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Abstract 

Doping titanium dioxide (anatase) with elements carrying an extra electron such as Nb and F or 

with mixtures of both elements, leads to n-type materials showing peculiar properties with respect 

to the pristine oxide. Niobium and fluorine are present in the lattice under the form of Nb5+ and F- 

ions (detected by XPS) and the extra electrons carried by the dopants are stabilized on titanium ions 

which become EPR visible as Ti3+ ions homogeneously dispersed in the bulk of the crystals. In such 

conditions the band gap optical transition is slightly red shifted (few tenths of eV) for all samples 

containing fluorine and the Fermi level lies, according to the materials, at the boundary or even in 

the lower region of the conduction band. The typical Ti3+(I) centers  generated by valence induction 

are responsible of the already reported conductivity properties of the system. The presence of these 

centers also influence the process of electron injection in the solid favoring the dilution of 

additional reduced centers in the bulk, leading to a homogeneously reduced material with 

optoelectronic properties differing from those of reduced anatase.     

 
Keywords: n-type doped TiO2, Ti3+, EPR, DR-UV-Vis, conductivity, Fermi level. 
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1. Introduction. 

Titanium dioxide is one of the most investigated metal oxides. The importance of this abundant, 

cheap and non toxic material is certainly due its large scale applications as a white pigment. 

However the great deal of scientific investigations concerning this oxide is essentially due to the 

exciting applications related to its photochemical and photophysical properties. This explains the 

exponential growth of papers devoted to both bare and modified TiO2 appeared in the literature in 

the past twenty years1,2. Titanium dioxide (or titania) is the most important photocatalyst, active in 

several reactions for pollutants abatement3 and, since the discovery of water photosplitting in 19724, 

it can also be considered as a system of interest for photochemical and photo-electrochemical 

applications in energetics (artificial photosynthesis). Furthermore titanium dioxide is employed as 

biocide5, in odour control6, in the preparation of self-cleaning surfaces and of superhydrophilic 

antifogging layers7. Extremely important is also the use of titanium dioxide in photovoltaics. In 

dye-sensitized solar cells (DSSC)8, in fact, it plays the role of acceptor of electrons from the dye 

excited state and that of electron carrier towards the electric contact.   

The main polymorphs of titanium dioxide are rutile and anatase. The former phase is more stable 

than the latter one, which however, is more effective in terms of photochemical applications. In 

parallel with the growth of titanium dioxide applications an intense activity begun, devoted to 

prepare modified forms of the solid in order to tune some of its specific physical properties. This is 

the case of the inclusion of either transition metal or non-metal impurities into the lattice in order to 

modify the optical absorption of the system.One of the goals of this activity, even though not the 

unique one, is to reduce the optical absorption threshold of the oxide, whose band gap is around 3.2 

eV for the anatase polymorph (corresponding to a UV photon) and to make it photosensitive to 

visible light1,9,10,11.   

Among the various types of non-metal doping of TiO2 that with fluoride ions assumes a particular 

role. About ten years ago it was reported that the inclusion of fluoride ions into the oxide matrix 

improves the photocatalytic performance of the bare oxide in the mineralization of various organic 

pollutants using either UV12or visible13 light. To obtain fluorine doped titania the fluoride ions are 

usually introduced in the liquid medium for the preparation of the oxide via hydrolysis (for instance 

by the frequently used sol-gel technique). A fraction of the F- ions is so included in the lattice where 

they substitute oxygen O2- anions. An investigation by some of us, based on Electron Paramagnetic 

Resonance (EPR)14,on F doped anataseTiO2 (hereafter F-TiO2) prepared via sol-gel, clarified that 

paramagnetic Ti3+ions are present in the solid. This occurs because at least a fraction of the excess 

electrons introduced by fluorine are localized by lattice Ti4+cations. The presence of reduced Ti3+ 
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centres in the as prepared, fully oxidized solid indicates that the F-TiO2 system can be described in 

terms of an n-type semiconductor. It is worth noting that pristine titanium dioxide (belonging to the 

class of reducible oxides since it easily loses oxygen) also becomes an n-type system when 

annealed under vacuum, due to oxygen depletion, formation of anion vacancies and excess 

electrons stabilisation (Ti3+). Fully oxidized, undefective TiO2 and F-TiO2 thus differ since the latter 

only is, intrinsically, an n-type semiconducting system as indicated by early investigations pointing 

to the electronic and photoelectric properties of F doped rutile TiO2
15,16. 

The same electronic effect described for F-TiO2 is observed when the tetravalent Ti of anatase is 

substituted by a pentavalent element such as Nb or Sb. Also in these two cases the extra-electron 

brought about by the dopant is expected [17] to localise on titanium ions producing Ti3+. The 

formation of lattice trivalent titanium ions was directly monitored by EPR for Nb-TiO2 (anatase) in 

the past18,19,20. The interest in Nb doped titania has recently increased due to the search for new 

transparent conducting oxides (TCO) to employ in optoelectronic devices21,22,23 and, in particular, in 

DSSC to promote the charge transport within the transparent oxide layer usually constituted by bare 

TiO2
24,25,26. It is worth mentioning, by the way, that in the case of Nb-TiO2 the described valence 

induction effect (i.e. formation of Nb5+ and Ti3+) holds for the anatase polymorph, while in the case 

of rutile doped with niobium the extra-electron remains on the dopant atom as indicated by the 

presence of Nb4+ ions which were detected both by EPR at low temperature for Nb-TiO2 rutile 

single crystals27,28 and by XPS measurements29. 

In the present paper we report a detailed study of the chemical and spectroscopic properties of n-

type doped polycrystalline anatase performed with the joint use of optical spectroscopy (DR UV-

Vis-NIR), photoelectron spectroscopies and Electron Paramagnetic Resonance (EPR). The 

materials under investigation were both singly doped systems (F-TiO2 and Nb-TiO2) and co-doped 

(F,Nb) ones. Our investigation started with two main goals. The first one was to explore band gap 

modifications of TiO2 depending on the type of dopant. The second goal was that of examining the 

behaviour of the doped materials upon addition of further electron excess (via direct injections or 

via reduction) in comparison with the behaviour of pristine TiO2. The presence and the mobility of 

excess electrons are essential in photochemical applications of the solid such as photocatalysis or 

dye sensitized solar cells. A similar approach induced Wold and coworkers15, more than thirty years 

ago, to investigate the photoconduction of fluorinated rutile crystals that showed significantly 

higher conductivity than reduced rutile. More recently, studies on Nb doped anatase have shown 

similar conductivity increments24,25. 

  



4 

 

2. Experimental. 

2.1. Samples preparation. 

The TiO2 sample was prepared via sol-gel process using Ti-isopropoxide as Ti precursor as reported 

in previous work20. Doped samples were prepared as described in the following. 

2.1.1. F-TiO2. 

This set of samples was prepared via sol-gel using as hydrolyzing agent hydrofluoric acid solutions. 

In a typical preparation 7.5ml of Ti-isopropoxide was diluted in 7.5ml of 2-propanol and the 

obtained mixture was hydrolyzed with 4ml of HF solution of different concentration in order to 

obtain a nominal ratio F/Ti = 0.01, 0.90, 1.80, 3.50, 5.50 and 7.00. The formed solid was dried at 

340K and finally calcined at 770K (heating rate 10 K/min) for 1 hour in order to obtain a fully 

oxidized material and to get rid of all contaminants left from the synthesis. Higher temperatures 

were not adopted in order to limit fluorine loss30. The samples were labelled as F1, F2, F3, F4, F5, 

and F6 respectively. For sake of brevity, only data related to F2 will be reported in the text. The 

data related to remaining samples are shown as Supporting Information. 

2.1.2. Nb-TiO2. 

This sample was prepared via sol-gel process. An appropriate amount of NbCl5, in order to obtain a 

nominal doping of 5% (Nb/Ti=0.05) was added to 7.5ml of 2-propanol followed by stirring at room 

temperature until a complete NbCl5 dissolution. Successively 7.5ml of Ti-isopropoxide was added 

to the previous mixture. The final solution was hydrolyzed with 4ml of H2O. The obtained solid 

was dried at 340K and finally calcined at 770K (heating rate 10K/min) for 1 hour in order to obtain 

a fully oxidized material and to get rid of all contaminants left from the synthesis. Higher 

temperature was not adopted in order to avoid anatase to rutile phase conversion. The sample was 

labelled as Nb1.  

2.1.3. F-Nb-TiO2(co-doped samples). 

This set of samples was prepared as follows. The solution containing the cations (Nb, Ti) was 

prepared as in the previous case and was then hydrolyzed with solutions of hydrofluoric acid having 

different concentration in order to obtain nominal F/Ti ratios of 0.05, 0.15, 0.25, 0.35 and 0.45. The 

obtained solids were dried at 340K and finally calcined at 970K (heating rate 10K/min) for 1 hour. 

In this case, the higher calcination temperature was adopted since fluorine (although partially 

expelled from the solid in these conditions) stabilizes the anatase phase reducing the conversion to 

rutile and allows obtaining materials having high crystallinity. 
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The samples were labelled NbF05, NbF15,NbF25, NbF35 and NbF45 (Table 1).A further sample 

labelled NbF25a was prepared using H2O as hydrolyzing agent and NbF5 as source of both Nb and 

F. For sake of brevity only data related to samples from NbF25 to NbF45 and sample NbF25a will 

be reported in the text. The data related to the remaining samples are shown as Supporting 

Information. 

Table 1 resumes the main features and abbreviations for the samples reported in this work. Due to 

the loss of fluorine which progressively occurs also during the various reductive treatments, the 

evaluation by chemical analysis of the initial F/Ti ratio is  substantially non-significant and 

therefore has not been performed. 

 

Sample 
abbreviation 

Nb/Ti 
Nominal 

Nb/Ti 
(XRF) 

F/Ti 
Nominal 

Calcination
Temp./ K 

Phase (w/w %)* Crystal 
size*† 
(nm) 

Band 
gap 

(Eg)/   
eV A R B 

TiO2 0 0 0 770 100 0 0 30 3.20 
F2 0 --- 0.90 770 100 0 0 30 3.20 

Nb1  0.05 0.05 0 770 55 10 35 12 2.91 
NbF25 0.05 0.05 0.25 970 98 2 0 21 3.03 
NbF35 0.05 0.05 0.35 970 100 0 0 24 3.08 
NbF45 0.05 0.06 0.45 970 100 0 0 32 3.11 
NbF25a 0.05 0.05 0.25 970 100 0 0 23 3.18 

 

Table 1. Abbreviations adopted for the samples of the present work and the corresponding compositional, structural and 
optical properties: A=Anatase, R=Rutile, B=Brookite. 
*Data obtained via Rietveld refinement using the Maud program. † Data related to the anatase polymorph only.  
 
 

2.2. Structural and spectroscopic characterization of the materials. 

XRD patterns were collected on a diffractometer (PW1830, Phillips) using Co (Kα) radiation. 

Diffraction peaks have been indexed according to the ICSD (Inorganic Crystal Structure Database). 

The crystallites size of the various investigated materials was obtained by employing the Debye–

Scherrer equation. Phase composition was determined via refining the obtained data with Rietveld 

method using MAUD program31. 

Photoemission data were acquired in a custom designed ultrahigh vacuum (UHV) system equipped 

with a VG MK II Escalab electron analyser, working at a base pressure of 10-10 mbar. Core level 

photoemission spectra were taken at room temperature in normal emission using a non 

monochromatized Al/Mg twin anode X-ray source, whereas for valence band data we used a He 
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discharge lamp (Omicron HIS 15). Powder samples were suspended in bi-distilled water and drop 

casted on high purity copper foils. After drying in air, the obtained films were introduced in the 

ultrahigh vacuum system, outgassed overnight, and finally annealed in UHV for 20 minutes at 

650 K. The charging observed during measurements of some samples was corrected using the 

adventitious carbon as internal reference. The energy calibration has been determined by using a 

gold sample (Au 4f at 84 eV) 

The elemental analysis was performed by means of X-ray fluorescence (XRF) spectroscopy. The 

samples were analyzed using an EDAX Eagle III energy-dispersive micro-XRF(µXRF) 

spectrometer equipped with a Rh X-ray tube and a polycapillary with a circular area of nominally 

30 µm diameter. Data collection occurred at each point for 250 s detector live time, with X-ray tube 

settings adjusted for 30% dead time.  

Diffuse Reflectance Spectroscopy (DR UV-Vis-NIR) was employed to characterize the absorption 

features in a range of wavelength between UV and NIR (250 – 2500 nm). DR UV-vis 

measurements were performed on fine powders of the samples in a cell with optical quartz walls. 

The spectra were collected in the reflectance mode with a Perkin-Elmer Cary5000 instrument 

equipped with an integrating sphere and then reported as an absorbance-like pattern by means of the 

Kubelka-Munk function. Optical band gap absorption was obtained by means of aTauc plot of the 

Kubelka-Munk absorption as a function of the photon energy. 

Electron Paramagnetic Resonance (EPR) spectra were run using a X-band CW-EPR Bruker EMX 

spectrometer equipped with a cylindrical cavity operating at 100 kHz field modulation. The 

measurements were carried out at 77 K in cells that can be connected to a conventional high-

vacuum apparatus (residual pressure <10−4mbar). 

 
3. Results and Discussion. 

3.1. Composition and structural features of fluorine and niobium doped titanium dioxide. 

In the present paper we report results concerning two singly doped titania samples (with F and Nb) 

and four co-doped materials. A sample of bare anatase (TiO2) prepared with the same procedure 

(Section 2) was used for comparison. Results on a wider collection of doped and co-doped samples 

are available as Supporting Information (S.I.). Table 1 presents some basic features of the samples 

here examined. The atomic ratios between the anionic dopant (F-) and titanium are relative to the 

composition of the liquid phase prior gelification and do not represent the actual composition of the 

solid [14,30], because it is known that a fraction of fluorine is eliminated from the solid during the 
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final calcination of the materials. The four co-doped solids were prepared using a constant Nb 

concentration (Nb/Ti = 0.05) and varying that of fluorine. As far as the cationic dopant is concerned 

the µXRF analysis has shown a good correspondence between the nominal and the final Nb/Ti 

content for all Nb containing samples (see Table 1).  

 

 

Figure 1.XRD patterns of TiO2 based materials: a) TiO2, b) F2, c) Nb1,  d) NbF25, e) NbF35, f) NbF45, g) NbF25a. 
The sticks corresponding to TiO2-A, TiO2-R, and TiO2-B indicate the diffraction peaks of the anatase, rutile and 
brookite polymorphs respectively.  
 

Fig.1 shows the XRD plot of all samples described in Table 1. Anatase is the unique phase in all 

samples except for Nb1 (Nb-TiO2, Fig. 1c) that shows the presence of rutile and brookite and for 

the low fluorine content NbF25 that exhibits traces of rutile (Fig. 1d). It is known, in fact, that the 

presence of fluorine allows the formation of a highly crystalline anatase phase. This state is 

achieved because F, inhibiting the anatase to rutile transition, allows one to reach relatively high 

temperatures of calcination. At these temperatures a better quality of the anatase crystals is 

obtained. This latter factor has been invoked as the reason of the good photocatalytic performances 

of fluorine doped anatase powders 30. The solubility of fluorine in TiO2 is however limited by two 

factors. The first one is the mentioned elimination of this element during calcination; the second one 
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is the formation of an extra phase amenable to TiOF2 occurring for high fluorine concentrations13  

(see S.I., Fig. SI1). 

The behaviour of niobium is different from that of fluorine since Nb ions can be incorporated in 

TiO2 in a wider range of concentrations32. The presence of niobium, however, does not completely 

suppress the formation of rutile even at relatively low calcination temperatures. The Nb-TiO2 

sample (Nb1, Table 1 and Fig 1 c) in fact contains about 10% w/w of rutile after calcination at 773 

K. 

To obtain single phase (anatase) materials the drawbacks of the two single doping procedures can 

be overcome using co-doping with the two elements. Niobium is not removed at high temperature 

ensuring a certain degree of n-doping, while the presence of fluorine stabilizes the anatase 

polymorph.   

 

3.2. Optical properties of (oxidized) n-type doped TiO2. 

The optical properties of the various doped and co-doped TiO2 samples are illustrated in Fig. 2 by 

DR UV-Vis spectra. All the spectra are dominated by a strong absorption in the UV region due to 

the transition from the valence band to the conduction band whose absorption threshold, however, 

changes in the case of doped systems.  

Except for NbF25a, which is prepared by a different procedure and shows an absorption edge 

basically coincident with that observed for pure TiO2, all samples show a red-shift of few tenth of 

eV with respect to the absorption threshold of bare TiO2. The Nb-TiO2 (Nb1) sample exhibits the 

larger red shift and the material shows a yellowish colour (Fig. 2, black line). This sample is 

however the only one containing appreciable amounts of the other two TiO2 polymorphs (Table 1) 

namely brookite (with band gap similar to that of anatase33) and rutile, which has a smaller band 

gap than anatase. In the majority of cases of Nb doped titania reported in the literature, however, 

blue shift of the band gap edge is observed, which is explained in terms of the Burstein-Moss effect 
18,24,25,34,35,36. This effect is based on the conduction band filling by extra electrons that suppresses 

absorption at the band edge. Nevertheless in some other cases a red shift, like in the present work, 

has been reported for Nb-TiO2
37,38,39,40,41. There are also examples in which no change in the optical 

spectra is observed42,43. An unambiguous interpretation of the red-shift is not present in the 

literature. Some Authors explain this experimental evidence invoking the presence of Nb2O5 micro-

aggregates in the TiO2 matrix38. Even though there is no trace of niobium oxides in XRD 

diffractions of our samples (Fig.1) (which could be due to quantitative limits of the technique or to 

the presence of amorphous fractions) the fact remains that the Burstein-Moss effect does not occur 
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in Nb doped and Nb-F co-doped materials prepared via sol-gel for which a red-shift of the 

absorption edge is systematically observed. 

 

 

Figure 2. DR UV-Vis spectra: a) TiO2, b) Nb1, c) NbF25, d) NbF35, e) NbF45, f) NbF25a. 

In the spectroscopic region between 450 and 650 nm the spectral lines are flat for all samples and 

there is no evidence of absorption in the visible. The same occurs in the IR region till 2500 nm (vide 

infra). This result differs from what reported in some case of Nb doped titania, like for instance in 

the recent paper by De Trizio et al.26 who obtained blue colored materials. This considerable 

difference is very probably due to the partial reduced state of their colloidal samples (see Section 

3.6 on the optical properties of reduced materials). A similar situation is described by Sauvage, 

Graetzel and collaborators25 who prepared Nb-TiO2 suspensions by hydrothermal reaction also 

obtaining blue materials that, however, after treatment at 770 K or long air exposure definitely turn 

to white. In the case of the materials described in the present paper (having a relatively low Nb 

loading) in spite of the presence of Ti3+ reduced centres revealed by EPR no optical absorption in 

the visible occurs and the samples, except for the pale yellow Nb1 (whose color is due to the band 

gap transition tail), are white.  

 

3.3. EPR of doped and co-doped materials. 
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Figure 3. Normalized EPR spectra recorded at 77K of n-type TiO2: a)F2, b)Nb1and c) NbF45.  

 

As recalled in the introduction the alio-valent substitution (F or Nb) implies the presence of excess 

electrons in the system that leads to the formation of Ti3+centres by a mechanism of valence 

induction. These ions are paramagnetic and the corresponding EPR spectra recorded at 77K (Fig. 3) 

have been conclusively assigned in our previous work to reduced Ti3+ centres in regular lattice sites 

in the bulk of the anatase matrix44. For both dopants the signal is axial and characterized by 

g⊥=1.992, g//=1.962. The same signal (hereafter Ti3+(I))is observed in the case of co-doped 

materials (Fig. 3). It is worth recalling that the samples whose spectra are reported in Fig. 3 are fully 

oxidized materials (See Experimental) and that the presence of Ti3+ ions is uniquely due to the 

valence induction effect and not to a partial reduction of the solid (vide infra). These reduced 

titanium ion are well dispersed in the solid matrix (relatively narrow linewidth) and there is no 

evidence of appreciable amounts of surface reduced ions, which have different EPR parameters20. 

Summarizing, both F-TiO2 and Nb-TiO2 can be described as n-type doped oxides (electrically 

neutral systems containing, with respect to the bare oxide, extra electrons conveyed by the presence 

of diluted aliovalent elements). Their formulas, which can be written, as a first approximation and 
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on the basis of the valence induction effect, as Ti4+
(1-x)Ti3+

x F−
x O2−

 (2-x)  and Ti4+
(1-2x)Nb5+

xTi3+
xO2−

2 

respectively,  point to the stabilisation of the extra electrons on lattice titanium ions as indicated by 

the EPR spectra which are the same in both cases. The co-doped systems can be described by a 

combination of the two previous formulas. Another compensation mechanism based on the 

formation of Ti4+ vacancies, which has been proposed based on conductivity measurements24, 

cannot in principle be excluded and will be discussed in Section 4. The features of the EPR spectra, 

however, unambiguously indicate that at least a fraction of the dopant (F or Nb) releases excess 

electrons into the solid producing donor Ti3+ centres that  modify therefore the electronic structure 

of the solid itself.  

 

3.4. XPS Characterization. 

In order to investigate the compositional features and the electronic structure of the doped solids a 

detailed investigation based on photoelectron spectroscopy was carried out. In figure 4 we report 

the core level spectra of Ti 2p and Nb 3d : in all samples the Ti 2p3/2 peak maximum is centered at 

459 eV, it is highly symmetric and, despite the EPR evidence reported above,  does not show any 

significant presence of the shoulder connected to Ti3+ reduced species at 457.5 eV. Similarly, the 

Nb 3d photoemission line shows a highly symmetric doublet with the maximum centered at 207.5 

eV, which nicely corresponds to Nb5+ species26,45. This dopant is therefore present into the systems 

in its maximum oxidation state. A small shift at slightly lower binding energy is observed for the 

sample Nb1 only. Fluoride dopants are observed in relatively small concentrations and no other 

impurities except for C (< 0.5%) were detected. A quantitative analysis of the surface and 

subsurface region accessible to X-rays has been performed using two sources (Mg and Al) having 

different penetration (Table 2). The intensity of the photoemission spectra has been normalized 

using the differential cross sections and asymmetry parameters provided by Yeh and Lindau46 and 

the inelastic mean free path calculated using the TPP2 algorithm47. Table 2 indicates that the Nb 

concentrations found in the various samples are quite similar, the Nb/Ti ratio being around 0.2 with 

the only exception of Nb1, where this value is around 0.11. These values, however, are definitely 

higher than both the nominal compositions and the XRF values (Table 1). 
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Figure 4. XPS core level spectra of A) Nb 3d and B) Ti 2p; a) Nb1, b) NbF25, c) NbF35, d) NbF45, e) NbF25a. 

This difference is due to the fact that XPS, a surface technique, monitors a limited subsurface region 

so that one can gather that the niobium distribution is not homogeneous and that a gradient of 

concentration exists moving from the surface to the center of the nanocrystals. This fact is 

confirmed by comparing the compositional data obtained with the two sources. Nb concentrations, 

in fact, are systematically higher in the case of the Mg source (l253.6 eV)than in that of the Al one 

(1486.6eV), which probes deeper layers due to a higher energy of photo-electrons. The gradient of 

niobium concentration seems an unavoidable feature of our preparation method but should not 

influence the general behavior of the solids. For this reason it will not be further discussed. XPS 

data also indicate an excess of oxygen probably due the presence of surface hydroxyl groups and/or 

chemisorbed water that alters the solid stoichiometry at the surface. Residual concentrations of 

fluoride ions, ranging from 1% to 9%, are detected in all samples. Even though the real 

concentration of F in the whole sample is unknown, these XPS results corroborate the idea that a 

fraction of fluorine leaves the solid during the final thermal treatment. Nonetheless, the presence of 

both Nb and residual fluoride ions indicates that the prepared materials can be considered as n-type 

co-doped anatase systems with the only exception of Nb1, which is doped with Nb only and 

contains fractions of other polymorphs.  
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Table 2.Column 2 and 3: Compositional values of the various materials derived using a Mg and an Al source 

respectively; Column 4: Valence Band Maximum (VBM); Column 5: Fermi energy levels (EF) estimated combining 

VBM values with the optical band gap values (Eg). 

 

Figure 5. Valence Band spectra: a) Nb1,  b) NbF25, c) NbF35, d) NbF45, e) NbF25a, f) TiO2. 

Sample 
Mg Kα 

(1253,6 eV) 

Al  Kα 

(1486.6 eV) 

VBM  

(eV) 

EF = Eg-VBM  

(eV) 

NbF25a Ti1O2.72Nb0.18F0.09 Ti1O2.82Nb0.15F0.03 3.20 -0.02 

NbF45 Ti1O2.79Nb0.21F0.055 Ti1O2.83Nb0.17F0.05 3.15 -0.04 

NbF35 Ti1O2.89Nb0.2F0.05 Ti1O2.94Nb0.15F0.012 3.25 -0.17 

NbF25 Ti1O2.81Nb0.19F0.01 Ti1O2.85Nb0.13F0.03 3.20 -0.17 

Nb1 Ti1O2.44Nb0.11F0.0 Ti1O2.5Nb0.11F0.0 2.80 0.11 
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A further insight into the electronic properties of the materials can be provided by Ultraviolet 

Photoemission Spectroscopy (UPS). In figure 5 we report the valence band spectra acquired using 

the He II emission line (hν=40.8 eV). The spectra indicate the presence of a semiconductive gap 

with minimal differences with respect to pure TiO2. The typical defect band at a binding energy of 1 

eV due to Ti3+ species, which is generally found in the case of reduced TiO2, is not detected. By 

applying a widely used procedure for titania based materials, we have interpolated by a line the low 

energy slope of the valence band and used its intercept with the energy axis for a qualitative 

determination of the valence band maximum (VBM) position48,49,50. The results are quite similar for 

all samples, which are very close to the value of bare anatase (EVB,max~3.2 eV)48, with the notable 

exception of sample Nb1 whose valence band edge is found at 2.8 eV, a value well in agreement 

with previous investigation of Nb doped titania by DR UV-Vis Spectroscopy. Combining the VBM 

values with the estimated optical band gap (Table 1), it is possible to deduce the Fermi level energy 

(EF) for the whole set of samples49 (see Table 2). It is worth to note that the Energy gap has been 

obtained via a method which implicates a certain degree of approximation51. The absolute EF value 

is obviously quite dependent on the binding energy range used for the linear interpolation of the 

slope of the valence band52, however this approach is quite reliable if used, as in the present case, to 

compare the values in a series of homologous materials.  The whole set of data indicate therefore 

that in our materials, as expected for n-type systems, the Fermi level lies, in an higher position with 

respect to the undoped material, very close to the conduction band minimum (CBM) as aspected for 

Nb-doped system53  ore, in some case, even inside the conduction band in agreement with findings 

predicting by  theoretical approach54,55.  

As to the red shift observed for Nb containing materials leading to some absorbance in the visible 

region (Fig. 2), combining UPS and DR-UV-Vis data we can infer that this is not ascribable to the 

presence of localized states like for example in the case of reduced blue titania, but rather to a 

general broadening of the valence band that is moving towards lower binding energies thus 

narrowing the band gap.  

 

3.5. Excess electron injection in n-type doped TiO2. 

Formation, stabilisation and migration of charge carriers in TiO2 are phenomena of paramount 

importance due to the photochemical (photoinduced charge separation) and optoelectronic 

applications (transparent conducting materials) of this oxide. Charge dynamics in particular has 

been investigated in terms of the alternative mechanisms of ohmic and polaronic electronic 

conduction56,57  while the nature of localized electron centres has been tackled trying to understand 
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the space distribution of the trapped electron wave function.  This question is still debated and 

opposite conclusions (electron localized on a single titanium ion or delocalized on several ions in a 

relatively large volume) have been proposed on the basis of different approaches58,59. The recent 

activity of our group has challenged the problem of localisation vs. delocalisation of excess 

electrons in both anatase and rutile20,60 exploring the EPR spectra of the corresponding centres 

generated either by irradiation or by chemical reactions (electron injection, reduction by annealing 

and consequent oxygen depletion). We will illustrate in the following a series of experiments 

performed with the same approach on n-type doped anatase. 

 

3.5.1. Electrons injection. 

A simple method to introduce excess electrons in TiO2 is based on the reactivity of the solid with 

atomic hydrogen. This can be performed either generating the reactant via microwave discharge in 

H2 atmosphere or irradiating the system, always in the presence of H2, with UV light. In the first 

case the H atom ionizes injecting an electron into the solid61,62 (O2-
surf +H  OH-

surf + e-). In the 

second case the UV radiation induces the formation of an electron-hole pair. The hole, once 

migrated at the surface, reacts with molecular hydrogen to give an hydroxyl group and an H atom 

that, as in the previous case, ionizes injecting an electron into the solid (2O2−
surf + h+ + H2 → 

OH−
surf  + O2−

surf + H• →2OH−
surf + e−). Excess electrons are successively stabilized on Ti4+cations 

forming Ti3+ centres (Ti4+ + e− → Ti3+). 

The result of this latter experiment in the case of bare TiO2 anatase is reported in Fig. 6 (panel A). 

The base line (line a) in this case is flat since no paramagnetic species are present in the pristine 

oxide. Irradiation in the presence of H2 generates an intense EPR spectrum due to the overlap of two 

independent signals both amenable to Ti3+ species (Ti3+(I) and Ti3+(II)). While the former species is 

due to electrons stabilized on regular Ti4+ sites of the anatase bulk  (Ti3+(I) is the same signal shown 

in Fig. 3 for doped materials), the second species (much more abundant than the previous one 

because of its large linewidth) is related to trapping sites present at the surface of the system. The 

large line width of this signal is due to the relatively disordered environment typical of anatase 

nanocrystals. The surface nature of Ti3+(II) species has been conclusively demonstrated on the basis 

of Pulse-EPR experiments using 17O20.  
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Figure 6. EPR spectra of bare anatase and n-type TiO2 samples obtained after UV irradiation at 77K in presence of H2: 
a) TiO2, b)  NbF45, c) Nb1.  

 

The same irradiation experiment was then performed using two distinct samples of n-type doped 

TiO2 (Nb1and NbF45, Fig. 6 Panels B and C respectively). In these two cases the spectral 

background (lines a) is not, of course, a flat line in that the n-type doped starting material contains a 

certain initial concentration of Ti3+(I) species (see Fig. 3). The effect of irradiation in H2 is 

surprising (lines b in Panels B and C) since an increase of the amount of  Ti3+ species is, as 

expected, observed, however this is due uniquely to Ti3+(I) whose intensity increases several times 

(but less than one order of magnitude) depending on the type of sample. No trace of species Ti3+(II)  

is observed in the specific magnetic field region. In other words the presence of Ti3+ in the starting 

n-type doped materials seems selectively conditioning the fate of extra electrons injected in the 

solid, which all reach lattice Ti4+ sites preventing the formation of surface reduced centres. The 

intensities of the spectra after electron injection (hence the amount of reduced Ti3+ centres) is 

similar for the two doped samples (Fig. 6B and 6C) and slightly higher than that of the non-doped 

one (Fig. 6A). 
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3.5.2.Reduction of the solids by thermal annealing. 

Titanium dioxide is a reducible oxide whose composition depends on the pressure of oxygen in the 

atmosphere. In particular, molecular oxygen is released upon annealing the solid under vacuum 

leaving excess electrons in the (reduced) solid63. This phenomenon, which has been deeply 

investigated by various techniques including EPR20,64, can be represented as follows: O2- + 2Ti4+  

½ O2 +VO
••+ 2Ti4+ +2e- ½ O2 +VO

••+ 2Ti3+, where VO
•• indicates an empty oxygen vacancy 

according to the Kröger-Vink notation. Figure 7 compares  the effects of a progressive reduction by 

annealing from rather mild conditions (373K under vacuum) till 773 K on the EPR spectra of bare 

(Panel A) and n-type doped (Panels B and C) anatase. The figure clearly shows that in the early 

stages of the reduction (lines b in the three Panels), Ti3+(I) is the unique species formed in all 

materials indicating that the first fraction of excess electrons is stabilized on regular sites of the 

lattice. In the following stages of the treatment, the signal intensity of Ti3+ increases but the 

behaviour of the two classes of materials diverges. In the case of  bare anatase (as documented in 

previous work20) the broad and featureless signal of  Ti3+(II) species (see Fig 3A) becomes soon 

dominant reflecting the complex situation based on reduced titanium centres in various coordination 

states, at the surface and subsurface regions. This complexity is increased, with respect to the case 

of simple electron injection (Fig.6) by the oxygen vacancies formed during the annealing. In the 

case of  the n-type systems (F-TiO2 or Nb-TiO2, Fig. 7, Panels B-C), exactly as in the case of  

Fig. 6, it is indeed the signal of Ti3+(I) which increases its intensity with increasing the solid 

reduction. At the same time the signals become broader and broader, though maintaining the axial 

structure (Panels B and C, lines b-e) because of dipolar interactions between similar centres in close 

vicinity due to their high concentration. In this case (Fig. 7) the intensity increment, much higher 

than in the case of electron injection (Fig. 6), is between one and two orders of magnitude according 

to the sample. At the highest annealing temperature the signal of F-TiO2 (Panel B, line f) becomes 

featureless probably because the solid loses its n-type character due to the fluorine depletion (see 

Section 3.1). In the same conditions the niobium doped sample (Panel C) maintains its axial 

structure.  

The described experiment confirms what was observed in the case of  electron injection, i.e. the 

capability of the n-type doped materials to dilute extra electrons on the titanium sites of the oxide 

bulk producing high amounts of a single family of bulk reduced centres (Ti3+(I)). This behaviour is 

different from that of bare TiO2 for which, beside a small amount of Ti3+(I), the much more 

abundant Ti3+(II) centres are observed. 
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Figure 7. X-band CW-EPR spectra of: A) TiO2, B) F2, and C) Nb1 samples subjected to annealing under vacuum at 
increasing temperature, recorded at 77 K . a) Fully oxidized starting materials; Annealing for 45 min at the following 
temperatures: b) 370 K, c) 470 K, d) 570 K, e) 670K, f) 770K. Notice the different magnetic field scale of panel A with 
respect to B and C. The star (*) indicates a signal (g = 2.003) ubiquitously present in reduced TiO2. 
 

In quantitative terms the amount of reduced centres in the two doped samples at the end of the 

reduction (Fig. 7Bf and 7Cf) is similar and one order of magnitude higher than that observed for the 

same samples after electron injection (Fig. 6). Also in this case the bare TiO2 materials (7A) results 

less reducible than the doped ones (7 B,C). 

3.5.3. Ti3+ centres obtained by thermal annealing in variously doped TiO2 systems. 

The results illustrated in the previous sections indicate that the n-type TiO2 systems obtained by 

aliovalent excess electron doping show a different behaviour in electron trapping with respect to 

bare anatase. In order to understand whether this phenomenon is related to the presence of a generic 

heteroatom in the TiO2 matrix, Ti3+ generation experiment by thermal annealing were carried out 

also on other doped systems with no n-type character. They were: zirconium doped TiO2 (Zr-TiO2) 

where Zr4+ substitutes Ti4+cations (isovalent substitution65) and aluminium doped TiO2 (Al-TiO2). 

In this second case an aliovalent substitution occurs, with formation of a defective system (oxygen 
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vacancies compensate the lack of positive charge66,67). Both materials were prepared using the same 

procedure described in Section 2. 

 

 

Figure 8. X-band CW-EPR spectra recorded at 77 K of variously doped titania samples annealed under vacuum at 770 

K for 60 minutes. 

In Fig. 8 the EPR spectra of n-type systems, including a sample not shown before (Sb-doped TiO2) 

are compared with the spectra of the other sample of dopedTiO2 after annealing in vacuo at 773 K. 

While all n-type doped materials (Fig. 8, Panel A) confirm the exclusive presence of Ti3+(I) electron 

trapping centres (anatase bulk sites) after reduction, the two differently doped samples show the 

same behaviour of pristine anatase with the trapped electrons centres  mainly confined to the 

disordered surface region (Ti3+(II)).  

The effect here discussed is therefore specific of n-type doped TiO2 anatase (irrespective of the 

cationic or anionic nature of the aliovalent dopant) and it is not related to the presence of a generic 

heteroatom in the crystal lattice.  

 



20 

 

 

 

 

3.6. Optical properties of reduced materials. 

 

Figure 9. DR UV-Vis-NIR spectra of samples reduced upon thermal annealing under vacuum: a) pristine TiO2 annealed 

at 770 K for 2h, a′) annealed TiO2(a) after contact with O2 at room temperature, b) fully oxidized, as prepared NbF25a, 

b′) NbF25a annealed under vacuum at 770K for 2 h, b″) annealed NbF25a (b’) after contact with O2 at room 

temperature. 

In Fig. 9 the DR-UV-Vis-NIR spectra of TiO2 and NbF25a samples reduced by annealing under 

vacuum at 770 K are reported.The annealing deeply modifies the optical properties of both pristine 

TiO2 and n-type TiO2. For these two kinds of materials in their fully oxidized state, in fact, no 

absorption from the band gap transition to 2500 nm is observed (Fig 9b for NbF25a). Upon 

annealing an onset of visible and NIR absorption occurs in parallel with the appearance of a blue 

color. In all the curves reported in Fig. 9, apart from minor absorption peaks at about 1400nm and 

2250nm due to hydroxyl groups, the main spectral feature is represented by broad absorptions 

spread over the visible and infrared region. The spectra in Fig. 9 are confidently comparable one 
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with each other as the scattering properties should be similar for all samples which exhibit (Table 1) 

a similar crystallite size. Some trends in the Kubelka Munk Function may in fact be due to Rayleigh 

scattering rather than to optical absorption. 
 Broad optical spectra for reduced TiO2 are reported in the literature, in particular in the case of 

rutile68, which are attributed to the presence of Ti3+ centres responsible for the typical blue colour of 

these reduced systems. Once again, however, the n-type systems analysed in this work show a 

remarkable difference with respect to the pure material. 

The reduced pure TiO2 (Fig. 9a) shows a curve likely due to the superimposition of two broad 

absorptions, the former having a maximum around 1000nm (1.2 eV) and the second one at lower 

energy roughly corresponding to the instrumental threshold of 2500 nm (≤ 0.5 eV). The presence of 

the first absorption feature centred at c.a. 1000 nm is in agreement with data reported in the 

literature68,69 and becomes much more evident after contacting the sample with oxygen at room 

temperature (Fig. 9a’). In these conditions, in fact, the fraction of the reduced centres absorbing at 

low energy preferentially reacts and the absorption curve centred at 1000 nm dominates the 

absorption spectrum after oxidation. The curves of the reduced n-type TiO2 systems, unlike bare 

TiO2, show a continuously increasing absorption with a maximum at very low energy (E ≤ 0.5 eV) 

again located near the instrumental threshold or even beyond 2500 nm (Fig. 9b′). The curve, in fact, 

is similar to those recently reported26 for similar Nb-doped anatase systems with maximum at about 

2500nm. Contacting the reduced n-type system with oxygen at RT (Fig. 9b″), as in the case of pure 

TiO2, a fraction of the initial Ti3+ centres react but in this case only the overall intensity of the 

spectrum is affected and the absorption curve maintains its shape suggesting the presence of one 

absorption band only in this kind of system.  

Furthermore, in order to characterize the Ti3+centres in the n-type TiO2 sample prepared in this 

work, valence band spectra were recorded after sample reduction by thermal annealing. In all cases 

it resulted impossible to observe Ti3+centres in spite of the fact that the powders color turned from 

white to blue, the typical colour of reduced TiO2
60,70. This experimental evidence suggests that 

excess electrons rapidly migrate into the bulk of the material to form Ti3+centres, in agreement with 

the conclusion drawn from EPR experiments.  

 

4. Discussion and Conclusions. 

The systems studied in this work, both singly doped or Nb-F co-doped materials, are n-type TiO2. 

They contain in fact Nb and/or F, both carriers of an extra electron with respect to the elements of 

the stoichiometric oxide and, consequently, they all show the presence of Nb5+and F- (XPS) and of  
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Ti3+ ions (EPR). This latter fact, in particular, indicates that at least a fraction of the excess electrons 

introduced by the dopant is stabilized by valence induction as accounted for by the general formulas 

reported in section 3.3. An alternative possibility for the extra charge stabilization, which has been 

proposed in some case for Nb doped titania24 is based on the formation of cationic vacancies (four 

Nb ions correspond to one Ti vacancy). It is not possible, on the basis of our data, to confirm or 

exclude the presence of such vacancies (which, by the way, are not easily detectable by 

experimental techniques). It must be kept in mind, however, that in general the aliovalently doped 

systems selectively choose the solution of higher stability and, therefore, the presence of Ti3 + ions 

seems to indicate the preference for the mechanism of valence induction rather than for that of 

vacancy formation. 

The value of the energy band gap in n-type doped materials is a very complex problem. In all cases 

of co-doped samples we observed a small red shift of the edge of the band, in analogy to other 

published results37,38,39,40,41 while in several other cases of Nb doping a blue shift is observed which 

is attributed to the Burstein-Moss effect. Our data (red shift for all F containing samples, lack of 

shift for the Nb-TiO2 one) together with the variability of the results available in the literature 

suggest that the band gap value is dictated by a delicate interplay between the Burstein-Moss effect, 

the modifications occurring at the edge of the conduction band due to the presence of the energy 

levels of Ti3+ (vide infra) and those in the valence band causing the moving onwards of the band 

itself (see Section 3.4) . 

The Ti3+(I)  centres observed by EPR at 77K determine the behaviour of the doped oxide. Previous 

work by our group has shown unambiguously that the reduced ions responsible of the EPR signal 

with g⊥=1.992 and g//=1.962 are placed in the regular lattice positions of the oxide bulk, i.e. they are 

not surface nor interstitial ions20,44. The energy levels corresponding to these excess electron centers 

are however extremely shallow or even lie at the edge the CB. This is indicated by the lack of 

absorption of the fully oxidized samples in the visible region and by the position of the Fermi level 

(Table 2) which is very high in the band gap or even lies in the conduction band. The 

correspondence between the structured and relatively narrow EPR signal (Fig. 4) of Ti3+(I) and 

electronic centers located at the edge of the conduction band may seem paradoxical. However the 

nature of these centers is more complex than what apparently suggested by their simple X-band 

EPR spectrum. A previous investigation on the Ti3+(I) centre  performed by some of us using an 

oxide enriched in 17O, has indeed shown that the spin density on the six oxygen ions surrounding 

Ti3+ is much lower than that found for systems in which the excess electron is localized in a d 

orbital of the titanium ion20. A comparison with the cases of the hexaaquo  titanium(III)[71] and 
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with that of Ti3+ in interstitial sites of rutile60 (both having a highly localized 3d electron) showed 

unequivocally the particular nature of Ti3+(I) in anatase whose electron seems to be delocalized 

beyond the first coordination sphere. Moreover, top level DFT calculations recently published by 

Pacchioni and coworkers 17 have found that there are two possible solutions for lattice Ti3+ centers 

in F or Nb doped TiO2 having the same total energy. The first one describes a fully localized system 

while the second shows the electron density delocalized on all the metal ions of the supercell, the 

energy of these states being at the bottom of the conduction band17. If theoretical calculations does 

not allow a choice between these two solutions, the data related to the oxygen spin density and 

those here reported (position of the Fermi level), clearly point to a delocalized model. The excess 

electron centers detected by EPR, Fig 3, are thus responsible of the conduction of the solid which 

has been measured for Nb-TiO2 materials and resulted to be higher than that of pure titania24. The 

fact that no optical absorption is observed for the as prepared samples despite the presence of Ti3+ 

centers (Fig. 9, b’) is likely due to the relatively low initial concentration of these centers and to 

their extremely broad absorption features. 

As shown by the recent paper of Di Trizio et al.26 n-type doped anatase can be prepared and used in 

reduced state. We have here shown that the presence of excess electrons centers seriously affects 

the processes of reduction of the n-type doped systems producing  solids markedly differing from 

reduced anatase. As clearly shown by Figure 7 the annealing and the simultaneous depletion of 

oxygen implies the formation of the same type of bulk reduced centers already present in the 

starting material (Ti3+(I)) which assume an homogeneous distribution into the bulk. The conduction 

properties of the starting n-type material24,25 are likely responsible for conveyng the excess 

electrons formed upon reduction to form this homogeneous distribution of reduced.This is not the 

case of pristine anatase for which the great majority of reduced centers correspond to the EPR 

signal of Ti3+(II) that is to centers present at the surface or subsurface of the nanoparticles in a 

highly heterogeneous environment because of both the surface morphology and the presence of the 

oxygen vacancies formed upon annealing. This description is supported by both photoelectron 

spectroscopy and optical spectra (Fig.9). XPS is a surface sensitive technique and does not detect 

Ti3+ species in the starting doped materials (Fig.4) and even after reduction. The optical spectra  

basically indicate two facts: a) the doped systems absorb visible and NIR light when reduced; b) 

similarly to the case of EPR spectra, the optical  absorptions obtained reducing pristine and n-type 

doped anatase, are different. In particular, in the early stages of reduction pure anatase mainly 

absorbs in two regions of the spectrum (maxima at 1000 nm and 2500 nm) while in the case of  n-

type doped materials  the second type of absorption only is present (Fig.9). This agrees with the 
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EPR results indicating that the reduced n-type materials are simpler (only one EPR signal) and more 

homogeneous than the reduced TiO2. Furthermore the optical spectra firmly indicate that the 

reduced states of n-type TiO2 are shallower than the majority of those present in reduced pure 

anatase. This is in agreement with the position of the Fermi level (Table 2) derived combining the 

UPS and optical spectra. The simplified physical states of the two types of materials in their 

stoichiometric and reduced states are schematically compared in the following (Scheme 1) on the 

basis of the findings reported in this paper. 

In conclusion, concerning the description of n-type doped anatase, this work has served to put some 

important pieces of the patchwork into place and we can now look at this system as a solid 

markedly different from pure anatase. In fact n-type doped anatase contains very shallow donor 

levels whose amount increases upon reduction because the solid is able to homogeneously scatter 

the excess electrons by associating them with regular titanium ions of the lattice (Ti3+(I)). The same 

does not occur for pure anatase which, when reduced, preferentially forms deeper (Ti3+(II)) centers 

localized at surface and subsurface sites. The particular position of Ti3+(I) at the lower limit of the 

conduction band also explains conductivity measurements placing Nb-F doped materials at the 

boundary between a true n-doped semiconductor and a metallic conductor53,54,55 and accounts for 

recent results indicating the delocalized nature of the wave function of the Ti3+(I) unpaired electron. 

All these features are of fundamental importance in the field of Transparent Conducting Oxides 

(TCO) and  have a further appealing consequence related to the solid reduction in a homogeneous 

way, with creation of absorption in the visible and in the NIR (Fig.8) without producing an 

accumulation of electrons at surface. This  could have much interest in view of the preparation of 

reduced titania based photocatalytic systems capable of absorbing visible and NIR radiation as 

recently proposedby several Authors72,73,74.   
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Scheme 1. 
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