On the geometry of small weight codewords of dual algebraic geometric codes

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1554325 since 2016-02-09T15:18:28Z

Published version:
DOI:10.12732/ijpam.v98i3.1

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Abstract

We investigate the geometry of the support of small weight codewords of dual algebraic geometric codes on smooth complete intersections by applying the powerful tools recently developed by Alain Couvreur. In particular, by restricting ourselves to the case of Hermitian codes, we recover and extend previous results obtained by the second named author joint with Marco Pellegrini and Massimiliano Sala.

1 Introduction

In the recent contribution [3], the number of small weight codewords for some families of Hermitian codes is determined. Besides explicit computation, the main ingredient in [3] is a nice geometric characterization of the points in the support of a minimum weight codeword, which turn out to be collinear (see Corollary 1 and Proposition 2 in [3]).

Here we show that such a property is not peculiar to Hermitian codes, but it holds in full generality for dual algebraic geometric codes on any smooth complete intersection projective variety of arbitrary dimension. Namely, by exploiting the algebro-geometric tools provided by [1], we prove the following:

\textbf{Theorem 1.} Let $X \subset \mathbb{P}^r$, $r \geq 2$, be a smooth connected complete intersection defined over \mathbb{F}_q. Let G be a divisor on X such that $L(G) \supseteq H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(m))$. Let P_1, \ldots, P_n be distinct rational points on X avoiding the support of G and let $D := P_1 + \ldots + P_n$. Let d be the minimum distance of the code $C(D, G)^*$ and let $\{P_{i_1}, \ldots, P_{i_d}\}$ be the points in the support of a minimum weight codeword.

(i) If $d \leq m + 2$, then $d = m + 2$ and all the $m + 2$ points P_{i_j} are collinear in \mathbb{P}^r.

(ii) If \(d \leq 2m + 2 \) and no \(m + 2 \) of the \(P_{ij} \)'s are collinear, then \(d = 2m + 2 \) and all the \(2m + 2 \) points \(P_{ij} \) lie on a plane conic.

(iii) If \(d \leq 3m \), no \(m + 2 \) of the \(P_{ij} \)'s are collinear and no \(2m + 2 \) of them lie on a plane conic, then \(d = 3m \) and all the \(3m \) points \(P_{ij} \) lie at the intersection of two complanar plane curves of respective degrees 3 and \(m \).

If we focus on the explicit interesting example of Hermitian codes (as presented for instance in [2]), then our general result specializes as follows:

Corollary 1. Let \(X \subset \mathbb{P}^2 \) be the Hermitian curve of affine equation \(x^{q+1} = y^q + y \) defined over \(\mathbb{F}_{q^2} \). Let \(G = \rho P_0 \), where \(P_0 \) is the point at infinity, \(D = P_1 + \ldots + P_n \) with \(n = q^3 \), and let \(C(D, G)^* \) be the Hermitian code. Let \(d \) be the minimum distance and let \(\{P_{i1}, \ldots, P_{id}\} \) be the points in the support of a minimum weight codeword.

- If \(0 \leq \rho \leq q^2 - q - 2 \), then all the points \(P_{ij} \) are collinear.
- If \(\rho \geq q^2 - q - 2 \), then the following holds.

 (i) If \(d \leq q \), then all the points \(P_{ij} \) are collinear.

 (ii) If \(d \leq 2q - 2 \), then either \(q \) of the points \(P_{ij} \) are collinear, or all the points \(P_{ij} \) lie on a plane conic.

 (iii) If \(d \leq 3q - 6 \), then either \(q \) of the points \(P_{ij} \) are collinear, or \(2q - 2 \) of the points \(P_{ij} \) lie on a plane conic, or all the points \(P_{ij} \) lie at the intersection of two complanar plane curves of respective degrees 3 and \(q - 2 \).

- If \(\rho \geq q^2 - 1 \), then the following holds.

 (i) If \(d \leq q + 1 \), then all the points \(P_{ij} \) are collinear.

 (ii) If \(d \leq 2q \), then either \(q + 1 \) of the points \(P_{ij} \) are collinear, or all the points \(P_{ij} \) lie on a plane conic.

 (iii) If \(d \leq 3q - 3 \), then either \(q + 1 \) of the points \(P_{ij} \) are collinear, or \(2q \) of the points \(P_{ij} \) lie on a plane conic, or all the points \(P_{ij} \) lie at the intersection of two complanar plane curves of respective degrees 3 and \(q - 1 \).

In the case of Hermitian codes we may even describe the geometry of small, even not minimum, weight codewords (notice that our technical assumption \(L(G) = H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d - 2)) \) is satisfied by the so-called corner codes according to the terminology of [3], Definition 2):
Proposition 1. Let $X \subset \mathbb{P}^2$ be the Hermitian curve of affine equation $x^{q+1} = y^q + y$ defined over \mathbb{F}_{q^2}. Let $G = \rho P_0$, where P_0 is the point at infinity, $D = P_1 + \ldots + P_n$ with $n = q^3$, and let $C(D, G)^*$ be the Hermitian code. If $0 \leq \rho \leq q^3 - q - 2$ and $L(G) = H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d-2))$, then at least $d-1$ of the points $\{P_{i_1}, \ldots, P_{i_{d+a}}\}$ in the support of a codeword of weight $d+a$, where $0 \leq a \leq d-3$, are collinear.

The present research is part of the PhD program of the second named author, supervised by Massimiliano Sala. The first named author has been partially supported by GNSAGA of INdAM and MIUR Cofin 2008 - Geometria delle varietà algebriche e dei loro spazi di moduli (Italy).

2 The proofs

Proof of Theorem 1. Let $c \in C(D, G)^*$ be a minimum weight codeword having support $\{P_{i_1}, \ldots, P_{i_s}\}$ with $s = d$. By the definition of a dual code, we have

$$\sum_{j=1}^{s} c_j f(P_{i_j}) = 0$$

for every $f \in L(G) \supseteq H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(m))$. In particular, we have

$$\sum_{j=1}^{s} c_j \text{ev}_{P_{i_j}}(f) = 0$$

for every $f \in H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(m))$. Hence $\text{ev}_{P_{i_j}}$ turn out to be linearly dependent in $H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(m))^*$ and, in the terminology of [1], Definition 2.4 and Definition 2.8, P_{i_1}, \ldots, P_{i_s} are m-linked. Now, we have $d = s = m+2$ in case (i) by [1], Proposition 6.1, $d = s = 2m+2$ in case (ii) by [1], Proposition 7.2, and $d = s = 3m$ in case (iii) by [1], Proposition 8.1. Finally, we complete case (i) by [1], Proposition 6.2, case (ii) by [1], Proposition 7.4, and case (iii) by [1], Proposition 9.1.

Proof of Corollary 1. Since $L(G) = \langle \{x^iy^j : i \geq 0, 0 \leq j \leq q-1, i + j(q + 1) \leq \rho\} \rangle$ and $H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(k))$ can be identified with the set of polynomials in r variables of degree at most k, it is easy to check that $L(G) \supseteq H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(k))$ for every $k \geq 0$ such that $k \leq q - 1$ and $k(q + 1) \leq \rho$.

If $0 \leq \rho \leq q^2 - q - 2$, then let $m := d - 2$. By [2], §5.3, we have $\rho = 2q^2 - q - uq - v - 1$ with $1 \leq u, v \leq q - 1$ and $d = (q - u)q - v$ if
\[u < v, \ d = (q - u)q \] if \(u \geq v \). Hence \(d = m + 2 \) implies \(m = u - 1 \) for \(u > v \) and \(m = u \) for \(u = v \), hence
\[m(q + 1) \leq \rho. \tag{1} \]

If \(\rho \geq q^2 - q - 2 \) let \(m := q - 2 \), if instead \(\rho \geq q^2 - 1 \) let \(m := q - 1 \). In both cases (1) is satisfied, implying \(L(G) \supseteq H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(m)) \). Now our claim follows from Theorem 1.

\[\square \]

Proof of Proposition 1. If \(c_j \) are the non-zero components of the corresponding codeword, then
\[\sum_{j=1}^{d+a} c_j f(P_{ij}) = 0 \]
for every \(f \in L(G) \supseteq H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d-2)) \), in particular \(\{P_{i1}, \ldots, P_{id+a}\} \) are \((d-2)\)-linked.

If they are not minimally \((d-2)\)-linked, then (up to reordering) we have
\[\sum_{j=1}^{d+a-1} b_j f(P_{ij}) = 0 \]
for every \(f \in H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d-2)) \). Our assumption \(L(G) = H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d-2)) \) implies that the \(b_j \)'s are the components of a codeword of weight strictly less than \(d + a \). By induction on \(a \) starting from Corollary 1 we conclude that at least \(d - 1 \) of them are collinear.

Assume now that the points \(\{P_{i1}, \ldots, P_{id+a}\} \) are minimally \((d-2)\)-linked. If they are not collinear, there exists a hyperplane \(H \) containing exactly \(l \) of them, with \(2 \leq l \leq d + a - 1 \). By [1], Lemma 5.1, the remaining \(d + a - l \) points are (minimally) \((d-3)\)-linked and from [1], Proposition 7.2, it follows that at least \((d-1)\) of them are collinear since by our numerical assumption on \(a \) we have \(d + a - l \leq 2(d - 3) + 1 \).

\[\square \]

References

Claudio Fontanari and Chiara Marcola
Dipartimento di Matematica, Università di Trento
Via Sommarive 14, 38123 Trento, Italy.
E-mail addresses: fontanar@science.unitn.it,
chiara.marcolla@unitn.it