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1 Introduction

There are two ways to use effective field theories (EFT), the bottom-up approach and
the top-down approach. To apply the first, we must distinguish between two scenarios:
a) there is no relevant theory at the energy scale under consideration, in which case one
has to construct a Lagrangian from the symmetries that are relevant at that scale, b)
there is already some EFT, e.g. Standard Model (SM) EFT or SMEFT, which represents
the physics in a region characterized by a cut-off parameter A. At higher energies, new
phenomena might show up and our EFT does not account for them.

In the top-down approach there is some theory, assumed to be ultraviolet (UV) com-
plete or valid on a given high energy scale (e.g. some BSM model), and the aim is to
implement a systematic procedure for getting the low-energy theory. A typical example
would be the Euler-Heisenberg Lagrangian. Systematic low-energy expansions are able to
obtain low-energy footprints of the high energy regime of the theory.



In the top-down approach the heavy fields are integrated out of the underlying high-
energy theory and the resulting effective action is then expanded in a series of local operator
terms. The bottom-up approach is constructed by completely removing the heavy fields, as
opposed to integrating them out; this removal is compensated by including any new non-
renormalizable interaction that may be required. If the UV theory is known, appropriate
matching calculations will follow.

In this work we will discuss the integration of heavy fields in a wide class of BSM
models, containing more that one representation for scalars, with the presence of mixing.
For early work on the subject, see refs. [1-3]. One problem in dealing with BSM models
is the absence of a well-defined hierarchy of scales, see ref. [4, 5] for a discussion. A
second problem, as observed in ref. [6], is that there are cases where the so-called covariant
derivative expansion [7—10] (CDE) does not reproduce all the local operators in the low-
energy sector.

In most BSM models, loop effects are certainly suppressed and the leading observable
consequences are those generated at tree level. However, considering projections for the
precision to be reached in LHC Run-II analysis, LO results for interpretations of the data
are challenged by consistency concerns and are not sufficient if the cut off scale is in the few
TeV range. Moving to the consistent inclusion of loop effects adds complexity but robustly
accommodates the precision projected to be achieved in Run-II analyses.

The aim of this paper is not to guess which is the UV completion of the SM chosen
by nature, but rather to present in a systematic way how the calculation of a (top-down)
EFT for any realistic model should be done.

The paper is organized as follows: in section 2 we present the general formalism. The
low energy behavior for the singlet extension of the SM is discussed in section 3 and the
THDM models on section 4.

2 General formalism

The most general Lagrangian that we have in mind contains, after mixing, n heavy scalar
fields (charged or neutral) and can be written as

h T I,
['BSM - [:SM + A['(4) +[’§1) ) £g) = Z Z Z le’llln Hll1 H}znil +h.c.,
i1=0  x=0  i,_1=0
(2.1)
where I, = h—iy— ... —i,_1. The term Ly,, is the SM Lagrangian and ALY contains light

fields only and it is proportional to non-SM couplings (i.e. corrections to SM-couplings, due
to the new interactions). Furthermore, F” is a function of the light fields with canonical
dimension 4 — h.

Specific examples for the terms in the Lagrangian of eq. (2.1) are: ®' &S, where ®
is the standard Higgs doublet and S is a singlet; of 7, ® T, where T is a scalar (real or
complex) triplet [11, 12]; of 7, ®° =1 t* X where Z is a zero hypercharge real triplet, X a
Y =1 complex triplet and ®° is the charge conjugate of ®, the so-called Georgi-Machacek
model, see ref. [13]. For a classification of CP even scalars according to their properties
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Figure 1. Example of mixed tree-loop-generated operator. Solid (red) lines denote heavy fields,
Blobs denote vertices with additional light lines.

under custodial symmetry see refs. [14, 15]. For a discussion on fingerprints of non-minimal
Higgs sectors, see ref. [16].

There are two sources of deviations with respect to the SM: new couplings and modified
couplings due to VEV mixings, heavy fields. In general, it is not simple to identify only
one scale for new physics (NP); it is relatively simple in the unbroken phase using weak
eigenstates but it becomes more complicated when EWSB is taken into account and one
works with the mass eigenstates. In the second case, one should also take into account that
there are relations among the parameters of the BSM model, typically coupling constants
can be expressed in terms of VEVs and masses; once the heavy scale has been introduced
also these relations should be consistently expanded. Briefly, the SM decoupling limit
cannot be obtained by making only assumptions about one parameter. This fact adds
additional operators to the SM that are not those caused by integrating out the heavy fields.

There are three reasons why published CDE results do not give the full result in explicit
form (e.g. see the O(®?) terms in eq. (2.7) of ref. [9]).

1. The functions F in eq. (2.1) may contain positive powers of the heavy scale, so that
terms of dimension greater than 2 in the heavy fields have been retained in our
functional integral (the linear terms as well).

2. The second reason is that there are mixed tree-loop-generated operators, see figure 1,
where we show a diagram that, after integration of the internal heavy lines and
contraction of the external heavy lines gives a contribution O(A_Q) (here Fy 3 oc A).

3. The third reason is that there are mixed loops, containing both light and heavy
particles.

In the following we will discuss the full derivation of the low-energy limit for the case of
one (neutral) heavy field, the generalization being straightforward. One important point is
that the request of having the heavy state H and small mixing with the light scalar implies
that the heavy mass is not equal to the heavy scale (the one controlling the expansion).



The former, My, is expressed in terms of A by

oo M2 n
n=0

with coefficients &; that depend on the model. Further, we define M to be the W bare mass.
We will show explicit examples in the following sections, e.g. in eq. (3.13). Therefore, we
write the Lagrangian as follows:

4
L=Ly+HO,H+Y F,H", (2.3)
n=1
where O, is the Klein-Gordon operator for the heavy field H. In this section we introduce
the Lagrangian and the full discussion of tadpoles is postponed until section 3.3.1. For
a complete analysis of tadpole terms we refere to ref. [24], in particular section (2.2) and
eq. (6). Therefore, without loss of generality, we assume the following behavior

Fi(z)=AFo(x)+A Fpy(2)+A 7 Fip(z),  Fy(z)=Fog(a)+A *Foy(x)+A " Foy(),
Fy(2)=AFs(z)+ A" Fyy (@) +A 7 Fag(z),  Fy(z)=Fy(x)+A > Fyy(z)+A " F(z),
2.4)

—

where A is the scale controlling the onset of new physics, not necessarily equal to the mass
of the heavy field. Furthermore, we have truncated the expansion at the right level to
derive dim = 6 operators and: dimF,,, = dimF,, =2(n + 1), dimF3, = dimF,,, = 2n.

Terms in A® H could be incorporated in F, but, usually, they arise as (tadpole) beta-
terms and their inclusion is postponed until eq. (3.20), extending eq. (2.4). Terms in
A% H? have a double origin, mass terms (from eq. (2.2)) that are kept in the KG operator
of eq. (2.3) and will be expanded only after loop integration and, once again, (tadpole)
beta-terms (see eq. (7) of ref. [24]) to be inserted and discussed in eq. (3.20).

Terms with negative powers of A in eq. (2.4) arise as a consequence of eq. (2.2), i.e.
My expanded in the part of the Lagrangian not containing Oy and of the corresponding
expansion of the mixing angle (see eq. (3.12) for an explicit example). Their field content
respects the renormalizability of the UV theory.

The integration of the heavy mode, H, gives an effective Lagrangian and results in
the addition of tree-generated, loop-generated, tree-loop-generated and mixed heavy-light
loop-generated operators. Actually there are two different ways to construct a low-energy
theory: one can integrate the heavy particles by diagrammatic methods, or use functional
methods; for both cases see ref. [17]. Our derivation is as follows: consider the functional
integral

4
1 1
W:/[DH} exp{i/d4$£H}, EH:—iauHa#H—iMEIHQ—i-ZFnH". (2.5)

n=1

Using standard algorithms we obtain

W:exp{i /d4yiFn(y) (—z'(SFl(y))n} /[DH] exp{i /dmg?}, (2.6)



where we have introduced a free Lagrangian with a source term for the heavy field,

o 1 1.9 9
Ly f—§6MH8MH—§MHH +F H, (2.7)
and the functional derivative 5
) = —. 2.8
P, (2) 3F(z) (28)

It is worth noting that eq. (2.6) is needed in order to reproduce mixed tree-loop-generated
operators. Using the well-known result

/[D H] exp{z' /d%ﬁﬁ))} — W, exp{—; /d%d% P (1) Ap (1 — v) Fl(v)} (2.9

where W, is the F; -independent normalization constant and Ag(z) is the Feynman prop-

1 4+ explip-z}
Ap(z) = /d —_—. 2.10
r(?) 2m)ti P g Zio (2.10)

agator,

The effective Lagrangian (up to order A_Q) becomes

1
W =W, exp{i /d%ﬁeﬁ}, Log =L+ 1672[,5&. (2.11)
T
The tree-generated Lagrangian becomes
1 _ 1 1
L= 3 & Flo+ A7 [F?O Fag + 3 &o (2 FioFoo—M?& F%O_a,uFlo 8MFm) +&5 Fyg F11}
0

(2.12)
It is worth noting that there are terms, e.g. those proportional to Fs, that are left implicit
in the published CDE results.

A construction of tree-generated vertices is shown in figure 2 where the result of func-
tional integration is seen from a different perspective, as a contraction of propagators inside
diagrams of the full theory. In eq. (2.4) we see why it is not enough to use the Lagrangian
truncated at O(H) to derive tree-generated operators; for instance, both F; and F3 start
at O(A) which is enough to compensate the My % from H propagators giving a result at
O(A™?), as shown in the third row of figure 2.

If we restrict to dim = 6 operators (i.e to order A_Q), loop-induced operators generated
by the functional integral belong to three different cases:

1. There are triangles with heavy, internal, lines (third row in figure 3); in the limit of
large internal (equal) masses, the corresponding loop integral gives

1 _
C}f:—gMHHO(MH"‘) . (2.13)
2. There are also bubbles (first row in figure 3); in the limit of large internal (equal)
masses, the corresponding loop integral gives
1 P? P

B, (PQ; ME Mﬁ) = By (My) — =~ +0 [ — |, (2.14)
6 My My



Figure 2. Example of tree-generated operators. Solid (red) lines denote heavy fields, dashed
(green) lines denote light fields. Blobs denote vertices with additional light lines.

with Boo(My) = Ag(My) + 1 and the (dimensionless) one-point function. A, is
defined in dimensional regularization by

" - 2 M,
gt ”/ﬂ:iWQAO(MH)Mﬁ:iWQMﬁ =t y+lnm—1+ln— |, (2.15)
q +My n—4 MR

where n is the space-time dimension, ~ is the Euler-Mascheroni constant and ug is
the renormalization scale.

3. Finally, there are tadpoles, as shown in the second row of figure 3. The treatment
of tadpoles, i.e. their cancellation, is model dependent. Here we present the list of
tadpoles and postpone discussing their cancellation until section 3.3.1. Therefore, in
writing Elfﬂ we split the Lagrangian into two parts: the one containing tadpoles and
the one without. Examples are shown in figure 4 for the h?z?2 operator: the left
diagram is a H tadpole while the right one is a genuine LG operator.

With the A power counting of eq. (2.4) and loop power counting of eq. (A.2) it is easily
seen that boxes of heavy lines start contributing only at O(A_4).



Figure 3. Example of loop-generated operators. Solid (red) lines denote heavy fields, blobs denote
vertices with additional light lines. The (black) bullet denotes a tadpole.

The F functions, defined in eq. (2.4), are polynomials in the light fields of the form

h h .
Fij =F,+ F;?St, where F;; = £;;h and “rest” contains two or more fields. The result,

split in non-tadpole (NT) and tadpole (T) contributions, is as follows

L 2 AL,2 1 Lo 1 L,
Legnt=8 A Legnr + ZZ Legnr T A Legnr (2.16)
0 0

Lognr=BoFog",

Legvr=—Boo (9 FLoF3o +6&)FigFog Fyg + & Fgo)
+6 A0 & Fro Fao + &5 Ay (51 MPF5 + & Fgeft) ;

Legnr=18 (1 —3Bgg) FyF3y (FioFag + & Fap)
+2&0 Boo [9M2 & o F3o — 3& FipFy (3F10 Fy +3F Fao — M2 ¢ on)
—3&5 (F19Foy Fag + FigFag Fay + Fyy Fag Fag) — & Fag FQl}
+6£5 (1—2Bgg) FigFag Fy (2.17)
—é &o [9 F3o 9, F190"F1g 468 Fg0 0, F190"Fy — & (4 Fi — 9,,Fa0 BNFQO)}
—680& Fig [MQ §&1F10F0 — & (FroFa +2Fy F40)}

—1260Bgo Fao Fio (3F 10 Fao+£0Fa0) +E0Ag [M2 <52M2F§%St +§1F§?St) +&o Fg%ﬂ ;



Figure 4. Example of loop-generated operators, Solid (red) lines denote the heavy field H, solid
and dashed (blue) lines denote light SM fields. Left figure shows a H tadpole to be canceled in the
B -scheme while right figure shows a genuine LG operator.

1
Lher =Ry AP L2 4+ = E +
T 0 [ eff T 60 effT 50 A2

L.2 h
Logr=3F19F30+ & Fy,
L0 2 2 2
Legt = 9FT) F3o + 6&0FigFag Fao + & (3 FioFs1 +3F 1 Fyp+ M7 & F ) +E&F 21 ,

L,—2
ﬁeﬁT :|

Logr. = 54Fj)F3, — 18 Fiy F <M2 £ —3 FQO)
+6 &5 [Flo (3 FiF30 Fy1 + 3Fy; Fig — M? & Fyy Fo + 2F5 FSO)
~F300,F1q a“FQO] (2.18)
+36 {2 Fio (Fo1 Fgo + Fog F31) +2F; Fog Fgg — 9, Fg 8MF31}
+& <3F10F32 +3F) Fyy +3F 1, Fag + M & Fog + M2 ¢, F}211> +& Fy .

We are still missing mixed loop contributions; they are clearly model dependent and will
be discussed in details in section 3. The results of egs. (2.17)—(2.18) form a basis of local
operators.

3 Low energy behavior for the singlet extension of the SM
The SM scalar field ® (with hypercharge 1/2) is defined by

1 [hy+v2v+ig¢°
V2 V2i¢~ ’
h, is the custodial singlet in (2;, ® 2g) = 1 @ 3. Charge conjugation gives ®; = Eij <I>3k.

3.1 Notations and conventions

The Lagrangian giving the singlet extension [18-22] of the SM (SESM) is
1
L=— (Ducp)TD“¢—8anﬂx—u§dﬁcpfu§xzf§>\2 (<I>T<I>> —= /\1x “Apre e, (3.2)

where the singlet field and the covariant derivative D,, are

1 i i
x:ﬁ(hﬁvs), DM:8M—§QBZTQ—599132, (3.3)



with g = —s_ /c, and where 1" are Pauli matrices while s _ (c ) is the sine(cosine) of the
weak-mixing angle. Furthermore

+ 1 1.2 3 0 3 0
W= (BLFiB.) . Zu=c,Bi-s, B, A,=s,Bitc B, (34
Fj,=0,B)—09,By+g, ¢ B, B, F,,=08,B)-9,B,. (3.5)
Here a,b,--- =1,...,3. Here, go = g(1 + g2I‘) where Gamma is fixed by the request

that the Z — y transition at zero momentum is zero (see section 3 of ref. [24]). Further, we
keep M as the W bare mass and add a new mass, M, which will play the role of cut-off
scale A. Also,
1 1
2 2 2 2 2 2
1\4:§gv7 Mszzg A (3.6)
In order to write eq. (3.2) in terms of mass eigenstates we introduce

1 2
R* = <)\2 vZ— B Ao V§> +2 (A\pvvy)? . (3.7)

The mixing angle « is defined in terms of sin(a) and cos(a) (s_,c_) by

o

h:CahQ—Sahl, H:Sah2+cahl’ (38)

1
sin(2a) = V2, vv R, cos(2a) = ()\2 V2 + 3 A v?) R, (3.9)

being h and H the fields related to the mass eigenvalues M; and Mp. Next, we can
eliminate pi1, o in eq. (3.2),
A A1g A12

A
po =22 M 272 M2 i =20 MP 22 M (3.10)

g 9 9 9

We keep A\; and A\, as free parameters and take the limit My — oo. Following ref. [23]
we will assume that the ratio of couplings is of the order of a perturbative coupling, i.e.
)\12/)\% < 1/2. First we eliminate Ay, in favor of the h mass

2
o My 2t3

2
1 1 o5 My »
Ay == g2 B e L e (9<M ) 3.11
2 49 M2+g +4g %M + S ( )

where A\, = t; ¢° and A;y = t3 g°. Similarly, we obtain the expansion for sin(a) and cos(«),

143 M? ty M ty 313\ M? 5
T iT 50 (M) W= AL [1+<t1 2t%> MSQ]JFO(MS ). (312)
Remark. The behavior of s_is not selected a priori but follows from the hierarchy
of VEVs. Additional suppression of the heavy mode can be imposed by requiring A5
92 M /My, i.e. this additional suppression of s_ is an independent condition. In any case, the
SM decoupling limit cannot be obtained by making only assumptions about one parameter.
We adopt the more conservative approach, considering the non-decoupling limit and A
as a free parameter of the effective theory.



Finally, the relation between the H mass and M, is
2 22
t3 M _
M2 = 44, M2 1+%—2+0(MS 4)} (3.13)
tl Ms

comparing with eq. (2.2), the £ parameters are defined by

2 2 842
t3 ty My
=4t =4-= == —. 3.14
‘SO 1 51 tl’ 52 t% M2 ( )
Assuming that My > M, we construct the corresponding low scale approximation of the
model [1, 2]. There are three options that will be discussed in the section 3.2, section 3.3
and section 3.6.

3.2 Integration of the weak eigenstate

Starting from eq. (3.2) we can construct a manifestly SU(2) x U(1) invariant low energy
Lagrangian by integrating out the field h; in the limit gy — oo. Note that, from eq. (3.10)
the difference between p; — co and My — oo is sub-leading in M. This is what has been
discussed in refs. [4, 23] and we only repeat the observation of refs. [23] that this approach
reproduces the effect of scalar mixing on interactions involving one Higgs scalar h, but fails
otherwise.

3.3 Integration of the mass eigenstate

In the limit A = M, — oo the structure of the calculation is more complex since the
Lagrangian is given by a power expansion even before integrating out the H field, see
eq. (2.3). In the following we will describe the steps that are needed to consistently perform
the limit.

3.3.1 Tadpoles

Unless the calculation of observables is performed at tree level, tadpoles should be intro-
duced and discussed. Their presence and the heavy-light mixing represent an additional
complication. For instance, in the full singlet extension we have H tadpoles and the re-
lations presented in section 3.1 must be modified. Thus, working in the S -scheme of
ref. [24], we write

AQ )\12 )‘1 2 /\12

po =22 M 272 M2+ B, pi=-200 M2 -272 M4 (3.15)
g g g g
Furthermore, we define expansions as follows:
e 0 o (M)
Bi=T BM,  Bi=5 +; 5; (MQ) : (3.16)

~10 -



Figure 5. Cancellation of tadpoles. Solid (red) lines denote the heavy H fields, solid (green) lines
denote the light h field. Black blobs denote a [ -vertex.

The H tadpoles are easily computed in the full theory, giving

M? (1 Mj _ IME 31\ M®
TH:—iWQnga[2M2+4+ 571;+3 M>&y(M)+ 1%+§T “ Ro(My)
Coy M M cw | Cw
1 9 9 c, S, 59—
+Z Ca (2Mh +MH> M2 + MM Mh AO(Mh)+
S
3Mﬁ s 3 9 — ¢
-— = — | M7 Ay (M T 1
4 Sa <M2+MMS H 0( H)+ H:|7 (3 7)

where T; is the part induced by fermion loops and M, = M/c . The constants . are
used to cancel Ty;. Tadpoles cancellation is illustrated in figure 5.

The first step in handling tadpoles requires to fix the coefficients ,B(n) so that Ty is
canceled. Furthermore, when the H field is integrated out we will have to differentiate the h
tadpoles, those due to a H (heavy) loop and those due to loops of light particles; therefore,
the constants Bé is split into a part that cancels H tadpole-loops and a part which will be
used in performing loop calculations in the low energy theory. We derive

5%0) = —61; Ag(My),
2
2
5%1) = =2 (t3+2t) iAO(MH) + Ty,

2

5 1 2 1 , 1
B = —5 (2ts =11 éiBhAo(MH) 1 [tﬂ‘h +2 (2153—1'3151)} ETH‘Tza

B = —2 (215 + 1) t3 Ag(My) (3.18)

1 2 t
B = A - 5 (12t§ 518 :rh) 5 Ao(My) + 2T,
tl 1

2

2 1 5o R ! : t
ﬁé ) Aﬁéz) -3 [2t1xh + (Ttg —1t7) tg} tgtho(MH) 3 <2t§+3t1> t%Tl +iT2 '
3 1

- 11 -



where the T functions are defined by

1 T Y !
Tl = —5 AO(Mh) Th t3 - AO(M) t3 o §AO(MO) 73 ’

CW
11 ¢ty 1 2 t3
Ty = =5 — Ty 2 — 2 Ko(My) [ty — (361 — 25ty +283) |, 5
2 232 Hi 4 o(My) [t @y 1 3ty + 213 xht%
4
3_ Swt 1 ) 1 11—}—2th
¢y, U t1 Cow 1

and where M}? =x, M 2 Working in the §-scheme we have additional loop-induced con-
tributions and eq. (2.4) is modified into

Fi(0)= A’ Fy(2) + A [Fro(@) + Fio(@) | +A7 [Fis(2) + Fu (@) + A7 [Fro(@) + Fio (@)

Fo(z)=A*Fy(z) + [F20(33) + F20(35)} +A7? [F21(95) + Fm(m)} +AT! {FQQ(m) + Fm(fﬂ)] ;
(3.20)

where the new terms are proportional to 5; and B5. Therefore, there is an additional part
in the effective Lagrangian,

L A? L2, 1 .o
Eeﬁ‘ﬁzg £eﬁ‘ + —q Eeff "'I_

1
- k2 (3.21)
€0

58 A2 eff

L,2 =
Lg =FipFq,

L,0 = = = 2. & 2 = =
Lg = [3 FioFs0F1 + & Fio (Flo Fy+2FyF — M~ & Fl) + & (Flo Fio+Fi F1)} )

Lo P=18F} F3Fy + 3 Fig Fy (2 FioFy+6FyF —3M°& E)
+6) [FIO (3 FioFao Fio+3F g Fyy Fi+4F 0 FogFo—2 M & Fig Fo+ 6 Fyy Fyo Fy
A2 T, — 4 M2E By E) —2F,0,Fy, a“FZO}
+& [FIO (FIO Foo+ 2F Fy +2Fp Fig+ 2Fy Fy — M2 ¢, Flo)
+2F )y Py Fy = 9,F 109"
+& (F1oF11 +Fi Frp) (3.22)
with coefficients ; defined in eq. (3.14).

3.3.2 Mixed loops

In a consistent derivation of the low energy limit we must include also mixed (heavy-light)
loops. Examples of mixed loops are shown in figure 8. Integration of the heavy fields
is performed according to the expansion of three-point functions given in appendix A.
Clearly, the result is given by (contact) local operators and by non-local terms that are

- 12 —



one-loop diagrams in the low energy theory, i.e. loops with internal light lines. We give few
examples, restricting the external lines to be physical (no q>0, (])i). First we define vertices

as follows:
t 1
Vi =29 Mt <1—tg> ; V}21h:_592t37 Vih = —2gts,
1
2 2 2
t t 3 3 oty My t
Vih=g=2 (M*2 —2M%t; — S ME|, Vilh=—-¢* 2 |=— +4M 3 —4Mt,],
hh = 9 f f 37 5 M hhh 19 o\ + f 3
M t t
11 2 11 2
VhZZ;w/:_g thé,uuv VhWW;/U/:_g Mtééuua
c, b 1
t 1
Vi :gt%M [MQ% (t3—t1)+1M§t1 (3t —5753)] :
1
21 2 13 2 2, 1.9
3
Vinh = —39g tg[M (t1 —t3) +8Mht1]7
1
1 s M* ¢ 1 12
21 2 21 2 1,2 30
VZZ,/,LV 79 — % uv VWW,/J,I/ M %du,z/a \Y =—gty,
4 CW tl 4 1
2
t 1 1 t
V3 =gMm?2 (24—t V=2 M3 (4, —t
g t% o1 3] h 29 ; (ty 3)
3 M 3 oMy . 513
Vv =——qg— Vv =——9q9 — -3¢ = . 3.23
hhh 29 M hhhh 29 22 g t ( )
As an example we derive the h? Z? (mixed-loop) vertex
1 1
2 ~hhZ7Z 2 2 (11 10 1,21 10
167 Q" = 3 C(() )(Mh) <Vh Vizz + Vin sz) Vhih e O s (3.24)
1

where the scalar three-point function is given in eq. (A.5).

3.3.3 Field normalization and parameter shift

The Lagrangian for the low energy theory requires canonical normalization of the fields
which is a standard procedure when including higher order terms, see refs. [25-27],

2 2

g M
b =749, 2o =14+ —— — AZy . 3.25
[ P 16 7_[_2 A2 (] ( )
In SESM only the h field requires a non-trivial normalization, given by
145 5
AZy =—=—=5 (t; -t . 3.26

Additionally, we can introduce shifts in the Lagrangian parameters,

VL 141 g A0 A® AL L AR M 7
" +§167T2 hiMQ—F Wt hAZ n
1 o (1) (2) M2\ |+
M= |1+ Ay, + A M, 3.27
2 1622 ( M M A2> (3.27)
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so that also the bare mass terms (for physical fields) are SM-like. In the following we will
drop the bar. These shifts are given by
0 _  tits
AMh = =2 E AO(MH) )
2

1 (ts—1)° » 1 2 2\] tm
Al =8 g [31&1 a2y + 4 <7t3 — 13t ty +7t1>} EAO(MH)’

2
o 1 £
Ang, =3 [24 (ts —t1) 15— (29t — 17t)) £, xh} (ts—t1) 5 —

tizy,
1 2 2 2,2 2 2 12,
-3 [3t1 @2 =56 (ty — 1,)? 1242 (26t3 43¢ty + 18151) t a:h} Ry (My) ,
1T
(1) 5 (2) 145 —
AM = —E Ao(My), AM = 5 ?xh Aog(My), (3.28)
1

where we have introduced t3 = t,,, ;. It is worth noting that the shifted masses introduced
in eq. (3.27) remain bare parameters and are not the physical masses. Furthermore, the
shift in M, gives the typical “fine-tuning” that is often present when we “derive” the mass
of a low mode (in terms of the scale A) from an UV completion.

3.4 The complete Lagrangian

Before introducing the complete Lagrangian we define the concept of (naive) power count-
ing: any local operator in the Lagrangian is schematically of the form

Ml*a C d e
0= 0" vt or ()" @t Al g(a+b)+c+d+e+f+z—n=4, (3.20)

where Lorentz, flavor and group indices have been suppressed, 1 stands for a generic
fermion fields, ® for a generic scalar and A for a generic gauge field. All light masses are
scaled in units of the (bare) W mass M. We define dimensions according to

codim@zg(a+b)+c+d—|—e+f, dim O = codim + 1 . (3.30)

For a general formulation of power counting see ref. [28]. The SESM Lagrangian can be
decomposed as follows,

Lopsu=Li—o+Lr» Lico=Lew(m)+ Y A" Lo 5, Ly — Log=Log+ Leg+ Ly,
n=0,2

(3.31)
where Lg,(h) is the SM Lagrangian written in terms of the light Higgs field h. It is worth
noting that h, H do not transform under irreducible representations of SU(2) x U(1). In
appendix B we present the full list of operators appearing in Lqgq,,, classified according
to their dimension (dim = 2,4,6) and their codimension (codim =1, ... ,6). As expected
only the SM-like operators acquire coefficients that are A-enhanced (dim = 2). The local
operators that are usually quoted in this context are <I>?1 and 9, @ﬁ 9, <I>}21 having dim =

codim = 6 (@i =n’4 ¢O2 + 26" ¢7); however, they should not be confused with O, and
O, of the Warsaw basis (see table 2 of ref. [29]), the latter being built with a SU(2) x U(1)
scalar doublet while ®; of eq. (B.1) is not invariant, due to h.
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Figure 6. Example of a 2 — 2 process in the full SESM involving (dashed blue) light lines. For
sake of simplicity we limit the example to scalar lines; moreover, boxes have not been included and
vertex corrections have been shown only for the left part of the diagram. Solid (red) lines represent
the heavy H field and the last diagram represents counterterms, both UV and finite (in the “on-sell”
scheme).

3.4.1 How to use the low energy Lagrangian

The Lagrangian shown in appendix B is ready to use but should be used consistently. No
additional problem will arise if we restrict Lqgq,, to TG operators. When LG operators are
included the following strategy must be adopted. Let us distinguish between the full theory
(HSESM) and the low energy limit (LSESM). In figure 6 we show a simple example of a
process with four external, light, lines; for the sake of simplicity we restrict to scalar lines,
do not include boxes and avoid the further complication due to Dyson resummation. There
are loops with (solid red) heavy lines and loops with (dashed blue) light lines; furthermore,
B cancels H tadpoles, therefore it includes also light loops. The last diagram in figure 6
includes counterterms, both UV and finite, UV counterterms are designed to cancel UV
poles and by finite counterterms we mean those that are needed to express bare parameters
in terms of experimental quantities (having selected an input parameter set). Therefore,
our scheme is “on-shell” (we avoid here complications induced by using the “complex-pole”
scheme); the whole procedure is well defined and gauge parameter independent.1

When working in the LSESM framework (at the LG level) the Lagrangian Lggg,, will
generate the diagrams in the first row of figure 7, where dots represent contraction of H
propagators. With Ay, By and C, we keep trace of the origin of the loop contraction, i.e.
a one-point, two-point and three-point loop in HSESM. To perform a loop calculation in
LSESM we must include light loops, as those shown in the second row of figure 7, taking
care of avoiding diagrams that would be two loops in HSESM. After having included all
contributions we take care of renormalization in LSESM by introducing UV counterterms

'For a discussion on the subtleties induced by the tadpoles see section 2.4 of ref. [24].
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Ao Bo Co

Figure 7. The same process as in figure 6 seen from the low energy side. In the first row we show
diagrams that have been generated by contraction of heavy lines and A, By and C keep trace of
the origin of the loop contraction, i.e. a one-point, two-point and three-point loop in HSESM. In
the second row we show the diagrams with light loops that have to be added, including LSESM
counterterms in the “on-shell” scheme, in order to have a finite, gauge parameter independent,
result.

and finite counterterms in the “on-shell” scheme with a low-energy IPS. Also this procedure
is well defined and gauge parameter independent. Any attempt of performing a (simpler)
MS renormalization should be handled with great care.

To summarize: when the UV completion is known we have a hierarchy among loops
in the low-energy theory. There is a marked contrast between this top-down approach and
the bottom-up effective field theory where one cannot unambiguously identify the powers
of hypothetical UV couplings present in the Wilson coefficients. In the EFT approach, by
performing the calculations without unnecessary assumptions, it is still possible to study
the effect of particular hierarchies and specific UV completions (when they are precisely
defined) a posteriori. Consider the hZZ vertex, we have three contributions (a d,,, is left

understood);
3
0 1gM e 1 gM
V}(IZ)Z =75 2 ¢ Vizz = 122 tm s
CW CW
1 ¢ M2t — 1 ¢ M? —
LG g g 2 2
Vi = o f A K (M) + o 22{3 [azh— (18—22tm+7tm>t1}th0(MH)
T Cy T A Coy
t ¢
BT 3 ( (0 —5%0)) —9 (17—22tm+5t3n) tfntl} : (3.32)

Here Vfloz)z is SM O(g); VEZGZ is power suppressed, O(g) tree-generated; V}Ijgz is (9(93 / 772)

loop-generated. Clearly, VEZGZ can be used in any LO/NLO calculation, i.e. it can be
consistently inserted in one loop diagrams containing light particles. To the contrary,
Vﬁg’z can only be used, at tree level, in one loop calculations (i.e. it should not be inserted
into loops of light particles). Furthermore it is easily seen that mixed-loop contributions
to this coupling are O(A™*).
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3.5 (Gauge invariance

The Lagrangian under consideration is invariant with respect to the following (infinitesimal)
transformations,

1 1 _ _
h=h+;gc, (cm¢°+¢*r +¢ F+>,
A%

1 1 _ _
H=H+2gs, (FZC¢°+¢+F +9¢ P*>,
W

1 1 M ] _ _
0" =0 = 59Tz — (e, h+s Ha2= )4+ 2g (T 0" —TF o),
2 Co @ o g 2

I M i
0 =0 — =gl (cah+saH+2g—|—z¢O>+g

5 2 [(cw—sw>—FZ+2stA¢ ,

_ : -+ a—
A,=A,+igs, (r Wt T W M)—(‘?MPA,
_ ~ - wt + e
Zu =7, +ige, (T7WH, —TPW™,) 0,17,

W, =W, —igl (e Z, 45, A, ) +ig (o, Tz +s, Ta) W, —0,07,  (333)
when we expand s_,c to any given order. The gauge invariance of the low energy theory
must be understood as follows: the transformations of eq. (3.33) may be seen as generating
new vertices in the theory and gauge invariance requires that, for any Green’s function,
the sum of all diagrams containing one I'-vertex cancel. When sources are added to the
Lagrangian the field transformation generates special vertices that are used to prove equiv-
alence of gauges and simply-contracted Ward-Slavnov-Taylor identities [30]. Therefore,
for any “transformed” Green’s function we integrate the H field and, order-by-order in A,
terms containing one I'-vertex continue to cancel (and WST identities to be valid). For
instance, if we set ¢ =1 and s = 0 in eq. (3.33), it is easily seen that Ly_g, given
in eq. (3.31), is not invariant but the addition of Egﬁ truncated at O(1) restores gauge
invariance.

3.6 Integration in the non-linear representation

An interesting alternative, see refs. [31-33] is represented by the following Lagrangian

1 1 a 1 2
L= 2 9yhy 9,hy — ) F?(hy) gap(0) D0 Duq’b — 0 x0ux— 2 s (h2 + ﬂv)
1 41 1 2
_Iu% X2 — g )\2 (h2 + \/§V) — 5 )\1 X4 — 5 )\12 X2 (hQ + \/§V) 5 (334)

where we have introduced a complex scalar doublet, (see ref. ref. [31] for the complete set
of definitions)

1 (on+idh
=7 <¢%+i¢>ﬁ) (3.35)
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with “polar” coordinates defined by

O = (hy+v) u'(9), ulg) u(¢)=1, u'(0)=4". (3.36)
where 4,7,--- = 1,...,4 and a,b,--- = 1,...,3. A choice for the metric, present in
eq. (3.34), is

¢a (bb
o =0+ —5—"7"—, 3.37
9ab(9) b 7o (3.37)

and the covariant derivative in eq. (3.34) is defined in egs. (15-16) of ref. [31]. When

discussing the SM one uses

h
Foy (h2> =1+ 72 (3.38)

in eq. (3.34). After mixing with the singlet we obtain

F2

FSQM(h)—i—%FSM(h) [(ca—l) h+saH] + ...

et ot 2 o)

S

[\

2
_ |:1+fh};+fHIj+O<H2):| . (3.39)

After integrating H we have two effects, a change in eq. (3.34) due to a redefinition of F
and the addition of higher dimensional operators, e.g.

h)? “
(A1) O 0= (oD, D0 (3.40)

Note that f;, # 1 has an effect on curvatures, see eq. (22) and eq. (27) of ref. [31]. From
this point of view the geometric formulation of the Higgs EFT seems the most promising
road to account for general mixings in the scalar sector.

4 Low energy behavior for THDM models

We consider THDM with softly-broken Z, symmetry [34-36]. The bosonic part of the
Lagrangian is given by

2 2
L=- Z (Duq)i)T D, ®; + Z Hi ¢;Fq>i+ﬂ3 (‘I’J{‘DQ‘F‘D%(IH) (4.1)
i=1,2 i=1,2
1 2 1 2 2
+5 >N (cb}cbi) + A3 0! @) B Dy + N, B Dy B D) + 525 Kq{%) + <q>£q>1> }
i=1,2

With doublets given by

[of

1 (b +vV2v;+i¢°
V2i¢~
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The mixing angle 5 is such that

h, = —vy +cos 8 (hllJrv)—simBh/27 q)tl):cosﬁq)o—sinﬁAo, q)f[:cosﬁ(])i—simBHi
hy, = —vy +sinf (h’l—i—v)—cosﬁhé, q)g:sinﬂq)o—f—sinﬁAo, ¢§t:sinﬁ¢i+cosﬁHi.
(4.3)

with v = V% + V%. Finally, diagonalization in the neutral sector gives
h’| = cos(a — B) H —sin(a — ) h, hy = sin(a — 8) H + cos(a — B) b . (4.4)

The first problem in deriving the low energy behavior is represented by the individuation
of the cutoff scale. In the unbroken phase one can use the Plehn scale

A% = ,u% sin? B + ,ug cos® B+ ,ug sin 3, (4.5)

whereas in the mass eigenstates, ref. [4] suggests Mio, based on the fact that custodial
symmetry requires almost degenerate heavy states. Our procedure is as follows. First we
eliminate /,Liz by means of the following transformation:

- 1
cos? ﬁ,u%:ﬁl—VQ [sin2 I3 cos B+ 5()\2 sin4ﬁ + M\ cos’ B) ] —251n5cosﬁy§+sin2 ﬁ,u%,
1 _
cotﬁu%:,é’z —tan B B + §v2 [Sinﬁ cos S+ (tan 8 — sinﬂcosﬂ)} + /,é, (4.6)

where f3) 5 are the constants needed to cancel tadpoles and A= A3+ A+ A5, Next we
introduce new parameters defined by (M should not be confused with the redefinition of
the bare W mass in eq. (3.27))

u% =sin B cosﬂﬂz, V2)\5 ZMio —sz

-2

COSQB—sinQﬂ 9 9
—,82+2MH:E—MAO—M . (4.7)

sin 3 cos 8
v Ay = v2 (2X=X) + M- M2,sin® B cos® 3,

. =2
szzl (Vg)\ 51n45—cos4B+M222—M M121>

Vi =25, +2

2 ! sin’ I3 cos® I} ~ sin® I3
V2 A = 2 tan B M2, + tan® 3 (M2 - M222) - M, (4.8)
Requiring
sin(a — ) cos(a — B) (M) — M3y ) + [sin’(a = B) = cos’(a = B)| =0, (49)

gives the following result for the neutral masses:
MZ = M} — cot(a — B) M7y, M§ = M7,y + sin(a — 8) cos(a — 8) My (4.10)

Our scenario for the THDM is defined by A = M >> v and

1 1
ﬁ:i(w—éﬁ), a:§5a. (4.11)
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Expanding in v/A we obtain:
M2 o1 s a2 o2 oA 2 A
)\2 = —7—5 <Mh + v A) P, (55 P—i—(’) A4 y 504 = _P+O A . (412)

All masses and angles are re-expressed in term of A and couplings.

1
Méi:A2+§V2(>\4+/\5)7 M§0:A2+V2)\5,

2 .2 1702 T 9] v

ME=A —Z[V (A1—2A)—Mh}P

. 1 v v0 1v? v
WA= s O\ ) ey )

. v° 1 v2 v©
sinfa — 8)=—1+0 <A6) , cos(aw — ) = ~3 (Mh +v /\) g +0 <A ) . (4.13)

Using eq. (4.13) we can expand the Lagrangian in powers of A~! and apply the formalism
of section 2 to obtain the low energy limit of the model. Also for THDM models the SM
decoupling limit cannot be obtained by making only assumptions about one parameter.
For a general discussion on alignment and decoupling, see refs. [37, 38].

There are four THDM models that differ in the fermion sector: they are type I, II, X
and Y, see ref. [35] for details. The THDM Lagrangian becomes

ﬁheavy

THDM > ETHDM

= Lo+A 2L, (4.14)

‘CTHDM = ‘CTHDM

heavy=0 heavy=0

with £, = 0 for THDM type I. The heavy part of the Lagrangian, ﬁ?ﬁ%ﬁy is given by a
sum of terms; we define the set {®} = {H, A", H*} and obtain

Lueavy — )3 cheavy (4.15)
with
heavy f
3 Fie, F o= <F1H+) , (4.16)
oe{®}
h
ey — Z 0; Fag, 0; 955 (4.17)
04,0;€{®}

where Fy 0,0, Contains derivatives and where terms with one or two heavy fields are of O(1)

and O(A™?). With three fields we have

h
£ = Z F30,0,0, 0i0;0% ; (4.18)
¢i’¢j7¢k€{q>}

where Fy is O(A™?). Finally we have

hea
Ly Y= E Fy0,0,0.0, 0i0; 001 5 (4.19)
¢17¢]7¢k7¢le{©}
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with contributions of O(1) and (’)(A_2). For THDM type II, X and Y there are terms of
O(A?) in Fy.

Due to the SM-like scenario, sin(a — ) = —1 + O(v®/A%), h is almost the SM Higgs
boson (alignment). If we consider the vertex hyy the only deviation (at O(A™?)) is given
by the H * loops which, after expansion, contribute to the “contact” term

1. 3 M 2
5Vﬁ:;y = g vg (2 )‘5 - A3) SW P (2175 p,f + Mh 5MV> 9 (420)
and there is no contribution from insertion of local operators into SM loops.

There are constraints from electroweak precision data, most noticeably from the p
parameter. The contribution from scalar loops in THDM is

Aprypy = 8\C;2F7T2 {F (MAO ; MHi) - COSQ(Q - B) [F (Mh, MA0>—F (Mh, MHiﬂ
—sin®(a — B) [F (MH : MA0> _F <MH , MHi>] } :
F (my ,my) = % (m? +m§) - % 1n”m€ . (4.21)

In the scenario described by eq. (4.13) we obtain

Gr vt 2 2
A =—— > — (A]— 5], 4.22
PrHDM 9% ﬂTrQ MQ ( 4 5) ( )

i.e. a mass suppressed correction. As before, we define Mﬁ =ax, M ? and A=t gQ.
Deriving TG operators is relatively easy; using eq. (4.16) and neglecting quadratic terms,
eq. (4.17), we define

Fyo=F{,+ M "F,, (4.23)

and derive the following result
¢ _ l—-2 _1g ~——4 TG
‘CTHDM - 5 M ‘CTHDM 2 +M ['THDM4 ’ (4'24)

2 2
TG 0 0 0 0
ETHDM? = (FIH) + (FlAO) + 2F1H+ FlH_ s

TG 2 0 2 0 2
Ligpma = F1HFlH +F OFlAO +F1H+ Fle +F _F

1o aET
1
0 0 0
58#F1H8”F1H 5 OuF) 00 0= 0,F0 L0, F
1 2 92 2
—59 A% |:(t4+t5)F1H+ +F1 —+t5 (FIA > i| . (425)

Note that F(l)q, = 0 if we do not include 3 terms; we derive ((I% = ¢02 +20" o)

gM
Frg=-20
1H A

1 , _ _
[2 (2, + 47) (3h2+¢>8)+Mlll+Muuu+Mddd]
g2 M?

(2, +47) b (0* + ) ,

%\H

A2
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3 2 2
gM 19 M
0= 2 (xh+4t)h¢ +4 A2

My - _
+¢—gA2 [M11751—Muﬁfy u+Mddy5d},

LA (z, +47) ¢°

’ . 2 M? _
F _:gi\f (azh+4t)h¢++1gA2 (z, +47) 0" f

1H 4
CgM
-
V2 A?
1¢°M?

3
gM -
Pl =" (0 +47) ho™ + 4 2 (z +47) ¢~ @

{MITV+V1+Mdav+u—Muav,u} ,

.fA2 [Mlvlfy - Muﬁfy+d+Mdﬁ’y_d}, (4.26)
where A? = ¢° M oand T = ts + ty + t5. Finally, in the limit described by eq. (4.13)
LG operator are more abundant than TG ones, one-point functions are C’)(MQ), two-point
functions are O(1) and three-point functions are (’)(M_Q). They all involve internal (loop)
heavy lines while at tree level any heavy line is quadratically suppressed. To give an
example we split the F, functions as follows:

—2 122 —4 o 2 <
FQU_F2U+A Faiy +O(A ), F22] F2z] Foij Ou —8HF2” ; (4.27)
_ 1 . 2 _ 1 _
FQHH:thh+§g2 [2t¢>ﬁ—4t5¢0 — 4ty +t5)0" 0 —ZQCT—QWHLW u]
W
1 5 M 1 M,
T.h+ — 1T
+89 A2 +32 A2 c *h»
_ _ _ 1 _
F. o 0:—gM(2t5—t)h+fg2 [2t<1>ﬁ—4t5h2—4(t4+t5)¢+¢ —7? ——2wH'w ]
2ACA 8 c m
w
1 5 M 1 M,
T.h+ — T,®
+89 A2 +32 AT e b
0 1 - 1
Foa0="29Mt50" —g 2 t5¢° h+§g(Z“a#—auZ“)§,
1
F2HH—:—9M(t4+t5) ¢+ - 592 (t4+t5) ¢+h
2
1. 2 0 w
+35i9 [(t5—t4)¢ ¢++Z“W+M—A“W+Msw]
w
1 — — L

2
2
w

+A'LLW+MSW:| +ZgM(t5—t4)q)+

w

1 5 0
Foaty==39 [(t4+t5)¢ or —Z"WT,

1 —
+§ig (5_t4)¢ h+2 (W+Ma auw+u)7

F2H7H7:§g t5¢ ¢
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F2H+H_:29M [E— 2(t4 +t5):| h
I R 2 02 + .- 1_483VC3V 2
+19 260y —2(ty +t5)h" = 2(ty +t5)0 —4t50 0 — —F5—-7Z
A%
S
2\ "W 2 42 +H g —
+4(1—2CW)C—Z A, —4ds , AT-WT W,
A%
1 3 M 1 4 M? po1-2e, L o
S S T.h+—g chfiz“—z“
TL9 et g ettty oy (250, = 0,27)
— —
—igs, (A9, —0,A"). (4.28)
where we have introduced
T :128(t1—f)2t71—3x}21—32(t1—f)2—4(5i—2t1)xh. (4.29)
¢ $h+4t1

To give an example we show the loop operators generated by integrating heavy bubbles:

R 2
L,= Yo ), 4.30
b 16 7 ( A2 b) ( )
2 __ 2
L)=- <F2HH> Ag(My) — <F2A0A0> Ao(M, 0)
1 0 0 00 0u -
9 [(2 Fontut Yoppn (F2H+H ) F2H+H O, F2H+H—} Ao(My; +)

L /00 2 — 1 0 2
—5 (FQHAO) Bgo(M) — 3 [2 (FZHH> +2 (F2A0A0>

00 _ 0u
+2F2H+H+ F2H H™ Jr<F2H+H‘> F2H+H ap’FQHJ’_H_],

gt (B2 0) A (431)
—%g [24F2HHF2HH+24F2A0A0F Lo F12F) L L F
+12F2H+H+ F2H H™
+12F? — o H+H — 6F> — F0“+ _ —auang” B -
+20,F0 4y OMFD  +20, Foyy 0" Fouy

00 1 1200 m 00 m 00
+30,F00 00" FY 0+ 20,F) 0, 00" FY 0, 0+0,Fogs - 0" F -]

—2¢” Foun Famn Ao(My) — 247 F2A A0F2A0A0KO( M, o)

1 0
_§g 2F) et FQH_H_+2F Htut F2H H-
00 _ I 22 00
+2F2H+H Fout F2H+H 6“F2H+H*]A0<MHJE) 9, 1140 Fapra 0 Boo(M).
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5 Conclusions

In this work we have been mainly interested in the effect of heavy scalars, with masses
that are larger than the Higgs VEV and the energies probed by current experimental data.
In particular we focused on models where there are mixing effects in the mass matrices.
Therefore, we have adopted a top-down approach where there is a model and the aim has
been to implement a systematic procedure for getting the low-energy theory, including all
loop generated local operators.

We have extended the covariant derivative expansion [9, 10], taking into account SM ex-
tensions where heavy fields are coupled to (light) SM fields with linear (or higher) couplings
that are proportional to the scale of new physics. Specific examples have been provided for
the singlet extension of the SM and for THDM (I, II,X and Y) models [35]. Working in the
broken phase, including all contributions and normalizing the kinetic terms considerably
increases the number of SM deviations as compared to what is usually reported in the
literature.
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A Expansion of loop integrals

Power counting of loop integrals can be summarized as follows: define

qu/ PEEY q/J/ .
/dHQM = 5#1 T Il,k7 (A'l)

where the § is the fully symmetric combination. In the large M limit one has

242k 2 2721 2
L o~ M2 IM? ) T o~ (M) L g~InM?, Tgp~Tig gpy I>1.

(A.2)
We define the following functions:
.2 (1) 4—n n 1
im” Cy’(m) = pgr /dq ,
(" +m*) (g +p1)* + M) (g + 1+ p2)° +m°)
.2 ~(2) 4-n n 1
it O m) =™ [ ' . (A3)
’ (¢ +m°) ((q+p1)* + Mi) (g + p1 +p2)° + M)

with P = p; + p,, pr being the renormalization scale. Their My expansion is given in
terms of two-point functions

1
(¢° +m*)* (g + P)> +m*)’

iW2B0(aaB;P2amvm):/‘LR4n/dnq ’ (A4)
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Figure 8. Examples of mixed (heavy-light) loops. Solid (red) lines denote heavy fields, dashed
(blue) lines denote light fields. Integrating out the heavy field gives a (contact) local operators plus
a non-local term which is interpreted as a one-loop diagram in the low energy theory.

and of one-point functions, defined in eq. (2.15). We obtain
1 1

{m2 [1 — Ay (My) +K0(m)} - % (pf +p5 + %pl 'Pz) }

2

1 3 1 1 M
e {2 (e 2) - g (A - Pt mg
m

1
+|:m2+2(P2_p%_p§ B0(1717P27m7m)}a (A5)

where the B function is given by

) 2 m? B+1

with 8% = 14+ 4m?/(P* —i0), where P* = —s.
In deriving the expansion in eq. (A.5) we also need the following results:

MI2{ 2 S m2
2 2 2 2 2
13
+54[ L3m_mtf, m mﬂ,
My 6 2 s s s m
2 2 2
1 M
BSI’<2,1;P2,MHam>:Sz+S4[+m L-ln—y ] (A7)
MH MH 2 S m
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When all masses are heavy we derive:

) 1 pP? p!
B(1,1;P,M,M) Ay (My) —1— ) : A8
0 H» My Ag(My) 6 M2 (MH> (A.8)
for the singlet extension and
) 2 p2
B0<17 1; P7, My, M1>:—B00 (M, MZ)""ﬁBOQ (M, M2)+ﬁB0p(Mlv My)+ -,
(A.9)
for THDM models. Using the masses of eq. (4.13) we obtain
_ 1
By (My, My) = =By (M) , By, (M1, My) = 5
1 1
Boo (M0, My=) =—7 (u+3%) . Boo (M, Myx) == ()
1
B02 (MH 5 MA(]) = —5 )\5 . (Al())

B Complete SESM Lagrangian

In this appendix we give the list of local operators, up to (’)(A_Q), present in the singlet
extension of the SM after integration of the heavy mode H. Field content is: gauge bosons
A7Z Wi, light Higgs h, Higgs-Kibble ghosts ¢0, (])i, fermions u, d and Faddeev-Popov ghosts
Xt X7, Y As Yy. Few auxiliary quantities are needed:

2 _ 2 _
By =o0ho, =0 +20707, @ =00 =h7+0" +2¢70 . (B.1)
We also need U(1) covariant derivatives:
+ + . + .
D, ¢ =0,0" £igs, A0, D,f=0,f-igQss, A,T. (B.2)

Finally, T functions are defined in eq. (3.19), while /5 coefficients in eq. (3.18); the one-
point function A is defined in eq. (2.15), in the following, Ag(My) = Ay. Dimension
and codimension of local operators are defined in eq. (3.30). In the following list we give
L im , codim for one flavor, i.e.

2
- !
L= N"2N "M Lo gy 6-2n- (B.3)
- 7
e dim =
1922(0 19 1 g% bt o, —
> Ly —ﬁp T 5 tm @5 Ay, £23:372meq)hhA07
1 g t tl
L ‘1> A, B.4
24 = 256 M h 40> ( )
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e dim =4

1 gM3
| 2 641:—§ g7.[.2 hAﬁél), (B5)
1 @M 5 1 ¢ M* , 0 0\ ;2
| 2 £42:—§ 7-‘-2 (I)hﬂé)—i_@Ttm(é)_ §)>h
1 ¢*> M? — _
+1—69 21 (X X +X+X+) A,

1 M _
92 2y (xh +4t3nt1) 0"’ A,
64 77

1 gM M _— 1 92M2
1 ¢* M? — 1 M

+- T2 (¢02+2YZYZ) A, — (¢02+2Y Y )
32 CW 2 C

—;M2[<2W+W o Z,7 >+2 (XX+X+X+)+2¢+¢}
—% M? 2, h?, (B.6)
b Lip=— (a X0, X +0,X70,X" +08,Y,0,Y,+0,Y 40, YA>

1 ¢°M , 0 0 2
M 3 (o 50) ot

64 1
+6149jr]2\4t3”tl_ 2WZWE+(;ZMZM +<X_X_+X+X+>}hAo
- w

1Mo [ — A ] @2
Fag oty [0 80— 8 (1= t,) it — (13 147,,) b b1 K| @3
+i ‘q;\/ltitl :xhKO —8 (1 —ty,) ty ty — (15— 14t,,) tmtlﬁo] h?
BT Y e (€KY
i o)

614@9 Mt2 tl[ (¢+W;_¢—W;) (SE}VVZM—AMSW

F(XFXT XX ¢O] 5,
614292]” (1-2¢4) 5 (X707 =X "07) Y, &

s CW tm tl,tm tl
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1 zg M 1
64 o Cy tmtitmty

Yy (Xf o —Xx" ¢7> Ay

1ig°M _ — _
§7titlsw <X+¢+—X q) )YAAO
1gM— 1
29 Yy Yyh—gMa, ®ih

C

w

2
S

1, + — — + W
+2ng[2 (o7 Wy =0 W) | 2z, —Aus

W

w
n (X*X+ —X*X*) ¢0]
Lov[[eowrwo+ Lz 2 X X +X*tX")|h
99 p u+CT whp +( + )
w
—dead—quﬁu—ingw (Y+¢+—§_¢_> Ya, (B.7)

1
> Li= =5 |00 Ay Ay + 0,70, 7, +20, W, 0, W, + 0,17 +0,¢"

+207" D, u+2d9"D,d| =D, 6" D, 0"

2 .2
19 Sy

2CW

(qﬁ W, 40~ Wj) 0’7,

14 1
—— T2t (wqdd 4z, 7u) hAy — g S 12,0 B0
7 512

1 4t — _
+—— 92 [:chAO—16 (2—=1t,) tmt; — 28 (2—t,,) tmtle} o
™

4
1 _ _
+—— T2 [xh Ay~ 16 (2—t,) t, t, —4 (17T —Tt,) t, AO} o2 1>
1 g4 — _
t— T2t {tho— 16 (2 —t,,) tyt; —4 (20— 7t,,) tmtlAO} h?
s

uy"u +ﬁv“v5u) Zy

1—2c3v) (57”d+87“75d) Z
ig

+
N i
~.
o 2 v
VS VS VS

1
2\ .+ - 2\ - +
1-2¢},) 072, D0 + (1—2cw)¢ Z,D,0

Cy 2¢
. 2 . 2
198 o 1198 - o
" (QuEy U+ Qed ) Z, — 5 —— (dy"d+d v d) 2,
W% W
.2 2
19”8

w (q>+ W, —o” Wj) hz,
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3
— bty (1d5 Az, Ty ) oAy
™

ty xg (ﬁ% 0" d—dy, o u) A

—55 0 T B+, (¢+¢‘) 2,2

L o I 2
_gg (QW#WM—FCQZMZM) Py

A%

+=1g (xuﬁv‘r’u—i—xda’y‘r)d) q)o
1
—~igW;¢’D, 0" + - SigW, o"D, 0"

[(¢ W —¢‘W,j) 9,0° —2 (AMSW +ZHCW> 0, W W,

Do l\D\l—‘l\D\l—‘[\D\H

_l’_

( S )angwj

+2 (X* X7) (9 Aus, +0,2,c,)

(X 9, X" =X 9,X") (A#sw+zucw)}

+ige, {(w; 0, Wy =W, 0,W)) 7, — (WiW, - W, W) 0,2,
+ (XY, = Y2X7) 0, W)+ (Y2 X" =X 7Yz) 0, W,

+ (X0, Y2 -Y50,X7) Wy

~(Y20,X" +X79,Y5) WH]

+igs, [(W:&,W; — W0, W) A, = (WEW, W, W) 0,4,
F(XTYA =YX ) 0, Wi+ (YaX =X Ya) 9, W,

+ (X0, Y4 -Ya0,X7) W)
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—X 70, YAW, +Y, agﬁw;]

1 + +
—39 [(q)w +¢W>8h—<W D, o + W, D¢) ]
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1 ¢ &6 -
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