Prediction uncertainty of density functional approximations for properties of crystals with cubic symmetry

Supplementary Material

Pascal Pernot,*†‡ Bartolomeo Civalleri,¶ Davide Presti,§ and Andreas Savin∥⊥

CNRS, UMR8000, Laboratoire de Chimie Physique, F-91405 Orsay, France, Univ. Paris-Sud, UMR000, Laboratoire de Chimie Physique, F-91405 Orsay, France, Department of Chemistry and NIS Center, University of Torino, Via P. Giuria 7, I-10125 Torino, Italy, Department of Chemical and Geological Sciences, University of Modena and Reggio-Emilia, Via Campi 183, I-41125 Modena, Italy, CNRS, UMR7616, Laboratoire de Chimie Théorique, F-75005 Paris, France, and UPMC Univ Paris 06, UMR7616, Laboratoire de Chimie Théorique, F-75005 Paris, France

E-mail: pascal.pernot@u-psud.fr

*To whom correspondence should be addressed
†CNRS, UMR8000, Laboratoire de Chimie Physique, F-91405 Orsay, France
‡Univ. Paris-Sud, UMR000, Laboratoire de Chimie Physique, F-91405 Orsay, France
¶Department of Chemistry and NIS Center, University of Torino, Via P. Giuria 7, I-10125 Torino, Italy
§Department of Chemical and Geological Sciences, University of Modena and Reggio-Emilia, Via Campi 183, I-41125 Modena, Italy
∥CNRS, UMR7616, Laboratoire de Chimie Théorique, F-75005 Paris, France
⊥UPMC Univ Paris 06, UMR7616, Laboratoire de Chimie Théorique, F-75005 Paris, France
List of Tables

1. Reference data for lattice constants (Å) .. 6
2. Reference data for lattice constants (Å), continued .. 7
3. Reference data for bulk modulus (GPa) .. 8
4. Reference data for bulk modulus (GPa), continued .. 9
5. Reference data for band gaps (eV) .. 10
6. Reference data for band gaps (eV), continued .. 11
7. Validation data for lattice constants (Å) .. 12
8. Validation data for lattice constants (Å), continued .. 12
9. Validation data for band gaps (eV) .. 12
10. Validation data for band gaps (eV), continued .. 13
11. Calibration and prediction uncertainty parameters for lattice constants (Å) .. 13
12. Calibration and prediction uncertainty parameters for bulk modulus (GPa) .. 14
13. Calibration and prediction uncertainty parameters for band gaps (eV) .. 14
We provide here tables of all the data used in the companion paper and tables of the coefficients to estimate the corrected values and prediction uncertainties of the studied methods.

Validation data. Tables 1-6.

Reference data were collected for the following crystals (*Strukturbericht* designation\(^1\) in parentheses): 22 semiconductors, also present in the SC40 data set\(^2\), namely: C(A4), Si(A4), Ge(A4), SiC(B3), BN(B3), BP(B3), BAs(B3), AlP(B3), AlAs(B3), AlSb(B3), GaN(B3), GaN(B4), GaP(B3), GaAs(B3), GaSb((B3), InP(B3), InAs(B3), InSb(B3), ZnS(B3), ZnSe(B3), ZnTe(B3), CdTe(B3), MgS(B1); 4 alkali halides: LiF(B1), LiCl(B1), NaF(B1) and NaCl(B1); and, two oxides: MgO(B1), SrTiO\(_3\)(E2\(_1\)).

The reference dataset includes: experimental lattice constant values corrected for the zero-point anharmonic expansion, as reported in Ref.\(^3\); experimental bulk modulus values, taken from Refs.\(^4\)-\(^7\), and low temperature (below 77 K) experimental (fundamental) band gap values\(^2,5,8,9\).

For bulk modulus, we referred to low temperature data\(^4\)-\(^6\), if available, and, when possible, the zero-point anharmonic expansion correction has been included from Ref\(^6\).

The band gaps considered cover two orders of magnitude, between \(\approx 0.2\) and \(\approx 12\) eV.

Validation data. Tables 7-10.

A set of 9 systems has been set aside for validation purpose. These systems have been chosen on the basis that we did find reference values for band gaps and lattice constants, but none for bulk moduli: AlN(B3), CdS(B3), CdSe(B3), MgSe(B1), MgTe(B1), BaS(B1), BaSe(B1), BaTe(B1), and LiH(B1).

Property and uncertainty prediction. Tables 11-13.

For the estimation of a new value of a property knowing a calculated value \(c_s\) (for a system not in the benchmark set), the prediction model and prediction variance corre-
sponding to the chosen DFA are10

\begin{align*}
p(c_s) &= a + bc_s \quad (1) \\
u_p^2(c_s) &= u_f^2(c_s) + d^2 \quad (2) \\
u_{jm}^2(c_s) &= u^2(a) + u^2(b)c_s^2 + 2u(a, b)c_s. \quad (3)
\end{align*}

For the comparison of a model prediction with reference data, or the prediction of an experimental result, this variance has to be further combined with the corresponding reference/experimental data uncertainty

\[u^2(c_s) = u_p^2(c_s) + u_s^2. \quad (4) \]

References

<table>
<thead>
<tr>
<th>System</th>
<th>Symmetry</th>
<th>Exp.</th>
<th>HF</th>
<th>LDA</th>
<th>PBE</th>
<th>PBEsol</th>
<th>B3LYP</th>
<th>PBE0</th>
<th>PBEsol0</th>
<th>HSE06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>A4</td>
<td>5.422</td>
<td>5.501</td>
<td>5.440</td>
<td>5.439</td>
<td>5.442</td>
<td>5.434</td>
<td>5.455</td>
<td>5.443</td>
<td>5.430</td>
</tr>
<tr>
<td>Ge</td>
<td>A4</td>
<td>5.044</td>
<td>5.190</td>
<td>5.039</td>
<td>5.178</td>
<td>5.096</td>
<td>5.076</td>
<td>5.100</td>
<td>5.094</td>
<td>5.064</td>
</tr>
<tr>
<td>AIP</td>
<td>B3</td>
<td>5.450</td>
<td>5.521</td>
<td>5.429</td>
<td>5.503</td>
<td>5.465</td>
<td>5.504</td>
<td>5.514</td>
<td>5.468</td>
<td>5.443</td>
</tr>
<tr>
<td>AAs</td>
<td>B3</td>
<td>5.649</td>
<td>5.734</td>
<td>5.623</td>
<td>5.722</td>
<td>5.630</td>
<td>5.713</td>
<td>5.731</td>
<td>5.667</td>
<td>5.643</td>
</tr>
<tr>
<td>GaP</td>
<td>B3</td>
<td>5.441</td>
<td>5.306</td>
<td>5.428</td>
<td>5.540</td>
<td>5.476</td>
<td>5.547</td>
<td>5.561</td>
<td>5.490</td>
<td>5.449</td>
</tr>
<tr>
<td>GaAs</td>
<td>B3</td>
<td>5.641</td>
<td>5.702</td>
<td>5.636</td>
<td>5.730</td>
<td>5.687</td>
<td>5.762</td>
<td>5.786</td>
<td>5.701</td>
<td>5.648</td>
</tr>
<tr>
<td>InP</td>
<td>B3</td>
<td>5.858</td>
<td>5.888</td>
<td>5.845</td>
<td>5.972</td>
<td>5.804</td>
<td>5.971</td>
<td>5.950</td>
<td>5.809</td>
<td>5.809</td>
</tr>
<tr>
<td>ZnS</td>
<td>B3</td>
<td>5.399</td>
<td>5.778</td>
<td>5.338</td>
<td>5.484</td>
<td>5.402</td>
<td>5.500</td>
<td>5.550</td>
<td>5.449</td>
<td>5.509</td>
</tr>
<tr>
<td>ZnSe</td>
<td>B3</td>
<td>5.658</td>
<td>5.852</td>
<td>5.593</td>
<td>5.738</td>
<td>5.665</td>
<td>5.775</td>
<td>5.790</td>
<td>5.713</td>
<td>5.648</td>
</tr>
<tr>
<td>MgS</td>
<td>B1</td>
<td>5.612</td>
<td>5.734</td>
<td>5.696</td>
<td>5.702</td>
<td>5.656</td>
<td>5.703</td>
<td>5.700</td>
<td>5.667</td>
<td>5.635</td>
</tr>
<tr>
<td>LiF</td>
<td>B1</td>
<td>3.074</td>
<td>3.006</td>
<td>3.006</td>
<td>3.060</td>
<td>3.060</td>
<td>3.044</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
</tr>
<tr>
<td>LiCl</td>
<td>B1</td>
<td>5.072</td>
<td>5.271</td>
<td>4.977</td>
<td>5.188</td>
<td>5.076</td>
<td>5.187</td>
<td>5.190</td>
<td>5.120</td>
<td>5.063</td>
</tr>
<tr>
<td>NaCl</td>
<td>B1</td>
<td>5.565</td>
<td>5.781</td>
<td>5.481</td>
<td>5.703</td>
<td>5.633</td>
<td>5.703</td>
<td>5.708</td>
<td>5.658</td>
<td>5.591</td>
</tr>
</tbody>
</table>
Table 2: Reference data for lattice constants (Å), continued.

<table>
<thead>
<tr>
<th>System</th>
<th>Symmetry</th>
<th>Exp.</th>
<th>HSEsol</th>
<th>HISS</th>
<th>RSHXLD</th>
<th>wB97</th>
<th>wB97X</th>
<th>LC-wP B</th>
<th>LC-wP Bsol</th>
<th>M06-L</th>
<th>M06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>A4</td>
<td>5.644</td>
<td>5.640</td>
<td>5.644</td>
<td>5.640</td>
<td>5.648</td>
<td>5.671</td>
<td>5.588</td>
<td>5.532</td>
<td>5.751</td>
<td>5.709</td>
</tr>
<tr>
<td>BAs</td>
<td>B3</td>
<td>5.450</td>
<td>5.445</td>
<td>5.446</td>
<td>5.432</td>
<td>5.447</td>
<td>5.461</td>
<td>5.422</td>
<td>5.203</td>
<td>5.441</td>
<td>5.477</td>
</tr>
<tr>
<td>AlP</td>
<td>B3</td>
<td>5.049</td>
<td>5.046</td>
<td>5.052</td>
<td>5.048</td>
<td>5.064</td>
<td>5.074</td>
<td>5.016</td>
<td>5.078</td>
<td>5.085</td>
<td>5.676</td>
</tr>
<tr>
<td>GaP</td>
<td>B3</td>
<td>5.441</td>
<td>5.433</td>
<td>5.460</td>
<td>5.430</td>
<td>5.449</td>
<td>5.476</td>
<td>5.415</td>
<td>5.274</td>
<td>5.506</td>
<td>5.503</td>
</tr>
<tr>
<td>GaAs</td>
<td>B3</td>
<td>5.444</td>
<td>5.414</td>
<td>5.664</td>
<td>5.600</td>
<td>5.659</td>
<td>5.683</td>
<td>5.602</td>
<td>5.547</td>
<td>5.759</td>
<td>5.705</td>
</tr>
<tr>
<td>InP</td>
<td>B3</td>
<td>5.858</td>
<td>5.865</td>
<td>5.872</td>
<td>5.830</td>
<td>5.849</td>
<td>5.885</td>
<td>5.812</td>
<td>5.769</td>
<td>5.948</td>
<td>5.901</td>
</tr>
<tr>
<td>ZnS</td>
<td>B3</td>
<td>5.309</td>
<td>5.206</td>
<td>5.248</td>
<td>5.285</td>
<td>5.430</td>
<td>5.449</td>
<td>5.385</td>
<td>5.345</td>
<td>5.462</td>
<td>5.438</td>
</tr>
<tr>
<td>ZnSe</td>
<td>B3</td>
<td>5.658</td>
<td>5.655</td>
<td>5.688</td>
<td>5.633</td>
<td>5.704</td>
<td>5.717</td>
<td>5.631</td>
<td>5.583</td>
<td>5.759</td>
<td>5.708</td>
</tr>
<tr>
<td>MgS</td>
<td>B1</td>
<td>5.612</td>
<td>5.637</td>
<td>5.648</td>
<td>5.642</td>
<td>5.656</td>
<td>5.670</td>
<td>5.631</td>
<td>5.597</td>
<td>4.188</td>
<td>4.228</td>
</tr>
<tr>
<td>LiCl</td>
<td>B1</td>
<td>5.072</td>
<td>5.005</td>
<td>5.103</td>
<td>5.151</td>
<td>5.156</td>
<td>5.206</td>
<td>5.090</td>
<td>5.053</td>
<td>3.981</td>
<td>4.051</td>
</tr>
<tr>
<td>NaCl</td>
<td>B1</td>
<td>5.365</td>
<td>5.595</td>
<td>5.637</td>
<td>5.626</td>
<td>5.666</td>
<td>5.620</td>
<td>5.566</td>
<td>4.608</td>
<td>4.008</td>
<td>4.008</td>
</tr>
<tr>
<td>MgO</td>
<td>B1</td>
<td>4.188</td>
<td>4.178</td>
<td>4.100</td>
<td>4.183</td>
<td>4.240</td>
<td>4.228</td>
<td>4.201</td>
<td>4.153</td>
<td>5.609</td>
<td>5.757</td>
</tr>
<tr>
<td>System</td>
<td>Symmetry</td>
<td>Exp</td>
<td>HF</td>
<td>LDA</td>
<td>PBE</td>
<td>PBEsol</td>
<td>B3LYP</td>
<td>PBE0</td>
<td>PBEsol0</td>
<td>HSE06</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>A4</td>
<td>455.9</td>
<td>498.5</td>
<td>467.5</td>
<td>431.8</td>
<td>449.2</td>
<td>439.7</td>
<td>440.7</td>
<td>469.6</td>
<td>480.2</td>
<td>468.2</td>
</tr>
<tr>
<td>Si</td>
<td>A4</td>
<td>101.3</td>
<td>108.6</td>
<td>90.4</td>
<td>90.0</td>
<td>95.1</td>
<td>90.7</td>
<td>90.9</td>
<td>100.0</td>
<td>104.1</td>
<td>90.6</td>
</tr>
<tr>
<td>Ge</td>
<td>A4</td>
<td>79.4</td>
<td>85.2</td>
<td>74.8</td>
<td>61.5</td>
<td>65.6</td>
<td>60.9</td>
<td>61.5</td>
<td>75.4</td>
<td>80.9</td>
<td>73.5</td>
</tr>
<tr>
<td>SiC</td>
<td>B3</td>
<td>229.1</td>
<td>247.8</td>
<td>231.7</td>
<td>214.9</td>
<td>224.5</td>
<td>225.8</td>
<td>219.0</td>
<td>234.8</td>
<td>240.6</td>
<td>233.3</td>
</tr>
<tr>
<td>BN</td>
<td>B3</td>
<td>410.2</td>
<td>430.4</td>
<td>408.9</td>
<td>377.7</td>
<td>391.3</td>
<td>396.0</td>
<td>390.4</td>
<td>409.6</td>
<td>418.4</td>
<td>408.7</td>
</tr>
<tr>
<td>BP</td>
<td>B3</td>
<td>168.0</td>
<td>182.1</td>
<td>180.0</td>
<td>165.5</td>
<td>173.4</td>
<td>164.8</td>
<td>170.5</td>
<td>184.3</td>
<td>178.4</td>
<td></td>
</tr>
<tr>
<td>BaS</td>
<td>B3</td>
<td>151.1</td>
<td>151.6</td>
<td>148.9</td>
<td>132.1</td>
<td>141.0</td>
<td>134.3</td>
<td>132.7</td>
<td>147.0</td>
<td>152.7</td>
<td>145.7</td>
</tr>
<tr>
<td>AIP</td>
<td>B3</td>
<td>37.4</td>
<td>100.0</td>
<td>94.2</td>
<td>85.6</td>
<td>90.5</td>
<td>91.4</td>
<td>87.2</td>
<td>95.1</td>
<td>98.1</td>
<td>94.3</td>
</tr>
<tr>
<td>AlAs</td>
<td>B3</td>
<td>75.0</td>
<td>88.0</td>
<td>82.8</td>
<td>73.3</td>
<td>78.7</td>
<td>78.7</td>
<td>75.1</td>
<td>82.8</td>
<td>86.2</td>
<td>81.9</td>
</tr>
<tr>
<td>AlSb</td>
<td>B3</td>
<td>58.2</td>
<td>65.9</td>
<td>62.9</td>
<td>54.8</td>
<td>59.6</td>
<td>59.1</td>
<td>55.7</td>
<td>62.2</td>
<td>65.5</td>
<td>61.3</td>
</tr>
<tr>
<td>GaN</td>
<td>B3</td>
<td>213.7</td>
<td>215.8</td>
<td>197.4</td>
<td>166.9</td>
<td>182.8</td>
<td>180.9</td>
<td>177.7</td>
<td>194.4</td>
<td>205.5</td>
<td>193.0</td>
</tr>
<tr>
<td>GaP</td>
<td>B3</td>
<td>92.3</td>
<td>94.5</td>
<td>91.5</td>
<td>77.9</td>
<td>85.9</td>
<td>83.4</td>
<td>78.7</td>
<td>90.1</td>
<td>95.2</td>
<td>88.8</td>
</tr>
<tr>
<td>GaAs</td>
<td>B3</td>
<td>78.0</td>
<td>80.1</td>
<td>74.5</td>
<td>62.2</td>
<td>69.5</td>
<td>66.7</td>
<td>62.4</td>
<td>73.7</td>
<td>78.9</td>
<td>72.2</td>
</tr>
<tr>
<td>GaSb</td>
<td>B3</td>
<td>57.9</td>
<td>62.5</td>
<td>60.4</td>
<td>46.4</td>
<td>54.5</td>
<td>52.5</td>
<td>49.3</td>
<td>57.0</td>
<td>62.7</td>
<td>57.9</td>
</tr>
<tr>
<td>InP</td>
<td>B3</td>
<td>72.0</td>
<td>76.1</td>
<td>73.0</td>
<td>66.7</td>
<td>68.2</td>
<td>66.8</td>
<td>61.7</td>
<td>71.8</td>
<td>76.6</td>
<td>70.6</td>
</tr>
<tr>
<td>InAs</td>
<td>B3</td>
<td>58.6</td>
<td>66.0</td>
<td>61.4</td>
<td>49.5</td>
<td>56.7</td>
<td>54.7</td>
<td>49.1</td>
<td>60.2</td>
<td>65.3</td>
<td>58.9</td>
</tr>
<tr>
<td>InSb</td>
<td>B3</td>
<td>46.1</td>
<td>53.4</td>
<td>50.7</td>
<td>40.3</td>
<td>46.1</td>
<td>45.2</td>
<td>39.2</td>
<td>48.7</td>
<td>53.0</td>
<td>47.5</td>
</tr>
<tr>
<td>ZnS</td>
<td>B3</td>
<td>75.0</td>
<td>71.6</td>
<td>86.3</td>
<td>70.7</td>
<td>79.1</td>
<td>71.0</td>
<td>69.8</td>
<td>77.6</td>
<td>83.4</td>
<td>77.0</td>
</tr>
<tr>
<td>ZnSe</td>
<td>B3</td>
<td>65.9</td>
<td>59.0</td>
<td>72.8</td>
<td>58.1</td>
<td>66.7</td>
<td>60.3</td>
<td>56.6</td>
<td>65.0</td>
<td>70.4</td>
<td>64.3</td>
</tr>
<tr>
<td>ZnTe</td>
<td>B3</td>
<td>52.8</td>
<td>44.0</td>
<td>50.6</td>
<td>44.1</td>
<td>51.6</td>
<td>44.6</td>
<td>42.4</td>
<td>49.9</td>
<td>54.9</td>
<td>49.2</td>
</tr>
<tr>
<td>CdTe</td>
<td>B3</td>
<td>45.0</td>
<td>37.1</td>
<td>47.4</td>
<td>35.9</td>
<td>42.3</td>
<td>38.1</td>
<td>35.3</td>
<td>41.0</td>
<td>45.7</td>
<td>40.4</td>
</tr>
<tr>
<td>MgS</td>
<td>B1</td>
<td>78.9</td>
<td>61.8</td>
<td>64.9</td>
<td>56.0</td>
<td>60.9</td>
<td>60.9</td>
<td>59.1</td>
<td>62.4</td>
<td>64.2</td>
<td>62.2</td>
</tr>
<tr>
<td>LiF</td>
<td>B1</td>
<td>36.3</td>
<td>37.4</td>
<td>36.9</td>
<td>30.4</td>
<td>35.7</td>
<td>35.7</td>
<td>35.7</td>
<td>36.5</td>
<td>36.4</td>
<td></td>
</tr>
<tr>
<td>LiCl</td>
<td>B1</td>
<td>38.2</td>
<td>30.0</td>
<td>41.8</td>
<td>32.4</td>
<td>36.1</td>
<td>32.1</td>
<td>32.0</td>
<td>34.6</td>
<td>37.5</td>
<td>34.5</td>
</tr>
<tr>
<td>NaF</td>
<td>B1</td>
<td>53.1</td>
<td>53.4</td>
<td>46.8</td>
<td>51.6</td>
<td>55.2</td>
<td>53.2</td>
<td>54.4</td>
<td>54.5</td>
<td>57.5</td>
<td>54.5</td>
</tr>
<tr>
<td>NaCl</td>
<td>B1</td>
<td>27.6</td>
<td>22.7</td>
<td>33.8</td>
<td>24.6</td>
<td>26.9</td>
<td>24.5</td>
<td>26.0</td>
<td>27.9</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>B1</td>
<td>169.8</td>
<td>183.4</td>
<td>179.2</td>
<td>138.5</td>
<td>165.0</td>
<td>159.6</td>
<td>165.0</td>
<td>173.2</td>
<td>178.6</td>
<td>172.9</td>
</tr>
<tr>
<td>SrTiO$_3$</td>
<td>B41</td>
<td>179.0</td>
<td>215.9</td>
<td>203.8</td>
<td>171.3</td>
<td>187.2</td>
<td>185.8</td>
<td>184.5</td>
<td>196.0</td>
<td>208.0</td>
<td>195.3</td>
</tr>
</tbody>
</table>
Table 4: Reference data for bulk modulus (GPa), continued.

<table>
<thead>
<tr>
<th>System</th>
<th>Symmetry</th>
<th>Exp.a</th>
<th>HSe sol</th>
<th>HISS</th>
<th>RS-EXL</th>
<th>DA</th>
<th>w-B97</th>
<th>w-B97X</th>
<th>LC-wP BE</th>
<th>LC-wP BESol</th>
<th>M06-L</th>
<th>M06</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>A4</td>
<td>45.5</td>
<td>47.9</td>
<td>49.3</td>
<td>48.8</td>
<td>46.4</td>
<td>46.1</td>
<td>46.2</td>
<td>50.3</td>
<td>52.8</td>
<td>452.9</td>
<td>459.0</td>
</tr>
<tr>
<td>Si</td>
<td>A4</td>
<td>10.3</td>
<td>10.2</td>
<td>10.6</td>
<td>11.3</td>
<td>11.6</td>
<td>11.0</td>
<td>11.3</td>
<td>11.8</td>
<td>13.0</td>
<td>101.4</td>
<td>98.4</td>
</tr>
<tr>
<td>Ge</td>
<td>A4</td>
<td>79.4</td>
<td>79.1</td>
<td>81.7</td>
<td>92.7</td>
<td>92.6</td>
<td>87.2</td>
<td>97.8</td>
<td>107.7</td>
<td>107.7</td>
<td>62.9</td>
<td>68.7</td>
</tr>
<tr>
<td>SiC</td>
<td>B3</td>
<td>229.1</td>
<td>230.4</td>
<td>248.9</td>
<td>249.9</td>
<td>239.6</td>
<td>240.3</td>
<td>255.9</td>
<td>272.4</td>
<td>227.5</td>
<td>228.4</td>
<td></td>
</tr>
<tr>
<td>BN</td>
<td>B3</td>
<td>410.2</td>
<td>417.9</td>
<td>431.9</td>
<td>422.9</td>
<td>394.6</td>
<td>401.3</td>
<td>436.7</td>
<td>453.7</td>
<td>395.8</td>
<td>397.2</td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>B3</td>
<td>168.0</td>
<td>183.4</td>
<td>180.1</td>
<td>189.4</td>
<td>184.9</td>
<td>179.4</td>
<td>196.3</td>
<td>205.9</td>
<td>177.0</td>
<td>171.6</td>
<td></td>
</tr>
<tr>
<td>BAs</td>
<td>B3</td>
<td>151.1</td>
<td>151.7</td>
<td>156.3</td>
<td>161.4</td>
<td>155.5</td>
<td>151.3</td>
<td>167.4</td>
<td>178.3</td>
<td>137.2</td>
<td>139.3</td>
<td></td>
</tr>
<tr>
<td>AlP</td>
<td>B3</td>
<td>87.4</td>
<td>97.4</td>
<td>100.8</td>
<td>105.1</td>
<td>107.6</td>
<td>103.4</td>
<td>109.5</td>
<td>114.7</td>
<td>95.1</td>
<td>93.4</td>
<td></td>
</tr>
<tr>
<td>AlAs</td>
<td>B3</td>
<td>75.0</td>
<td>85.4</td>
<td>87.6</td>
<td>93.0</td>
<td>93.5</td>
<td>90.5</td>
<td>96.0</td>
<td>102.9</td>
<td>81.5</td>
<td>85.8</td>
<td></td>
</tr>
<tr>
<td>AlSb</td>
<td>B3</td>
<td>58.2</td>
<td>64.6</td>
<td>65.9</td>
<td>71.2</td>
<td>72.5</td>
<td>69.5</td>
<td>74.2</td>
<td>79.3</td>
<td>59.2</td>
<td>63.7</td>
<td></td>
</tr>
<tr>
<td>GaN</td>
<td>B3</td>
<td>213.7</td>
<td>204.1</td>
<td>212.3</td>
<td>230.6</td>
<td>199.2</td>
<td>197.5</td>
<td>219.0</td>
<td>243.1</td>
<td>177.6</td>
<td>174.7</td>
<td></td>
</tr>
<tr>
<td>GaP</td>
<td>B3</td>
<td>92.3</td>
<td>94.0</td>
<td>96.6</td>
<td>104.1</td>
<td>106.2</td>
<td>101.2</td>
<td>107.8</td>
<td>116.7</td>
<td>87.2</td>
<td>90.2</td>
<td></td>
</tr>
<tr>
<td>GaAs</td>
<td>B3</td>
<td>78.0</td>
<td>77.6</td>
<td>79.7</td>
<td>88.3</td>
<td>88.0</td>
<td>84.3</td>
<td>92.3</td>
<td>101.1</td>
<td>66.9</td>
<td>75.2</td>
<td></td>
</tr>
<tr>
<td>GaSb</td>
<td>B3</td>
<td>57.9</td>
<td>56.1</td>
<td>56.6</td>
<td>71.1</td>
<td>71.6</td>
<td>66.9</td>
<td>54.3</td>
<td>52.9</td>
<td>53.1</td>
<td>60.5</td>
<td></td>
</tr>
<tr>
<td>InP</td>
<td>B3</td>
<td>72.0</td>
<td>75.5</td>
<td>77.3</td>
<td>84.8</td>
<td>87.4</td>
<td>81.9</td>
<td>89.0</td>
<td>90.3</td>
<td>71.3</td>
<td>74.8</td>
<td></td>
</tr>
<tr>
<td>InAs</td>
<td>B3</td>
<td>58.6</td>
<td>64.0</td>
<td>65.3</td>
<td>73.7</td>
<td>74.9</td>
<td>70.6</td>
<td>77.0</td>
<td>85.2</td>
<td>52.4</td>
<td>62.8</td>
<td></td>
</tr>
<tr>
<td>InSb</td>
<td>B3</td>
<td>46.1</td>
<td>51.8</td>
<td>52.4</td>
<td>60.9</td>
<td>62.6</td>
<td>58.1</td>
<td>64.0</td>
<td>70.1</td>
<td>40.2</td>
<td>51.2</td>
<td></td>
</tr>
<tr>
<td>ZnS</td>
<td>B3</td>
<td>75.0</td>
<td>82.7</td>
<td>81.7</td>
<td>86.6</td>
<td>84.1</td>
<td>83.2</td>
<td>88.4</td>
<td>95.2</td>
<td>76.9</td>
<td>85.4</td>
<td></td>
</tr>
<tr>
<td>ZnSe</td>
<td>B3</td>
<td>65.9</td>
<td>70.4</td>
<td>68.8</td>
<td>74.3</td>
<td>71.6</td>
<td>69.1</td>
<td>76.8</td>
<td>82.4</td>
<td>61.6</td>
<td>68.6</td>
<td></td>
</tr>
<tr>
<td>ZnTe</td>
<td>B3</td>
<td>52.8</td>
<td>54.3</td>
<td>52.6</td>
<td>58.4</td>
<td>56.2</td>
<td>53.4</td>
<td>60.7</td>
<td>65.0</td>
<td>43.4</td>
<td>51.7</td>
<td></td>
</tr>
<tr>
<td>CdTe</td>
<td>B3</td>
<td>45.0</td>
<td>45.1</td>
<td>43.6</td>
<td>48.6</td>
<td>48.2</td>
<td>45.3</td>
<td>50.7</td>
<td>55.1</td>
<td>36.3</td>
<td>45.2</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>B1</td>
<td>78.9</td>
<td>64.0</td>
<td>64.8</td>
<td>65.3</td>
<td>66.8</td>
<td>64.4</td>
<td>67.1</td>
<td>70.6</td>
<td>67.5</td>
<td>63.7</td>
<td></td>
</tr>
<tr>
<td>LiF</td>
<td>B1</td>
<td>36.3</td>
<td>81.1</td>
<td>79.3</td>
<td>74.8</td>
<td>74.0</td>
<td>69.5</td>
<td>74.0</td>
<td>83.3</td>
<td>69.2</td>
<td>73.6</td>
<td></td>
</tr>
<tr>
<td>LiCl</td>
<td>B1</td>
<td>38.2</td>
<td>37.4</td>
<td>36.1</td>
<td>32.6</td>
<td>38.5</td>
<td>33.1</td>
<td>36.8</td>
<td>39.9</td>
<td>35.6</td>
<td>30.7</td>
<td></td>
</tr>
<tr>
<td>NaF</td>
<td>B1</td>
<td>53.1</td>
<td>57.4</td>
<td>55.6</td>
<td>54.5</td>
<td>67.2</td>
<td>59.5</td>
<td>53.5</td>
<td>58.5</td>
<td>54.8</td>
<td>45.9</td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td>B1</td>
<td>27.6</td>
<td>27.8</td>
<td>27.0</td>
<td>25.3</td>
<td>32.0</td>
<td>29.4</td>
<td>27.0</td>
<td>20.7</td>
<td>27.2</td>
<td>29.8</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>B1</td>
<td>169.8</td>
<td>178.5</td>
<td>182.9</td>
<td>177.7</td>
<td>167.6</td>
<td>170.4</td>
<td>179.6</td>
<td>193.2</td>
<td>170.4</td>
<td>150.7</td>
<td></td>
</tr>
<tr>
<td>SrTiO3</td>
<td>B21</td>
<td>170.0</td>
<td>207.4</td>
<td>209.1</td>
<td>206.3</td>
<td>190.0</td>
<td>192.0</td>
<td>205.9</td>
<td>239.9</td>
<td>183.9</td>
<td>206.2</td>
<td></td>
</tr>
</tbody>
</table>

9
<table>
<thead>
<tr>
<th>System</th>
<th>Symmetry</th>
<th>E_g (eV)</th>
<th>HF</th>
<th>LDA</th>
<th>PBE</th>
<th>PBEsol</th>
<th>B97</th>
<th>B3LYP</th>
<th>PBE0</th>
<th>PBEsol0</th>
<th>HSE06</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>A4</td>
<td>5.49</td>
<td>12.37</td>
<td>4.20</td>
<td>4.14</td>
<td>4.05</td>
<td>5.74</td>
<td>5.01</td>
<td>6.00</td>
<td>5.94</td>
<td>5.35</td>
</tr>
<tr>
<td>Si</td>
<td>A4</td>
<td>0.74</td>
<td>5.33</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.37</td>
<td>0.00</td>
<td>1.05</td>
<td>1.24</td>
<td>0.64</td>
</tr>
<tr>
<td>Ge</td>
<td>B3</td>
<td>2.42</td>
<td>8.51</td>
<td>1.38</td>
<td>1.46</td>
<td>1.32</td>
<td>2.80</td>
<td>3.00</td>
<td>2.04</td>
<td>2.85</td>
<td>2.30</td>
</tr>
<tr>
<td>SiC</td>
<td>B3</td>
<td>6.36</td>
<td>13.60</td>
<td>4.42</td>
<td>4.49</td>
<td>4.32</td>
<td>6.36</td>
<td>6.51</td>
<td>6.33</td>
<td>6.42</td>
<td>5.84</td>
</tr>
<tr>
<td>BN</td>
<td>B3</td>
<td>2.40</td>
<td>7.79</td>
<td>1.31</td>
<td>1.30</td>
<td>1.27</td>
<td>2.63</td>
<td>2.76</td>
<td>2.73</td>
<td>2.65</td>
<td>2.10</td>
</tr>
<tr>
<td>BP</td>
<td>B3</td>
<td>1.46</td>
<td>7.17</td>
<td>1.13</td>
<td>1.24</td>
<td>1.12</td>
<td>2.28</td>
<td>2.64</td>
<td>2.47</td>
<td>2.28</td>
<td>1.88</td>
</tr>
<tr>
<td>BAs</td>
<td>B3</td>
<td>2.49</td>
<td>8.07</td>
<td>1.57</td>
<td>1.84</td>
<td>1.63</td>
<td>3.10</td>
<td>3.18</td>
<td>3.16</td>
<td>3.01</td>
<td>2.51</td>
</tr>
<tr>
<td>AlP</td>
<td>B3</td>
<td>2.23</td>
<td>7.78</td>
<td>2.24</td>
<td>1.75</td>
<td>1.96</td>
<td>2.05</td>
<td>3.01</td>
<td>3.01</td>
<td>2.87</td>
<td>2.38</td>
</tr>
<tr>
<td>AlAs</td>
<td>B3</td>
<td>1.69</td>
<td>6.73</td>
<td>1.20</td>
<td>1.31</td>
<td>1.25</td>
<td>2.36</td>
<td>2.23</td>
<td>2.50</td>
<td>2.40</td>
<td>1.92</td>
</tr>
<tr>
<td>AlSb</td>
<td>B3</td>
<td>3.30</td>
<td>10.39</td>
<td>1.92</td>
<td>1.55</td>
<td>1.70</td>
<td>3.24</td>
<td>3.11</td>
<td>3.62</td>
<td>3.73</td>
<td>2.99</td>
</tr>
<tr>
<td>GaN</td>
<td>B3</td>
<td>2.35</td>
<td>7.65</td>
<td>1.57</td>
<td>1.67</td>
<td>1.66</td>
<td>2.83</td>
<td>2.53</td>
<td>3.08</td>
<td>2.91</td>
<td>2.46</td>
</tr>
<tr>
<td>GaP</td>
<td>B3</td>
<td>1.52</td>
<td>6.61</td>
<td>0.43</td>
<td>0.19</td>
<td>0.42</td>
<td>1.25</td>
<td>0.82</td>
<td>1.73</td>
<td>1.67</td>
<td>0.79</td>
</tr>
<tr>
<td>GaAs</td>
<td>B3</td>
<td>0.81</td>
<td>5.73</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>0.68</td>
<td>0.28</td>
<td>1.22</td>
<td>1.20</td>
<td>0.79</td>
</tr>
<tr>
<td>GaSb</td>
<td>B3</td>
<td>1.42</td>
<td>7.04</td>
<td>0.81</td>
<td>0.67</td>
<td>0.82</td>
<td>1.72</td>
<td>1.28</td>
<td>2.18</td>
<td>2.25</td>
<td>1.66</td>
</tr>
<tr>
<td>InP</td>
<td>B3</td>
<td>0.41</td>
<td>5.39</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.45</td>
<td>0.00</td>
<td>0.96</td>
<td>0.94</td>
<td>0.45</td>
</tr>
<tr>
<td>InAs</td>
<td>B3</td>
<td>0.23</td>
<td>5.21</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.28</td>
<td>0.00</td>
<td>0.75</td>
<td>0.88</td>
<td>0.35</td>
</tr>
<tr>
<td>InSb</td>
<td>B3</td>
<td>3.84</td>
<td>9.75</td>
<td>2.20</td>
<td>2.12</td>
<td>2.12</td>
<td>3.00</td>
<td>3.28</td>
<td>4.00</td>
<td>4.02</td>
<td>3.39</td>
</tr>
<tr>
<td>ZnS</td>
<td>B3</td>
<td>2.82</td>
<td>8.41</td>
<td>1.21</td>
<td>1.18</td>
<td>1.24</td>
<td>2.58</td>
<td>2.25</td>
<td>2.91</td>
<td>2.93</td>
<td>2.35</td>
</tr>
<tr>
<td>ZnSe</td>
<td>B3</td>
<td>2.30</td>
<td>7.03</td>
<td>1.77</td>
<td>1.12</td>
<td>1.36</td>
<td>2.36</td>
<td>2.01</td>
<td>2.77</td>
<td>2.86</td>
<td>2.22</td>
</tr>
<tr>
<td>ZnTe</td>
<td>B3</td>
<td>1.61</td>
<td>6.85</td>
<td>0.61</td>
<td>0.62</td>
<td>0.67</td>
<td>1.69</td>
<td>1.42</td>
<td>2.03</td>
<td>2.04</td>
<td>1.57</td>
</tr>
<tr>
<td>MgS</td>
<td>B1</td>
<td>5.40</td>
<td>11.33</td>
<td>3.85</td>
<td>3.90</td>
<td>3.85</td>
<td>5.48</td>
<td>5.25</td>
<td>5.89</td>
<td>5.75</td>
<td>5.11</td>
</tr>
<tr>
<td>LiF</td>
<td>B1</td>
<td>14.20</td>
<td>22.46</td>
<td>9.07</td>
<td>9.36</td>
<td>9.44</td>
<td>12.05</td>
<td>12.04</td>
<td>12.67</td>
<td>12.83</td>
<td>11.89</td>
</tr>
<tr>
<td>LiCl</td>
<td>B1</td>
<td>9.40</td>
<td>15.06</td>
<td>6.75</td>
<td>6.48</td>
<td>6.55</td>
<td>8.31</td>
<td>8.17</td>
<td>8.75</td>
<td>8.79</td>
<td>8.00</td>
</tr>
<tr>
<td>NaF</td>
<td>B1</td>
<td>11.50</td>
<td>21.22</td>
<td>8.51</td>
<td>8.60</td>
<td>8.39</td>
<td>11.23</td>
<td>11.02</td>
<td>11.74</td>
<td>11.73</td>
<td>10.96</td>
</tr>
<tr>
<td>NaCl</td>
<td>B1</td>
<td>8.97</td>
<td>14.56</td>
<td>5.57</td>
<td>5.73</td>
<td>5.67</td>
<td>7.98</td>
<td>7.37</td>
<td>7.95</td>
<td>7.89</td>
<td>7.20</td>
</tr>
<tr>
<td>MgO</td>
<td>B1</td>
<td>7.80</td>
<td>15.79</td>
<td>5.05</td>
<td>4.45</td>
<td>4.61</td>
<td>6.74</td>
<td>6.80</td>
<td>7.30</td>
<td>7.37</td>
<td>6.51</td>
</tr>
<tr>
<td>SrTiO3</td>
<td>E21</td>
<td>3.25</td>
<td>11.76</td>
<td>1.73</td>
<td>1.72</td>
<td>1.73</td>
<td>3.46</td>
<td>3.25</td>
<td>3.82</td>
<td>3.95</td>
<td>3.06</td>
</tr>
</tbody>
</table>
Table 6: Reference data for band gaps (eV), continued.

<table>
<thead>
<tr>
<th>System</th>
<th>Symmetry</th>
<th>Exp.</th>
<th>HSEsol</th>
<th>HISS</th>
<th>RSHXLD</th>
<th>AwB97</th>
<th>AwB97X</th>
<th>LC-wP BE</th>
<th>LC-wP BESol</th>
<th>M06-L</th>
<th>M06</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>A4</td>
<td>5.49</td>
<td>5.20</td>
<td>6.05</td>
<td>10.93</td>
<td>10.66</td>
<td>10.29</td>
<td>10.52</td>
<td>11.96</td>
<td>4.73</td>
<td>6.42</td>
</tr>
<tr>
<td>Si</td>
<td>A4</td>
<td>1.17</td>
<td>1.16</td>
<td>1.50</td>
<td>5.52</td>
<td>5.48</td>
<td>5.21</td>
<td>5.14</td>
<td>5.03</td>
<td>1.08</td>
<td>2.12</td>
</tr>
<tr>
<td>Ge</td>
<td>A4</td>
<td>0.74</td>
<td>0.76</td>
<td>1.12</td>
<td>4.96</td>
<td>4.67</td>
<td>4.10</td>
<td>4.74</td>
<td>5.27</td>
<td>0.16</td>
<td>0.47</td>
</tr>
<tr>
<td>SiC</td>
<td>B3</td>
<td>2.42</td>
<td>2.21</td>
<td>2.73</td>
<td>7.35</td>
<td>7.45</td>
<td>6.98</td>
<td>6.87</td>
<td>7.67</td>
<td>1.66</td>
<td>3.08</td>
</tr>
<tr>
<td>BN</td>
<td>B3</td>
<td>6.36</td>
<td>5.73</td>
<td>6.64</td>
<td>11.42</td>
<td>11.45</td>
<td>11.01</td>
<td>11.00</td>
<td>12.19</td>
<td>4.00</td>
<td>6.74</td>
</tr>
<tr>
<td>BP</td>
<td>B3</td>
<td>2.40</td>
<td>2.02</td>
<td>2.44</td>
<td>6.87</td>
<td>6.77</td>
<td>6.47</td>
<td>6.47</td>
<td>7.10</td>
<td>1.79</td>
<td>3.08</td>
</tr>
<tr>
<td>BAs</td>
<td>B3</td>
<td>1.46</td>
<td>1.79</td>
<td>2.15</td>
<td>6.36</td>
<td>6.21</td>
<td>6.01</td>
<td>6.00</td>
<td>6.55</td>
<td>1.52</td>
<td>2.57</td>
</tr>
<tr>
<td>AlP</td>
<td>B3</td>
<td>2.49</td>
<td>2.36</td>
<td>2.78</td>
<td>7.23</td>
<td>7.25</td>
<td>6.91</td>
<td>6.83</td>
<td>7.34</td>
<td>2.18</td>
<td>3.16</td>
</tr>
<tr>
<td>AlAs</td>
<td>B3</td>
<td>2.23</td>
<td>2.24</td>
<td>2.63</td>
<td>6.87</td>
<td>6.82</td>
<td>6.56</td>
<td>6.49</td>
<td>6.99</td>
<td>2.11</td>
<td>3.02</td>
</tr>
<tr>
<td>AlSb</td>
<td>B3</td>
<td>1.69</td>
<td>1.81</td>
<td>2.12</td>
<td>6.14</td>
<td>5.89</td>
<td>5.67</td>
<td>5.70</td>
<td>6.21</td>
<td>1.52</td>
<td>2.25</td>
</tr>
<tr>
<td>GaN</td>
<td>B3</td>
<td>3.30</td>
<td>3.00</td>
<td>4.06</td>
<td>8.80</td>
<td>8.17</td>
<td>7.69</td>
<td>8.40</td>
<td>10.00</td>
<td>1.00</td>
<td>3.72</td>
</tr>
<tr>
<td>GaP</td>
<td>B3</td>
<td>2.35</td>
<td>2.30</td>
<td>2.70</td>
<td>6.86</td>
<td>6.89</td>
<td>6.60</td>
<td>6.60</td>
<td>7.03</td>
<td>2.20</td>
<td>2.71</td>
</tr>
<tr>
<td>GaAs</td>
<td>B3</td>
<td>1.52</td>
<td>1.41</td>
<td>1.93</td>
<td>5.38</td>
<td>5.45</td>
<td>4.91</td>
<td>5.83</td>
<td>6.49</td>
<td>0.90</td>
<td>1.29</td>
</tr>
<tr>
<td>GaSb</td>
<td>B3</td>
<td>0.81</td>
<td>0.96</td>
<td>1.37</td>
<td>4.66</td>
<td>4.72</td>
<td>4.22</td>
<td>5.08</td>
<td>5.63</td>
<td>0.30</td>
<td>0.85</td>
</tr>
<tr>
<td>InP</td>
<td>B3</td>
<td>1.42</td>
<td>1.73</td>
<td>2.27</td>
<td>6.10</td>
<td>6.41</td>
<td>5.71</td>
<td>6.40</td>
<td>6.99</td>
<td>1.46</td>
<td>1.76</td>
</tr>
<tr>
<td>InAs</td>
<td>B3</td>
<td>0.41</td>
<td>0.53</td>
<td>0.99</td>
<td>4.23</td>
<td>4.26</td>
<td>3.89</td>
<td>4.81</td>
<td>5.38</td>
<td>0.17</td>
<td>0.64</td>
</tr>
<tr>
<td>InSb</td>
<td>B3</td>
<td>0.23</td>
<td>0.48</td>
<td>0.85</td>
<td>4.03</td>
<td>4.14</td>
<td>3.68</td>
<td>4.65</td>
<td>5.20</td>
<td>0.00</td>
<td>0.48</td>
</tr>
<tr>
<td>ZnS</td>
<td>B3</td>
<td>3.84</td>
<td>3.42</td>
<td>4.14</td>
<td>8.34</td>
<td>8.27</td>
<td>7.74</td>
<td>8.38</td>
<td>9.42</td>
<td>2.81</td>
<td>3.67</td>
</tr>
<tr>
<td>ZnSe</td>
<td>B3</td>
<td>2.82</td>
<td>2.37</td>
<td>3.00</td>
<td>6.81</td>
<td>6.74</td>
<td>6.38</td>
<td>7.00</td>
<td>7.95</td>
<td>1.83</td>
<td>2.74</td>
</tr>
<tr>
<td>ZnTe</td>
<td>B3</td>
<td>2.39</td>
<td>2.31</td>
<td>2.81</td>
<td>6.50</td>
<td>6.38</td>
<td>6.02</td>
<td>6.88</td>
<td>7.60</td>
<td>1.49</td>
<td>2.39</td>
</tr>
<tr>
<td>CdTe</td>
<td>B3</td>
<td>1.61</td>
<td>1.59</td>
<td>2.05</td>
<td>5.28</td>
<td>5.29</td>
<td>4.98</td>
<td>5.87</td>
<td>6.51</td>
<td>0.94</td>
<td>1.65</td>
</tr>
<tr>
<td>MgS</td>
<td>B1</td>
<td>5.40</td>
<td>5.06</td>
<td>5.68</td>
<td>10.33</td>
<td>10.65</td>
<td>9.80</td>
<td>10.03</td>
<td>10.64</td>
<td>4.63</td>
<td>5.73</td>
</tr>
<tr>
<td>LiF</td>
<td>B1</td>
<td>14.20</td>
<td>12.05</td>
<td>13.41</td>
<td>18.10</td>
<td>17.28</td>
<td>16.91</td>
<td>17.71</td>
<td>20.11</td>
<td>10.23</td>
<td>12.46</td>
</tr>
<tr>
<td>NaF</td>
<td>B1</td>
<td>11.50</td>
<td>10.96</td>
<td>12.38</td>
<td>16.98</td>
<td>16.52</td>
<td>16.19</td>
<td>17.00</td>
<td>18.94</td>
<td>10.10</td>
<td>11.83</td>
</tr>
<tr>
<td>NaCl</td>
<td>B1</td>
<td>8.97</td>
<td>7.15</td>
<td>8.10</td>
<td>12.70</td>
<td>12.56</td>
<td>12.13</td>
<td>12.80</td>
<td>13.08</td>
<td>7.24</td>
<td>8.15</td>
</tr>
<tr>
<td>MgO</td>
<td>B1</td>
<td>7.80</td>
<td>6.68</td>
<td>7.94</td>
<td>12.67</td>
<td>11.92</td>
<td>11.49</td>
<td>12.00</td>
<td>14.31</td>
<td>5.23</td>
<td>7.29</td>
</tr>
<tr>
<td>SrTiO3</td>
<td>E21</td>
<td>3.25</td>
<td>3.16</td>
<td>3.06</td>
<td>8.34</td>
<td>7.98</td>
<td>7.69</td>
<td>8.26</td>
<td>9.64</td>
<td>2.47</td>
<td>4.12</td>
</tr>
</tbody>
</table>
Table 7: Validation data for lattice constants (Å).

<table>
<thead>
<tr>
<th>System</th>
<th>Symmetry</th>
<th>Exp.</th>
<th>HF</th>
<th>LDA</th>
<th>PBE</th>
<th>PBEsol</th>
<th>B97</th>
<th>BSLY P</th>
<th>PBE0</th>
<th>PBEsol0</th>
<th>HSE06</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdS</td>
<td>B3</td>
<td>5.608</td>
<td>6.043</td>
<td>5.767</td>
<td>5.948</td>
<td>5.844</td>
<td>5.961</td>
<td>5.986</td>
<td>5.908</td>
<td>5.830</td>
<td>5.923</td>
</tr>
<tr>
<td>MgSe</td>
<td>B1</td>
<td>5.375</td>
<td>5.566</td>
<td>5.297</td>
<td>5.512</td>
<td>5.455</td>
<td>5.510</td>
<td>5.529</td>
<td>5.470</td>
<td>5.432</td>
<td>5.474</td>
</tr>
</tbody>
</table>

Table 8: Validation data for lattice constants (Å), continued.

<table>
<thead>
<tr>
<th>System</th>
<th>Symmetry</th>
<th>Exp.</th>
<th>HSeSol</th>
<th>HISS</th>
<th>RSHX</th>
<th>LDA</th>
<th>RSHX LDA</th>
<th>wB97</th>
<th>wB97X</th>
<th>LCwPBE</th>
<th>LCwPBEsol</th>
<th>M06-L</th>
<th>M06</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdS</td>
<td>B3</td>
<td>5.808</td>
<td>5.833</td>
<td>5.806</td>
<td>5.830</td>
<td>5.865</td>
<td>5.892</td>
<td>5.819</td>
<td>5.768</td>
<td>5.944</td>
<td>5.897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgSe</td>
<td>B1</td>
<td>5.275</td>
<td>5.435</td>
<td>5.522</td>
<td>5.428</td>
<td>5.508</td>
<td>5.507</td>
<td>5.414</td>
<td>5.384</td>
<td>5.492</td>
<td>5.509</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9: Validation data for band gaps (eV).

<table>
<thead>
<tr>
<th>System</th>
<th>Symmetry</th>
<th>Exp.</th>
<th>HF</th>
<th>LDA</th>
<th>PBE</th>
<th>PBEsol</th>
<th>B97</th>
<th>B97LY P</th>
<th>PBE0</th>
<th>PBEsol0</th>
<th>HSE06</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlN</td>
<td>B3</td>
<td>5.34</td>
<td>12.14</td>
<td>3.37</td>
<td>3.45</td>
<td>3.31</td>
<td>5.22</td>
<td>5.35</td>
<td>5.29</td>
<td>5.30</td>
<td>4.70</td>
</tr>
<tr>
<td>CdS</td>
<td>B3</td>
<td>2.78</td>
<td>8.36</td>
<td>1.02</td>
<td>1.10</td>
<td>1.09</td>
<td>2.46</td>
<td>2.24</td>
<td>2.79</td>
<td>2.72</td>
<td>2.17</td>
</tr>
<tr>
<td>CdSe</td>
<td>B3</td>
<td>1.83</td>
<td>7.12</td>
<td>0.34</td>
<td>0.48</td>
<td>0.45</td>
<td>1.68</td>
<td>1.42</td>
<td>1.97</td>
<td>1.91</td>
<td>1.45</td>
</tr>
<tr>
<td>MgSe</td>
<td>B1</td>
<td>2.24</td>
<td>8.29</td>
<td>1.64</td>
<td>1.71</td>
<td>1.71</td>
<td>3.07</td>
<td>2.98</td>
<td>3.23</td>
<td>3.32</td>
<td>2.62</td>
</tr>
<tr>
<td>MgTe</td>
<td>B1</td>
<td>3.00</td>
<td>9.60</td>
<td>3.01</td>
<td>2.92</td>
<td>2.99</td>
<td>4.24</td>
<td>4.06</td>
<td>4.54</td>
<td>4.39</td>
<td>3.08</td>
</tr>
<tr>
<td>BaS</td>
<td>B1</td>
<td>3.88</td>
<td>9.20</td>
<td>1.90</td>
<td>2.26</td>
<td>2.15</td>
<td>3.80</td>
<td>3.75</td>
<td>3.05</td>
<td>3.75</td>
<td>3.36</td>
</tr>
<tr>
<td>BaSe</td>
<td>B1</td>
<td>3.58</td>
<td>8.67</td>
<td>1.69</td>
<td>2.05</td>
<td>1.83</td>
<td>3.42</td>
<td>3.36</td>
<td>3.51</td>
<td>3.33</td>
<td>2.85</td>
</tr>
<tr>
<td>BaTe</td>
<td>B1</td>
<td>3.08</td>
<td>8.01</td>
<td>1.41</td>
<td>1.80</td>
<td>1.56</td>
<td>3.06</td>
<td>3.05</td>
<td>3.12</td>
<td>2.93</td>
<td>2.49</td>
</tr>
<tr>
<td>LiH</td>
<td>B1</td>
<td>4.94</td>
<td>11.02</td>
<td>2.62</td>
<td>3.10</td>
<td>2.84</td>
<td>4.78</td>
<td>4.85</td>
<td>4.76</td>
<td>4.57</td>
<td>4.10</td>
</tr>
</tbody>
</table>
Table 10: Validation data for band gaps (eV), continued.

<table>
<thead>
<tr>
<th>System</th>
<th>Symmetry</th>
<th>Exp.</th>
<th>HSE Esol</th>
<th>HISS</th>
<th>RSHXLD</th>
<th>wB97</th>
<th>wB97X</th>
<th>LC-wPBE</th>
<th>LC-wPBEsol</th>
<th>M06-L</th>
<th>M06</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlN</td>
<td>B3</td>
<td>5.24</td>
<td>4.61</td>
<td>5.41</td>
<td>10.24</td>
<td>10.28</td>
<td>9.80</td>
<td>9.72</td>
<td>10.00</td>
<td>3.77</td>
<td>5.80</td>
</tr>
<tr>
<td>CdS</td>
<td>B3</td>
<td>2.58</td>
<td>2.13</td>
<td>2.78</td>
<td>6.99</td>
<td>6.78</td>
<td>6.34</td>
<td>7.11</td>
<td>7.85</td>
<td>1.63</td>
<td>2.43</td>
</tr>
<tr>
<td>CdSe</td>
<td>B3</td>
<td>1.85</td>
<td>1.41</td>
<td>1.98</td>
<td>5.71</td>
<td>5.73</td>
<td>4.96</td>
<td>5.03</td>
<td>6.77</td>
<td>0.98</td>
<td>1.74</td>
</tr>
<tr>
<td>MgSe</td>
<td>B1</td>
<td>2.47</td>
<td>2.62</td>
<td>3.09</td>
<td>7.49</td>
<td>7.36</td>
<td>7.21</td>
<td>7.46</td>
<td>8.22</td>
<td>2.48</td>
<td>3.51</td>
</tr>
<tr>
<td>MgTe</td>
<td>B1</td>
<td>3.00</td>
<td>4.03</td>
<td>4.56</td>
<td>8.53</td>
<td>8.34</td>
<td>7.98</td>
<td>8.55</td>
<td>9.30</td>
<td>3.78</td>
<td>4.71</td>
</tr>
<tr>
<td>BaS</td>
<td>B1</td>
<td>3.88</td>
<td>3.08</td>
<td>3.66</td>
<td>8.21</td>
<td>7.02</td>
<td>7.08</td>
<td>8.07</td>
<td>8.55</td>
<td>2.61</td>
<td>3.71</td>
</tr>
<tr>
<td>BaSe</td>
<td>B1</td>
<td>3.58</td>
<td>2.68</td>
<td>3.18</td>
<td>7.62</td>
<td>7.34</td>
<td>7.15</td>
<td>7.42</td>
<td>7.87</td>
<td>2.26</td>
<td>3.45</td>
</tr>
<tr>
<td>BaTe</td>
<td>B1</td>
<td>3.08</td>
<td>2.30</td>
<td>2.75</td>
<td>7.10</td>
<td>6.76</td>
<td>6.00</td>
<td>6.83</td>
<td>7.10</td>
<td>1.88</td>
<td>2.95</td>
</tr>
</tbody>
</table>

Table 11: Calibration and prediction uncertainty parameters for lattice constants (Å).

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>d^2</th>
<th>w^2(a)</th>
<th>w^2(b)</th>
<th>w(a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>0.265844</td>
<td>0.930312</td>
<td>0.002249</td>
<td>0.002848</td>
<td>0.000098</td>
<td>-0.000522</td>
</tr>
<tr>
<td>LDA</td>
<td>0.030841</td>
<td>1.000760</td>
<td>0.000744</td>
<td>0.001030</td>
<td>0.000038</td>
<td>-0.000194</td>
</tr>
<tr>
<td>PBE</td>
<td>0.092315</td>
<td>0.965792</td>
<td>0.000557</td>
<td>0.000754</td>
<td>0.000026</td>
<td>-0.000139</td>
</tr>
<tr>
<td>PBEsol</td>
<td>0.017136</td>
<td>0.992155</td>
<td>0.000222</td>
<td>0.000310</td>
<td>0.000011</td>
<td>-0.000058</td>
</tr>
<tr>
<td>B97</td>
<td>0.115161</td>
<td>0.961603</td>
<td>0.000553</td>
<td>0.000742</td>
<td>0.000026</td>
<td>-0.000137</td>
</tr>
<tr>
<td>B3LYP</td>
<td>0.177782</td>
<td>0.947511</td>
<td>0.000573</td>
<td>0.000750</td>
<td>0.000026</td>
<td>-0.000138</td>
</tr>
<tr>
<td>PBE0</td>
<td>0.081523</td>
<td>0.977020</td>
<td>0.000343</td>
<td>0.000466</td>
<td>0.000017</td>
<td>-0.000087</td>
</tr>
<tr>
<td>PBEsol0</td>
<td>0.054438</td>
<td>0.990608</td>
<td>0.000325</td>
<td>0.000392</td>
<td>0.000014</td>
<td>-0.000074</td>
</tr>
<tr>
<td>HSE06</td>
<td>0.090796</td>
<td>0.974474</td>
<td>0.000329</td>
<td>0.000446</td>
<td>0.000016</td>
<td>-0.000083</td>
</tr>
<tr>
<td>HSEsol</td>
<td>0.046161</td>
<td>0.991261</td>
<td>0.000166</td>
<td>0.000230</td>
<td>0.000008</td>
<td>-0.000043</td>
</tr>
<tr>
<td>HISS</td>
<td>0.063423</td>
<td>0.985647</td>
<td>0.000441</td>
<td>0.000603</td>
<td>0.000022</td>
<td>-0.000113</td>
</tr>
<tr>
<td>RSHXLD</td>
<td>-0.033043</td>
<td>1.008890</td>
<td>0.001498</td>
<td>0.002125</td>
<td>0.00077</td>
<td>-0.000399</td>
</tr>
<tr>
<td>wB97</td>
<td>-0.045111</td>
<td>1.003750</td>
<td>0.000753</td>
<td>0.001073</td>
<td>0.000038</td>
<td>-0.000200</td>
</tr>
<tr>
<td>wB97X</td>
<td>-0.014397</td>
<td>0.985027</td>
<td>0.000989</td>
<td>0.001378</td>
<td>0.000049</td>
<td>-0.000256</td>
</tr>
<tr>
<td>LC-wPBE</td>
<td>-0.087521</td>
<td>1.020460</td>
<td>0.001154</td>
<td>0.001670</td>
<td>0.000661</td>
<td>-0.000314</td>
</tr>
<tr>
<td>LC-wPBEsol</td>
<td>-0.068626</td>
<td>1.025370</td>
<td>0.001005</td>
<td>0.001444</td>
<td>0.00053</td>
<td>-0.000274</td>
</tr>
<tr>
<td>M06-L</td>
<td>0.225104</td>
<td>0.944739</td>
<td>0.001756</td>
<td>0.002258</td>
<td>0.000079</td>
<td>-0.000417</td>
</tr>
<tr>
<td>M06</td>
<td>0.101464</td>
<td>0.969896</td>
<td>0.001686</td>
<td>0.002274</td>
<td>0.000080</td>
<td>-0.000421</td>
</tr>
</tbody>
</table>
Table 12: Calibration and prediction uncertainty parameters for bulk modulus (GPa).

<table>
<thead>
<tr>
<th>Method</th>
<th>a</th>
<th>b</th>
<th>d^2</th>
<th>$u^2(a)$</th>
<th>$u^2(b)$</th>
<th>$u(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>5.299730</td>
<td>0.907086</td>
<td>60.9892</td>
<td>5.14927</td>
<td>0.000184</td>
<td>-0.022823</td>
</tr>
<tr>
<td>LDA</td>
<td>-2.879920</td>
<td>0.991786</td>
<td>69.1134</td>
<td>6.27555</td>
<td>0.000248</td>
<td>-0.030138</td>
</tr>
<tr>
<td>PBE</td>
<td>5.744720</td>
<td>1.056710</td>
<td>70.3462</td>
<td>5.86778</td>
<td>0.000286</td>
<td>-0.030320</td>
</tr>
<tr>
<td>PBEsol</td>
<td>1.259210</td>
<td>1.025550</td>
<td>61.0518</td>
<td>5.36143</td>
<td>0.000236</td>
<td>-0.026757</td>
</tr>
<tr>
<td>B97</td>
<td>4.004020</td>
<td>1.026530</td>
<td>56.3024</td>
<td>4.83764</td>
<td>0.000219</td>
<td>-0.024232</td>
</tr>
<tr>
<td>B3LYP</td>
<td>6.673320</td>
<td>1.023960</td>
<td>64.8168</td>
<td>5.38080</td>
<td>0.000249</td>
<td>-0.026957</td>
</tr>
<tr>
<td>PBE0</td>
<td>2.248060</td>
<td>0.976575</td>
<td>48.8665</td>
<td>4.31274</td>
<td>0.000173</td>
<td>-0.020508</td>
</tr>
<tr>
<td>PBEsol0</td>
<td>-0.829878</td>
<td>0.959953</td>
<td>50.2026</td>
<td>4.55636</td>
<td>0.000172</td>
<td>-0.021222</td>
</tr>
<tr>
<td>HSE06</td>
<td>2.902020</td>
<td>0.971835</td>
<td>49.6329</td>
<td>4.34764</td>
<td>0.000171</td>
<td>-0.020722</td>
</tr>
<tr>
<td>HSEsol</td>
<td>0.188090</td>
<td>0.959255</td>
<td>51.0952</td>
<td>4.58604</td>
<td>0.000174</td>
<td>-0.021372</td>
</tr>
<tr>
<td>HISS</td>
<td>2.367750</td>
<td>0.920349</td>
<td>44.2389</td>
<td>3.92973</td>
<td>0.000141</td>
<td>-0.017610</td>
</tr>
<tr>
<td>RSHXLD A</td>
<td>-4.090890</td>
<td>0.948504</td>
<td>59.9397</td>
<td>5.55014</td>
<td>0.000198</td>
<td>-0.025438</td>
</tr>
<tr>
<td>wB97</td>
<td>-10.665400</td>
<td>1.025490</td>
<td>87.1653</td>
<td>8.44242</td>
<td>0.000331</td>
<td>-0.041432</td>
</tr>
<tr>
<td>wB97X</td>
<td>-5.779100</td>
<td>1.009880</td>
<td>70.1773</td>
<td>6.54815</td>
<td>0.000261</td>
<td>-0.031886</td>
</tr>
<tr>
<td>LC-wPBE</td>
<td>-5.247850</td>
<td>0.940127</td>
<td>48.3836</td>
<td>4.31274</td>
<td>0.000173</td>
<td>-0.020508</td>
</tr>
<tr>
<td>LC-wPBEsol</td>
<td>-5.817900</td>
<td>0.878467</td>
<td>88.9413</td>
<td>8.21588</td>
<td>0.000248</td>
<td>-0.034823</td>
</tr>
<tr>
<td>M06-L</td>
<td>3.655850</td>
<td>1.006670</td>
<td>84.4851</td>
<td>7.13272</td>
<td>0.000310</td>
<td>-0.035067</td>
</tr>
<tr>
<td>M06</td>
<td>0.290985</td>
<td>1.005680</td>
<td>92.5850</td>
<td>8.04863</td>
<td>0.000337</td>
<td>-0.039392</td>
</tr>
</tbody>
</table>

Table 13: Calibration and prediction uncertainty parameters for band gaps (eV).

<table>
<thead>
<tr>
<th>Method</th>
<th>a</th>
<th>b</th>
<th>d^2</th>
<th>$u^2(a)$</th>
<th>$u^2(b)$</th>
<th>$u(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>-3.772960</td>
<td>0.769666</td>
<td>0.491559</td>
<td>0.104197</td>
<td>0.000884</td>
<td>-0.008753</td>
</tr>
<tr>
<td>LDA</td>
<td>0.500446</td>
<td>1.346620</td>
<td>0.217512</td>
<td>0.015008</td>
<td>0.001173</td>
<td>-0.002913</td>
</tr>
<tr>
<td>PBE</td>
<td>0.502391</td>
<td>1.384660</td>
<td>0.322265</td>
<td>0.022307</td>
<td>0.001852</td>
<td>-0.004471</td>
</tr>
<tr>
<td>PBEsol</td>
<td>0.503246</td>
<td>1.385130</td>
<td>0.209227</td>
<td>0.014420</td>
<td>0.001913</td>
<td>-0.002878</td>
</tr>
<tr>
<td>B97</td>
<td>-0.476155</td>
<td>1.141850</td>
<td>0.275901</td>
<td>0.025245</td>
<td>0.001074</td>
<td>-0.004066</td>
</tr>
<tr>
<td>B3LYP</td>
<td>-0.196524</td>
<td>1.107580</td>
<td>0.446166</td>
<td>0.037994</td>
<td>0.001656</td>
<td>-0.006044</td>
</tr>
<tr>
<td>PBE0</td>
<td>-0.818884</td>
<td>1.131900</td>
<td>0.163279</td>
<td>0.016354</td>
<td>0.000619</td>
<td>-0.002553</td>
</tr>
<tr>
<td>PBEsol0</td>
<td>-0.834921</td>
<td>1.135350</td>
<td>0.129007</td>
<td>0.012141</td>
<td>0.000459</td>
<td>-0.001894</td>
</tr>
<tr>
<td>HSE06</td>
<td>-0.292955</td>
<td>1.166900</td>
<td>0.189684</td>
<td>0.016416</td>
<td>0.000766</td>
<td>-0.002718</td>
</tr>
<tr>
<td>HSEsol</td>
<td>-0.268050</td>
<td>1.167400</td>
<td>0.114798</td>
<td>0.009836</td>
<td>0.000462</td>
<td>-0.001627</td>
</tr>
<tr>
<td>HISS</td>
<td>-0.593722</td>
<td>1.006400</td>
<td>0.136763</td>
<td>0.012853</td>
<td>0.000458</td>
<td>-0.001911</td>
</tr>
<tr>
<td>RSHXLD A</td>
<td>-4.051670</td>
<td>0.947657</td>
<td>0.268522</td>
<td>0.059576</td>
<td>0.000720</td>
<td>-0.005998</td>
</tr>
<tr>
<td>wB97</td>
<td>-4.328140</td>
<td>0.998028</td>
<td>0.292030</td>
<td>0.068768</td>
<td>0.000870</td>
<td>-0.007123</td>
</tr>
<tr>
<td>wB97X</td>
<td>-3.909350</td>
<td>0.995743</td>
<td>0.316932</td>
<td>0.068420</td>
<td>0.000941</td>
<td>-0.007332</td>
</tr>
<tr>
<td>LC-wPBE</td>
<td>-4.312070</td>
<td>0.986559</td>
<td>0.182690</td>
<td>0.042622</td>
<td>0.000528</td>
<td>-0.004364</td>
</tr>
<tr>
<td>LC-wPBEsol</td>
<td>-4.174930</td>
<td>0.871636</td>
<td>0.274368</td>
<td>0.062503</td>
<td>0.000622</td>
<td>-0.005727</td>
</tr>
<tr>
<td>M06-L</td>
<td>0.166347</td>
<td>1.240360</td>
<td>0.312359</td>
<td>0.023821</td>
<td>0.001439</td>
<td>-0.004269</td>
</tr>
<tr>
<td>M06</td>
<td>-0.567563</td>
<td>1.093080</td>
<td>0.319148</td>
<td>0.030024</td>
<td>0.001143</td>
<td>-0.004613</td>
</tr>
</tbody>
</table>