New Synthetic Strategy of MRI/BNCT Agents Based on Hydroboration Reaction

This is the author's manuscript

Original Citation:
New Synthetic Strategy of MRI/BNCT Agents Based on Hydroboration Reaction / Paolo Boggio; Antonio Toppino; Simonetta Geninatti Crich; Diego Alberti; Silvio Aime; Annamaria Deagostino. - (2014), pp. 105-105. ((Intervento presentato al convegno 10th Spanish-Italian Symposium on Organic Chemistry tenutosi a Firenze nel 17-20 July 2014.

Availability:
This version is available http://hdl.handle.net/2318/155750 since

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
New Synthetic Strategy of MRI/BNCT Agents Based on Hydroboration Reaction

P. Boggio¹, A. Toppino, S. Geninatti-Crich², D. Alberti², S. Aime², A. Deagostino¹

¹ Department of Chemistry, University of Torino, via P. Giuria 7, 10125, Torino, Italy.

² Department of Molecular Biotechnology and Health Sciences; University of Torino, via Nizza 52, 10126, Torino, Italy

X Edition of Spanish-Italian Symposium on Organic Chemistry
Florence 17-20 July 2014
Boron Neutron Capture Therapy

Properties for BNCT agents

- Low toxicity
- Good stability in biological environment
- Persistence inside target cells
- High boron introduction in tumor tissue: 20 – 35 µg 10B /1 gr cancer cells
- Concentration ratio cancer tissue/healthy tissue : 3 – 5 / 1
- Concentration ratio cancer tissue/blood : 5 / 1
- Efficient body scanning

MRI/BNCT dual agent: general structure

MOLECULAR PROBE \(\text{[Gd-DOTA]}^- \) → CARBORANE \(\text{Dicarba-closo-dodecaborane} \) → BIOLOGICAL VECTOR \(\text{Lipoprotein} \)
Examples of MRI/BNCT agents

AT101

MEA01

AC01

New decaborane functionalization strategy: Hydroboration reaction

Efficient strategy for lipophilic moiety introduction on boron cage:
Yield product: 55 – 92 %

New dual agent synthesis: PB01

Synthesis of C-(2-hydroxy)-ethyl-C-H-6-(hexadecil)-o-carborane (3)
a) 1-hexadecene (3.5 eq), bmimCl (0.3 eq), toluene, 125°C, yield 43%; b) 3-butyn-1-ol (4 eq), bmimCl (0.3 eq), toluene, 100°C, yield 40%

Structure 3: Isomer 1
Chemical shift for C-H

1H: 4.1 ppm
13C: 60.35 ppm

Structure 3’: Isomer 2
Chemical shift for C-H

1H: 3.8 ppm
13C: 61.47 ppm

\(^a\) Molecular structure defined by X-ray diffrattometric study
Structure acquired by Dott.ssa Domenica Marabello
New dual agent synthesis: PB01

General procedure:
Synthesis of $C\{R_3\text{-DOTAMA-C}_6\}$-acetamide-$C^2\text{H}-6$(hexadecil)$\alpha$-carborane (6)

a) 1-hexadecene (3.5 eq), bmimCl (0.3 eq), toluene, 125°C, yield 43%;
b) 3-butyn-1-ol (4 eq), bmimCl (0.3 eq), toluene, 100°C, yield 40%;
c) CrO$_3$ (4 eq), H$_2$SO$_4$ (3M), acetone, room temperature, yield 77%;
d) α-hydroxysuccinimide [NHS] (1.15 eq), dicyclohexilcarbodiimide [DCC] (1.2 eq), CH$_2$Cl$_2$, room temperature;
e) R_3-DOTAMA-C$_6$ (0.95 eq), diisopropylethylamine [DIEA] (0.95 eq), CH$_2$Cl$_2$, room temperature, yield: 13 – 42%

Protecting groups

$R' = \text{ter-Butyl}$

$R'' = \text{Benzyl}$
New dual agent synthesis: PB01

Synthesis of PB01:

a) i R = ter-(Butyl) CF₃COOH (2 ml), CH₂Cl₂, room temperature, yield: > 99%
 ii R = Benzyl H₂, Pd on carbon (20% w/w), CH₂Cl₂/CH₃OH (1/1), room temperature, yield: > 99%

b) GdCl₃, H₂O, t. amb., pH 7
Comparison PB01-AT101

NMRD PROFILE

Synthetic steps required: 6

Synthetic steps required: 14

Dott.ssa Simonetta Geninatti Crich
Dott. Diego Alberti
Conclusions

Synthesis of MRI/BNCT dual agent based on hydroboration reaction:
- efficient strategy for lipophilic moiety introduction on boron cage
- reduction of synthetic steps required

Experimental evidence for molecular structure of precursor (3):
X-ray diffractometric study

Preliminary relaxometric tests on PB01 interaction with LDLs show a Nuclear Magnetic Relaxation Dispersion (NMRP) profile superior in comparison with AT101
Aknowledgments

Dott.ssa Domenica Marabello X-ray diffractometric study

Prof. Claudio Medana Mass spectra