform the blocks of simulations. This finding suggests that MDPT offer 410 

comparable performances regardless of the density of the points included in the set T. This is not 411 

surprising considering that the overall spatial extension of the points in the set T determines the 412 
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range of variability of .d  Instead, depending on the tails of the tests, the correlation analysis 413 

indicated that the estimates of power were related either to the m number of points included in the 414 

subset I (for MDPTLT), or to the 








m

n
 combinations of the subset I within the set T (for MDPT2T 415 

and MDPTRT). Since the power of a statistical test is generally positively correlated to the sample 416 

size, and provided that m and 








m

n
 are quantities expressing the sample size, this finding is in 417 

agreement with theory, despite this theory has been developed for a few tests and mostly in a 418 

parametric framework (Acutis et al. 2012; Crawley 2013). Under a practical perspective, the 419 

MDPTLT seems to be endowed with the best performances in terms of power, also when m and 420 










m

n
 are relatively small, while MDPT2T and MDPTRT appear to be more reliable when the ratio 421 

m/n tends towards the 50%. The estimates of type I error do not seem to be a criterion allowing to 422 

prefer one test to another according to the sampling size, as suggested by the almost complete lack 423 

of correlation with the above mentioned parameters. Despite the MC simulations were performed 424 

only for MDPT, they might be considered extendable to the corresponding MDRT, provided that B 425 

is large enough to achieve reliable estimates of pe. In fact, as stated before, the randomization tests 426 

are unbiased approximations of their related permutation tests, whose accuracy can be improved up 427 

to the desired level (Ernst 2004). 428 

The assessment of power and type I error through MC simulations is a numerical validation, 429 

since it is performed on known DGP. However, a biological validation is pivotal to verify the 430 

performances of a statistical test in the field (Thébaud et al. 2005). The biological validation was 431 

performed only on the MDRT in consideration of the above cited computational constraints. 432 

However, the 95% confidence intervals of pr indicate a good level of accuracy and exclude 433 

ambiguity in the acceptance/rejection of the null hypotheses. Considering the combined results of 434 

the three MDRT, the points displaying a DR>0 within the network of sampling points covering the 435 



 

 

Lione Guglielmo 19 Phytopathology   

study area were clustered for H. annosum and randomly distributed for H. irregulare. Thus, for both 436 

fungal species, MDRT provided responses which were consistent among different tails and in 437 

agreement with the results obtained by Gonthier et al. (2012) by using spatial autocorrelation 438 

analyses, hence confirming the reliability of the MDRT in field conditions. Moreover, the 439 

advantage of performing the MDRT rather than autocorrelation analysis is intrinsic in the 440 

categorical measurement of the variable under investigation. The DR measured by Gonthier et al. 441 

(2012) required the counting of all fungal colonies of Heterobasidion spp. under a dissecting 442 

microscope, in addition to an appropriate sampling of colonies aimed at obtaining a large number of 443 

isolates (up to 40 per sampling point). The molecular analyses performed on these isolates were the 444 

last step to carry out the repartition of the DR between the two pathogenic species. This approach 445 

provided a quantitative information, which was essential to compare spores deposition between the 446 

two species as well as to carry out the autocorrelation analyses. However, the MDT could optimize 447 

the experimental design in similar trials. In fact, the assessment of the condition DR>0 could allow 448 

a less refined sampling procedure. For instance, molecular analyses could be dramatically reduced 449 

by pooling the samples of fungal mycelium of all isolates from each sampling point before DNA 450 

extraction. Also the number of isolates could be probably reduced without a substantial loss of 451 

information. Besides, the MDT could be performed on wide study areas, providing preliminary 452 

results to be further investigated turning to the quantitative level, but only in representative 453 

subareas.  454 

The application of the MDT to the case study of the nut rot caused by G. castanea showed a 455 

possible way through which the designed geostatistical tests can be performed to gather information 456 

about a plant disease. Regardless of the area where the tests were performed, all MDT agreed in the 457 

identification of a random spatial pattern of the chestnut trees displaying the presence of G. 458 

castanea in at least one nut within the sampled trees. Since in half of the areas chestnuts were 459 

clustered, while in the other half they were not, it could be argued that the plantation density is not a 460 

variable influencing the spatial distribution of the pathogen. This conclusion seems to be confirmed 461 
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by the absence of significant differences among the incidences of the pathogen among the areas. 462 

These findings suggest that the choice of the plantation density, which is a relevant issue for 463 

chestnut growers (Dong-Sheng et al. 2009), can be based on other parameters (e.g. yield 464 

productivity, intraspecific competition) rather than on the risk of transmission of G. castanea 465 

among neighbouring trees. This finding is relevant since, to date, very little was known about the 466 

relationship between the management practices and the incidence of G. castanea. However, it is 467 

important to stress that results from geostatistics do not replace biological and epidemiological 468 

investigations, but rather provide evidence about spatial distributions that can be helpful to 469 

formulate and to test hypotheses about disease dynamics. In the case of G. castanea further analyses 470 

are needed to determine the factors influencing the observed spatial patterns, since the infection 471 

pathways of G. castanea are still mainly unknown (Lione et al. 2014).  472 

Despite the MDT approach is here proposed in the framework of plant pathology, if the 473 

assumption about the stochasticity of the processes under investigation are fulfilled, no constraints 474 

arise for its broader application in other research fields (e.g. ecology, forestry, economy). Even the 475 

number of spatial dimensions should not represent a substantial limit, since the one-dimensional 476 

case (e.g. plants in single-row alley) is a special case of the two-dimensional one (i.e. one 477 

coordinate is constant). The three-dimensional case could be included too, but it would require an 478 

extension of the MDT algorithms. Finally, the availability of accessible R algorithms and of a 479 

“point-and-click” software should facilitate the use of the MDT also among users lacking specific 480 

background in advanced statistics. 481 
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Table 1 565 

Test type Test  Tail Null hypothesis H0 Input Output 

Permutation MDPT2T 2-tailed the spatial pattern of  

level γ is random 

- γ: level assigned to points in I 

- x and y: coordinates of points in T 

- α: significance level cut-off 

- 0d : observed mean value of the 

triangular Euclidean distance matrix 

among the points in I  

- D : mean of the permutation 

distribution  

- pe: exact p-value 

MDPTLT left-tailed the spatial pattern of  

level γ is not clustered  

MDPTRT right-tailed the spatial pattern of  

level γ is not dispersed 

Randomization MDRT2T 2-tailed the spatial pattern of  

level γ is random 

- γ: level assigned to points in I 

- x and y: coordinates of points in T 

- α: significance level cut-off  

- B: number of random 

combinations  

- λ: confidence level for the p-value 

0d : observed mean value of the 

triangular Euclidean distance matrix 

among the points in I  

- D : mean of the randomization 

distribution  

- pr: randomization p-value 

- Lpr: lower bound of the λ 

confidence interval of pr 

- Upr: upper bound of the λ 

confidence interval of pr 

MDRTLT left-tailed the spatial pattern of 

 level γ is not clustered  

MDRTRT 

 

right-tailed the spatial pattern of 

 level γ is not dispersed 

 566 
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Table 2 569 

Test  DGP verifying H0 DGP not verifying H0 Number of simulations per DGP  

to estimate power 

within each block 

Number of simulations per DGP  

to estimate type I error 

within each block 

MDPT2T PP1 PP2; PP3 5·103  PP2 + 5·103  PP3 1·104 PP1 

MDPTLT PP1; PP3 PP2 1·104 PP2 5·103 PP1 + 5·103  PP3 

MDPTRT PP1; PP2 PP3 1·104 PP3 5·103  PP1 + 5·103  PP2 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 
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 580 
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Table 3. 582 

  MDPT2T MDPTLT MDPTRT 

  
 6 × 6 units 

window 

 4 × 4 units 

window  

 6 × 6 units 

window  

 4 × 4 units 

window  

 6 × 6 units 

window  

 4 × 4 units 

window  

m 








m

n
 power 

type I 

error 
power 

type I 

error 
power 

type I 

error 
power 

type I 

error 
power 

type I 

error 
power 

type I 

error 

2 105 0.7638 0.0499 0.7675 0.0419 0.8983 0.0264 0.9006 0.0246 0.6528 0.0237 0.6503 0.0239 

3 455 0.8768 0.0491 0.8744 0.0496 0.9998 0.0241 0.9997 0.0256 0.7476 0.0229 0.7470 0.0240 

4 1,365 0.9312 0.0499 0.9275 0.0471 1.0000 0.0232 1.0000 0.0250 0.8844 0.0251 0.8814 0.0239 

5 3,003 0.8897 0.0491 0.8911 0.0507 1.0000 0.0256 1.0000 0.0254 0.9054 0.0260 0.9071 0.0248 

6 5,005 0.9528 0.0524 0.9487 0.0543 1.0000 0.0241 1.0000 0.0272 0.9355 0.0255 0.9320 0.0274 

7 6,435 0.9513 0.0484 0.9526 0.0458 1.0000 0.0245 1.0000 0.0256 0.9562 0.0248 0.9566 0.0248 

8 6,435 0.9569 0.0517 0.9537 0.0504 1.0000 0.0259 1.0000 0.0244 0.9619 0.0266 0.9654 0.0254 

9 5,005 0.9561 0.0473 0.9567 0.0516 1.0000 0.0247 1.0000 0.0250 0.9594 0.0247 0.9633 0.0235 

10 3,003 0.9482 0.0471 0.9517 0.0482 1.0000 0.0260 1.0000 0.0247 0.9532 0.0261 0.9491 0.0248 

11 1,365 0.9387 0.0484 0.9367 0.0487 1.0000 0.0242 1.0000 0.0225 0.9345 0.0255 0.9355 0.0257 

12 455 0.9040 0.0488 0.9036 0.0511 1.0000 0.0259 1.0000 0.0250 0.9171 0.0245 0.9160 0.0254 

13 105 0.8262 0.0531 0.8267 0.0495 1.0000 0.0257 1.0000 0.0231 0.8530 0.0245 0.8588 0.0235 

average 0.9080 0.0496 0.9075 0.0491 0.9915 0.0250 0.9917 0.0248 0.8884 0.0250 0.8885 0.0247 

ρ(m) 0.2168 -0.2039 0.2587 0.2587 0.6504* 0.2767 0.6504* -0.5149 0.3846 0.1754 0.4196 0.1343 

ρ(m) p-value 0.4991 0.5251 0.4169 0.4169 0.0220 0.3839 0.0220 0.0867 0.2184 0.5855 0.1766 0.6774 

ρ 








m

n
  

0.9046* -0.2487 0.8905* 0.2686 0.5324 -0.2053 0.5324 0.3611 0.8905* 0.6738* 0.8622* 0.4143 

ρ 








m

n
 p-value 

0.0001 0.4358 0.0001 0.3987 0.0747 0.5221 0.0747 0.2489 0.0001 0.0163 0.0003 0.1806 

583 



 

 

Lione Guglielmo 27 Phytopathology   

Table 4. 584 

  Test 

  MDPT2T MDPTLT MDPTRT MDRT2T 

B=102 

MDRTLT 

B=102 

MDRTRT 

B=102 

MDRT2T 

B=5·102 

MDRTLT 

B=5·102 

MDRTRT 

B=5·102 

Area C1  

0d =21.2 m 

001,1
10

14

1

1



















C

C

m

n
 

D =19.9 

m 

pe=0.301 

D =19.9 m 

pe=0.856 

D =19.9 m 

pe=0.145 

D =19.9 

m 

pr=0.29 

Lpr=0.26 

Upr=0.40 

D =19.6 

m 

pr=0.84 

Lpr=0.78 

Upr=0.89 

D =19.7 

m 

pr=0.15 

Lpr=0.09 

Upr=0.25 

D = 19.8 

m 

pr=0.31 

Lpr=0.26 

Upr=0.32 

D = 20.0 

m 

pr=0.85 

Lpr=0.83 

Upr=0.88 

D = 20.0 m 

pr=0.14 

Lpr=0.13 

Upr=0.18 

C2  

0d =22.3 m 

310,24
9

17

2

2



















C

C

m

n
 

D =21.2 

m 

pe=0.5355 

D =21.2 m 

pe=0.7240 

D =21.2 m 

pe=0.2760 

D =21.1 

m 

pr=0.47 

Lpr=0.46 

Upr=0.62 

D =21.3 

m 

pr=0.68 

Lpr=0.63 

Upr=0.83 

D =21.1 

m 

pr=0.21 

Lpr=0.19 

Upr=0.46 

D =21.2 m 

pr=0.59 

Lpr=0.48 

Upr=0.60 

D = 21.2 

m 

pr=0.73 

Lpr=0.68 

Upr=0.78 

D = m 

pr=0.26 

Lpr=0.24 

Upr=0.35 

NC1  

0d =18.8 m 

003,3
8

14

1

1



















NC

NC

m

n
 

D =21.5 

m 

pe=0.158 

D = 21.5 

m 

pe=0.088 

D = 21.5 

m 

pe=0.913 

D =21.4 

m 

pr=0.16 

Lpr=0.09 

Upr=0.21 

D =21.7 

m 

pr=0.13 

Lpr=0.04 

Upr=0.21 

D =21.8 

m 

pr=0.90 

Lpr=0.86 

Upr=0.96 

D = 21.5 

m 

pr=0.16 

Lpr=0.14 

Upr=0.19 

D = 21.5 

m 

pr=0.08 

Lpr=0.07 

Upr=0.11 

D =m 

pr=0.90 

Lpr=0.88 

Upr=0.92 

NC2  

0d =32.7 m 

D =31.6 

m 

pe=0.6534 

D =31.6 m 

pe=0.6509 

D =31.6 m 

pe=0.3491 

D =31.7 

m 

pr=0.63 

Lpr=0.43 

D =31.5 

m 

pr=0.58 

Lpr=0.53 

D =31.5 

m 

pr=0.33 

Lpr=0.31 

D = 31.6 

m 

pr=0.60 

Lpr=0.59 

D = 31.8 

m 

pr=0.65 

Lpr=0.60 

D = 31.6 m 

pr=0.35 

Lpr=0.29 

Upr=0.41 
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376,12
11

17

2

2



















NC

NC

m

n
 

Upr=0.84 Upr=0.72 Upr=0.40 Upr=0.65 Upr=0.71 

585 
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Table 1. For each test included in the Mean Distance Tests (MDT) the tail, the null hypothesis, the 586 

input required and the output provided are indicated. Tests are divided according to the underlying 587 

resampling technique (test type) and identified by an acronym (test). 588 

 589 

Table 2. Data generating processes (DGPs) verifying or not verifying the null hypothesis H0 of each 590 

test included in Mean Distance Permutation Tests (MDPT) and combinations of the three DGPs 591 

used to perform the blocks of Monte Carlo simulations for power and type I error estimation. 592 

 593 

Table 3. Estimates of power and type I error for the Mean Distance Permutation Tests (MDPT) 594 

obtained through Monte Carlo simulations and results of the correlation analysis. The estimates are 595 

provided for each block of simulations ranked according to the m values and divided for two-tailed, 596 

left-tailed and right-tailed tests (MDPT2T, MDPTRT, and MDPTLT) and window size. The 597 

number of combinations 








m

n
 enumerated for each value of m is listed. The average of power and 598 

type I error as well as the Spearman correlation coefficient between the estimates and m [i.e. ρ(m)] 599 

and 








m

n
 [i.e. ρ 









m

n
] are reported with the related p-value for all tests and window sizes. The 600 

symbol * indicates correlation coefficients significant at 0.05 cut-off. 601 

 602 

Table 4.  Output of the Mean Distance Tests for areas C1, C2, NC1 and NC2. The output includes 603 

the mean value D  of the probability mass function (PMF), the exact p-value (pe) for permutation 604 

tests, the randomization p-value (pr) with lower (Lpr) and upper (Upr) bounds of its 95% confidence 605 

interval. For randomization tests the output is divided according to the number B of combinations 606 

randomly selected to perform the tests. The observed mean value of the triangular Euclidean 607 
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distance matrix among the m out of n chestnut trees carrying at least one infected nut ( 0d ) and the 608 

number of possible combinations 








m

n
 are reported for each area. 609 

 610 

Fig. 1. Maps of the sampling points in the Circeo National Park that displayed the presence of 611 

spores of Heterobasidion annosum (A) and Heterobasidion irregulare (B), defining the subsets I1 612 

and I2 respectively. 613 

 614 

Fig. 2. Maps of chestnut trees of the “Vivaio Gambarello” orchard carrying at least one nut infected 615 

by Gnomoniopsis castanea (level γ) in areas C1 (A), C2 (B), NC1 (C) and NC2 (D). 616 

 617 

  618 
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FIG. 1 619 

 620 

 621 

 622 

  623 



 

 

Lione Guglielmo 32 Phytopathology   

FIG. 2 624 

 625 

 626 

 627 


