Phase III Multinational, Randomized, Double-Blind, Placebo-Controlled Study of Tivantinib (ARQ 197) Plus Erlotinib Versus Erlotinib Alone in Previously Treated Patients With Locally Advanced or Metastatic Nonsquamous Non–Small-Cell Lung Cancer

Giorgio Scagliotti, Joachim von Pawel, Silvia Novello, Rodryg Ramlau, Adolfo Favaretto, Fabrice Barlesi, Wallace Akerley, Sergey Orlov, Armando Santoro, David Spigel, Vera Hirsh, Frances A. Shepherd, Lecia V. Sequist, Alan Sandler, Jeffrey S. Ross, Qiang Wang, Reinhard von Roemeling, Dale Shuster, and Brian Schwartz

ABSTRACT

Purpose
Tivantinib, a MET receptor tyrosine kinase inhibitor, demonstrated increased anticancer activity in preclinical and early clinical studies when combined with erlotinib. Our study aimed to confirm efficacy and safety of the combination in previously treated patients with nons–small-cell lung cancer (NSCLC).

Patients and Methods
Patients with advanced nonsquamous NSCLC previously treated with one to two systemic regimens, including a platinum doublet, were randomly assigned at a 1:1 ratio to receive erlotinib 150 mg daily plus oral tivantinib 360 mg twice daily (E + T) or erlotinib plus placebo (E + P) until disease progression. Tumor specimens were evaluated for EGFR and KRAS mutations, MET expression, and MET gene amplification. The primary end point was overall survival (OS). Secondary and exploratory objectives included progression-free survival (PFS), OS in molecular subgroups, and safety.

Results
The study enrolled 1,048 patients and was discontinued for futility at the interim analysis. OS did not improve with E + T versus E + P (median OS, 8.5 vs 7.8 months, respectively; hazard ratio [HR], 0.98; 95% CI, 0.84 to 1.15; P = .81), even though PFS increased (median PFS, 3.6 vs 1.9 months; HR, 0.74; 95% CI, 0.62 to 0.89; P < .001). Exploratory subgroup analyses suggested OS improvement in patients with high MET expression (HR, 0.70; 95% CI, 0.49 to 1.01). Most common adverse events occurring with E + T versus E + P were rash (33.1% vs 38.1%), diarrhea (34.6% vs 41.0%), asthenia or fatigue (43.5% vs 38.1%), and neutropenia (grade 3 to 4; 8.5% vs 0.8%).

Conclusion
E + T was well tolerated and increased PFS but did not improve OS in the overall nonsquamous NSCLC population.

INTRODUCTION

Lung cancer is a leading cause of cancer-related death, with approximately 1,825,000 new patient cases and 1,590,000 deaths worldwide in 2012.¹ Non–small-cell lung cancer (NSCLC) represents 85% of all lung cancers.² For patients with locally advanced or metastatic disease, systemic chemotherapy provides a modest but statistically significant improvement in survival.³ In the last 15 years, clinical research efforts with targeted agents have endeavored to improve survival beyond cytotoxic chemotherapy. Overexpression of the N-methyl-N’-nitrosoguanidine human osteosarcoma transforming gene (MET) or aberrant signaling of MET receptor tyrosine kinase occurs in lung cancer and other solid tumors. The involvement of MET in multiple signal transduction pathways affecting tumor-cell proliferation, mobilization, and angiogenesis

© 2015 by American Society of Clinical Oncology
makes it an interesting potential target for cancer therapy.4-6 Tivantinib (ARQ 197; ArQule, Woburn, MA; Daiichi-Sankyo, Tokyo, Japan) is an orally available selective small molecule that inhibits MET receptor tyrosine kinase with a novel ATP-independent binding mechanism, leading to inhibition of cell proliferation and induction of apoptosis in MET-expressing cancer cells.7,8 Although epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors have shown higher therapeutic activity when EGFR-sensitizing mutations are detected,9 the EGFR inhibitor erlotinib (Tarceva; Genentech, San Francisco, CA) has demonstrated efficacy in previously treated patients with advanced NSCLC.10,11 Consequently, dual inhibition of MET and EGFR with the combination of tivantinib plus erlotinib was a rational approach to be explored in advanced NSCLC. A randomized phase II study of tivantinib plus erlotinib versus erlotinib alone in 167 patients with chemotherapy-pretreated, EGFR inhibitor–naïve advanced NSCLC showed trends toward improved progression-free (PFS) and overall survival (OS) in the nonsquamous NSCLC subpopulation and improved PFS in the EGFR wild-type (WT) and KRAS-mutant subpopulations.12 The objective of this phase III randomized, double-blind, placebo-controlled study (MARQUEE [ARQ 197 Plus Erlotinib Versus Placebo Plus Erlotinib for the Treatment of Non-Squamous, Non-Small-Cell Lung Cancer]) was to confirm the efficacy and safety of tivantinib plus erlotinib versus erlotinib plus placebo in previously treated patients with locally advanced or metastatic nonsquamous NSCLC.13

RESULTS

The primary objective was OS in the intent-to-treat (ITT) population. Secondary objectives included OS in the EGFR WT subgroup, PFS in the ITT population, and safety. Exploratory analyses were performed for other predefined subgroups and efficacy parameters. Tumor response was assessed by investigators according to RECIST (version 1.1).14

Statistical Analysis

The study hypothesis was that E + T would improve OS relative to E + P in the ITT population. For 90% power to detect a hazard ratio (HR) of 0.75 at a two-sided significance level of 0.01, 735 events were required. Assuming 18 months of enrollment, 12 additional months of follow-up, and a 9% rate of loss to follow-up, the target enrollment was 988 patients.

An interim analysis was planned after approximately 50% of planned events had occurred to allow early stopping for efficacy or futility. Stopping boundaries were determined using the Lan-DeMets family with O’Brien-Fleming parameters,15 while specifying nonbinding futility stopping boundaries. At the first interim efficacy analysis with 485 events, the one-sided P value stopping boundaries were .00055 for efficacy stopping and .0743 for futility stopping.

OS and PFS were compared using stratified log-rank tests adjusting for number of prior therapies, sex, and smoking history. Kaplan-Meier estimates of the medians and corresponding 95% CIs were determined. An unstratified Cox proportional hazards regression model was performed to obtain the point estimate of the HR and 95% CI. Secondary efficacy end points were similarly analyzed. Safety was assessed by the investigator based on the incidence and severity of treatment-emergent adverse events (TEAEs) and their relationship to either treatment arm.

Molecular Analyses

Biomarkers in archival or fresh tumor samples were analyzed in the following order of priority: EGFR mutation, MET expression (determined by immunohistochemistry), KRAS mutation, and MET gene amplification when sufficient tumor tissue was available. Mutations in EGFR and KRAS were determined by polymerase chain reaction analysis using the Qiagen Rotor-Gene (Qiagen, Hilden, Germany) using standardized protocols at central laboratories (Covance, Indianapolis, IN; Geneva, Switzerland). Existing mutation results were used if they were from accredited local laboratories. MET expression was analyzed at a central laboratory (LabCorp, Research Triangle Park, NC) using the SP44 rabbit monoclonal antibody (Ventana Medical Systems, Tucson, AZ). MET expression was defined as high if membranous staining intensity was ≥ 2 in ≥ 50% of tumor cells. On the basis of limited MET epitope stability, MET analyses by immunohistochemistry must have been performed within 90 days of sectioning to be considered valid. MET gene copy number and chromosome 7 copy number were determined by fluorescence in situ hybridization using probes (LSI D7S486) for MET (7q31) and CEP7 (Abbott Molecular, Des Plaines, IL).

PATIENTS AND METHODS

Patients

Eligible patients were adults age ≥ 18 years with histologically or cytologically confirmed, locally advanced or metastatic (stage IIIB to IV) nonsquamous NSCLC with measurable disease according to RECIST (version 1.1).14 Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 0 or 1, and adequate bone marrow, liver, and kidney functions. Patients had to have received one or two prior systemic anticancer regimens, including prior platinum-based chemotherapy, without prior exposure to EGFR inhibitors, tivantinib, or any other MET inhibitor. Archival or fresh tissue samples for biomarker analyses and EGFR mutation status were mandatory for all patients. Patients with clinically unstable brain metastases or history of cardiac disease, uncontrolled hypertension, or other active malignancies were excluded.

Study Design, Treatment, and Study Objectives

The study was conducted according to the Declaration of Helsinki and approved by appropriate independent ethics committees or institutional review boards at all sites. Patients provided written informed consent before study participation and consent for tissue collection for biomarker assessment. An independent data monitoring committee periodically reviewed safety data and the interim analysis results.

After screening, patients were randomly assigned at a ratio of 1:1 to receive oral erlotinib 150 mg once daily plus oral tivantinib 360 mg twice daily (E + T) or oral erlotinib 150 mg once daily plus matching placebo (E + P). Patients were stratified by number of prior therapies (one v two), sex (male v female), smoking history (never v ever), and EGFR and KRAS mutation status (mutant v WT or unknown). Treatment continued until unacceptable toxicity, disease progression, or another discontinuation criterion was met. Tivantinib or erlotinib dose delays of ≤ 14 days were permitted for grade ≥ 3 nonhematologic toxicities until resolution to grade 1 or baseline, and treatment was reintroduced at a reduced dosage of one or both drugs depending on the toxicity. For hematologic toxicities of grade ≥ 3 or platelet counts < 50 x 10^9/L, tivantinib was withheld until absolute neutrophil and platelet counts returned to baseline (≥ 1.5 x 10^9/L and ≥ 100 x 10^9/L, respectively).
Among the 1,048 randomly assigned patients, treatment groups were well balanced for baseline demographics and clinical characteristics (Table 1). Median age was 62.0 years (range, 24 to 89 years); 59.1% of patients were men, 81.0% were either current or former smokers, 93.0% had adenocarcinoma, and approximately two thirds had received only one prior systemic therapy.

Nearly all patients had EGFR mutation status determined, with 89.4% having EGFR WT tumors (Table 2). Among 986 patients with known tumor KRAS mutation status, 28.8% were KRAS mutant. Of 1,048 randomly assigned patients, 445 tumor samples were investigated for MET expression by immunohistochemistry, and 47.4% of these had high expression. A total of 476 patients had samples available for MET amplification assessment: 54 (11.3%) had MET copy number > 4, and four patients (two in each arm) had MET amplification with MET:CEP7 ratio > 2. No patient had a MET:CEP7 ratio > 5.

Efficacy

OS did not differ significantly between treatment groups in the ITT population (HR, 0.98; 95% CI, 0.84 to 1.14; \(P = .81 \); Fig 2A).

Median OS was 8.5 versus 7.8 months for the E + T and E + P arms, respectively. Similarly, OS was not significantly different (median OS: E + T, 7.2 months; E + P, 7.1 months; HR, 1.00; 95% CI, 0.85 to 1.18; \(P = .94 \)) within the EGFR WT subgroup, which comprised approximately 89.4% of the ITT population. In contrast to OS, tivantinib significantly increased median PFS in the ITT population (HR, 0.74; 95% CI, 0.64 to 0.85; \(P < .001 \)) from 1.9 to 3.6 months (Fig 2B). In the EGFR WT subgroup, PFS was also significantly longer (HR, 0.72; 95% CI, 0.62 to 0.83; \(P < .001 \)) with E + T than with E + P (median PFS, 2.7 vs 1.9 months).

Subgroup Analyses

In the preplanned exploratory analysis of the subgroup of 211 patients with high MET tumor expression, a trend for OS benefit favoring E + T was observed (median OS, 9.3 vs 5.9 months; HR, 0.70; 95% CI, 0.49 to 1.01; Fig 3A). PFS also improved in the subgroup of patients with high MET expression (median, 3.7 vs 1.9 months; HR, 0.72; 95% CI, 0.52 to 0.99; Fig 3B). No association was observed between tivantinib treatment and other biomarker and demographic subgroups (Fig 4). Longer OS was observed in tumors with MET gene copy number > 4 (HR, 0.83; 95% CI, 0.43 to 1.61), but the limited sample size precluded any meaningful conclusion. For the EGFR-mutant subgroup (n = 109), OS and PFS data at the cutoff time are still immature, with only 30 deaths.

EGFR and KRAS mutations were almost completely exclusive of each other, whereas MET expression was independent of EGFR and KRAS genotypes. Among fully defined molecular subgroups, the largest was EGFR WT, KRAS WT, and MET low (n = 143), where OS did not improve (median OS: E + T, 7.5 months; E + P, 6.4 months; HR,
Response to Treatment

The overall objective response rate (ORR) was 10.3% (95% CI, 8.0 to 13.2) with E + T and 6.5% (95% CI, 4.7 to 9.0) with E + P. The disease control rate (objective response plus stable disease) was 45.8% in patients receiving E + T (95% CI, 41.6 to 50.1) and 32.0% in those receiving E + P (95% CI, 28.1 to 36.1). Median duration of objective response was 40.4 weeks with E + T and 47.9 weeks with E + P.

Postdiscontinuation Therapy

After study treatments were discontinued, 192 (36.5%) of 526 patients in the E + T group and 231 (44.3%) of 522 in the E + P group received subsequent therapy, primarily chemotherapy (E + T, 29.5%; E + P, 38.8%).

Exploratory Multivariable Cox Regression

A stepwise forward and backward model selection approach was taken in an exploratory multivariable Cox regression analysis with treatment retained in the model. Potential prognostic factors, including EGFRT mutation status, KRAS genotype, MET expression, age, baseline ECOG PS, sex, number of prior lines of therapy for NSCLC, smoking history, best response to prior therapy, and region, were fit into the Cox regression model along with the interaction with treatment. In the stepwise multivariable analysis, the final model for OS selected the following factors: EGFRT genotype, best response to prior therapy, ECOG PS (and interaction), line of prior therapy, MET expression (and interaction), region, and smoking history. Notable interactions with treatment were observed, prompting closer examination of the subgroups (Fig 4).

Safety

In the safety population of 1,037 patients who received any dose of study drug, 1,016 (98.0%) experienced at least one TEAE: 513 (98.7%) in the E + T group and 503 (97.3%) in the E + P group. The most common TEAEs in the E + T versus E + P group were fatigue or asthenia (43.5% v 38.1%, respectively), diarrhea (34.6% v 41.0%), rash (33.1% v 37.3%), and decreased appetite (29.0% v 28.8%; Table 3). Myelosuppression, a known toxicity of tivantinib, was observed in this study. TEAEs related to myelosuppression for E + T (median OS: 29.5 months; HR, 0.56; 95% CI, 0.35 to 0.89).
tivantinib or placebo. At least one serious adverse event (SAE) occurred in 410 patients (E + T, 42.1%; E + P, 36.9%), the most common being respiratory events, as expected. Differences in SAE incidence between E + T and E + P treatment groups, respectively, were generally related to myelosuppression: anemia (3.1% vs 1.2%), febrile neutropenia (2.9% vs 0.4%), and neutropenia (2.1% vs 0.2%). There was also a higher incidence of the following SAEs with E + T versus E + P, respectively: pneumonia (3.8% vs 2.1%) and sepsis (1.0% vs 0.4%).

DISCUSSION

This phase III study did not meet its primary end point of improved OS in previously treated patients with locally advanced or metastatic NSCLC.
nonsquamous NSCLC, although significant improvement in PFS and increased ORR were observed. In addition, an exploratory analysis indicated OS and PFS benefit with tivantinib in the subgroup of patients with MET-high status by immunohistochemistry. In the subgroup of patients with tumor MET gene copy number \(> 4 \), there was no difference in OS between treatment groups, but only four patients had selective MET amplification with a \(\text{MET}:\text{CEP7} \) ratio \(> 2 \). Although the drugs were well tolerated, the survival benefit may have been diminished by the associated adverse events (AEs), such as asthenia or fatigue and neutropenia.

In another recent phase III trial of tivantinib plus erlotinib compared with tivantinib plus placebo in previously treated Asian patients with nonsquamous NSCLC and \(\text{EGFR} \) WT, OS and PFS were also numerically prolonged in patients receiving tivantinib. However, the study was discontinued early because of toxicity concerns related to the incidence of ILD—a known AE observed in Japanese patients treated with EGFR inhibitors—in the tivantinib plus erlotinib group.\(^6\) In our study, which did not include Asian patients, the combination of tivantinib plus erlotinib was generally well tolerated. AE profiles were similar between treatment groups, with the exception of more frequent neutropenia and anemia with tivantinib. The combination of tivantinib with erlotinib did not increase the known risk of ILD associated with erlotinib.\(^7\)

Aberrant activation of the hepatocyte growth factor/MET signaling pathway through MET gene amplification and/or high MET protein expression is known to occur in many solid tumors.\(^6,8\) Phase I and II studies of tivantinib as monotherapy or in combination with other agents in patients with different tumor types, including NSCLC, have indicated a potential benefit for tivantinib and possible roles of MET protein expression, MET amplification, and \(\text{KRAS} \) mutation as predictive markers of efficacy.\(^12,19-24\) Although our phase III study did not meet its primary end point, the data suggest a potential benefit in patients with high MET expression, consistent with the hypothesis that MET expression could be a potential biomarker for activity in this setting. Recent in vitro studies have reported that tivantinib has activity against cells that harbor little or undetectable levels of MET, suggesting additional mechanisms of action, including tubulin inhibition\(^25-27\) or the possible involvement of cellular mechanisms\(^28\) and signaling pathways activated by MET.\(^29\) Although it is unclear the

Table 3: Treatment-Emergent AEs in \(\geq 15\% \) of Patients in Either Treatment Group

<table>
<thead>
<tr>
<th>AE</th>
<th>Erlotinib Plus Tivantinib ((n = 520))</th>
<th>Erlotinib Plus Placebo ((n = 517))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Grades</td>
<td>Grade (\geq 3)</td>
</tr>
<tr>
<td>Fatigue or asthenia</td>
<td>226 (43.5)</td>
<td>47 (9.0)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>180 (34.6)</td>
<td>13 (2.5)</td>
</tr>
<tr>
<td>Rash</td>
<td>172 (33.1)</td>
<td>10 (1.9)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>151 (29.0)</td>
<td>15 (2.9)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>136 (26.2)</td>
<td>46 (8.8)</td>
</tr>
<tr>
<td>Nausea</td>
<td>121 (23.3)</td>
<td>4 (0.8)</td>
</tr>
<tr>
<td>Cough</td>
<td>110 (21.2)</td>
<td>6 (1.2)</td>
</tr>
<tr>
<td>Dermatitis aciform</td>
<td>90 (17.3)</td>
<td>7 (1.3)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>73 (14.0)</td>
<td>5 (1.0)</td>
</tr>
<tr>
<td>Anemia</td>
<td>83 (16.0)</td>
<td>33 (6.3)</td>
</tr>
</tbody>
</table>

Abbreviation: AE, adverse event.
effect that such activity may have in the clinical setting, data from this and other randomized phase II trials demonstrate that tivantinib has greater survival benefit in patients with high MET expression.19,23

Several other agents have shown efficacy in patients with specific molecular aberrations in NSCLC. Crizotinib, an oral tyrosine kinase inhibitor of MET, is indicated for the treatment of anaplastic lymphoma kinase–positive metastatic NSCLC.30-32 It has also demonstrated antitumor activity in a small group of patients with MET-amplified advanced NSCLC, defined as selective gene amplification with MET:CEP7 ratio ≥ 1.8 to ≤ 2.2 (low), > 2.2 to < 5 (intermediate), and ≥ 5 (high).33,34 In comparison, only four patients in our study had selective MET gene amplification with a MET:CEP7 ratio > 2.0, and only one had a ratio > 3.0.

Onartuzumab—a monovalent monoclonal antibody targeting the MET receptor—in combination with erlotinib in a phase II study of patients with advanced NSCLC with high MET expression by immunohistochemistry improved OS and PFS.35 However, a subsequent randomized phase III trial performed in patients with advanced NSCLC with high MET expression was stopped early for futility.36 The determination of high MET expression in both onartuzumab studies seemed to be generally similar (immunohistochemistry staining intensity ≥ 2 in ≥ 50% of tumor cells using SP44 antibody), but some methodologic details are unavailable.35,36 As additional investigations of targeted agents are conducted in patients with MET-high NSCLC, an appropriate definition of MET-high status will be critical to identify those patients who will benefit most from MET-targeted therapies.

In summary, the addition of tivantinib to erlotinib was well tolerated but did not improve survival in the overall population of patients with nonsquamous NSCLC, although PFS and ORR were improved. Further investigation of tivantinib in patients with nonsquamous NSCLC with high MET expression is warranted, as is exploration of the most relevant tumor biomarkers to select patients for combined MET and EGFR inhibition therapy.

REFERENCES

19. Eng C, Bendell J, Bussada A, et al: Phase I results of the randomized, placebo controlled, phase I/II study of the novel oral c-Met inhibitor, ARQ 197, inirontec (CFT-111), and cetuximab (C) in patients (pts) with wild-type (WT) KRAS metastatic colorectal cancer (mCRC) who have received front-line systemic therapy. J Clin Oncol 29:241s, 2011 (suppl; abstr 3582)
36. Spigel DR, Edelman M, O’Byrne K, et al: Onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIb or IV NSCLC: Results from the pivotal phase III randomized, multicenter, placebo-controlled METLung (OAW4971g) global trial. J Clin Oncol 32:506s, 2014 (suppl 15s; abstr 8000)

Support
Supported by ArQule and Daiichi Sankyo (Tokyo, Japan), which also funded editorial support provided by inScience Communications, Springer Healthcare.
AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Phase III Multinational, Randomized, Double-Blind, Placebo-Controlled Study of Tivantinib (ARQ 197) Plus Erlotinib Versus Erlotinib Alone in Previously Treated Patients With Locally Advanced or Metastatic Nonsquamous Non–Small-Cell Lung Cancer

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or jco.ascopubs.org/site/ifc.

Giorgio Scagliotti
Honoraria: AstraZeneca, Clovis Oncology, Eli Lilly, Pfizer, Roche
Consulting or Advisory Role: Eli Lilly
Speakers’ Bureau: AstraZeneca, Eli Lilly, Pfizer

Joachim von Pawel
Consulting or Advisory Role: Daiichi Sankyo, Pfizer, Clovis Oncology, Novartis, AbbVie, Teva, Bristol-Myers Squibb

Silvia Novello
Consulting or Advisory Role: MSD, Boehringer Ingelheim, Novartis, Eli Lilly, AstraZeneca

Rodryg Ramlau
Honoraria: Eli Lilly, Boehringer Ingelheim, Roche, MSD
Consulting or Advisory Role: Eli Lilly, Boehringer Ingelheim, Roche, MSD
Speakers’ Bureau: Eli Lilly, Boehringer Ingelheim

Adolfo Favaretto
No relationship to disclose

Fabrice Barlesi
Honoraria: Eli Lilly, Pfizer, Novartis, AstraZeneca, Genentech/Roche, GlaxoSmithKline, Pierre Fabre Medicament
Consulting or Advisory Role: Genentech/Roche
Research Funding: Bayer (Inst), Genentech/Roche (Inst), Eli Lilly/ImClone (Inst), GlaxoSmithKline (Inst), AstraZeneca/MedImmune (Inst), Boehringer Ingelheim (Inst), Pfizer (Inst), Bristol-Myers Squibb (Inst), Novartis (Inst), Merck (Inst), Eisai (Inst), Daiichi Sankyo (Inst)
Travel, Accommodations, Expenses: Genentech/Roche, Novartis, Eli Lilly, Novartis

Wallace Akerley
Travel, Accommodations, Expenses: Daiichi Sankyo, Genentech, Clovis Oncology, Peregrine, Bristol-Myers Squibb

Sergey Orlov
No relationship to disclose

Armando Santoro
No relationship to disclose

David Spigel
No relationship to disclose

Vera Hirsh
Consulting or Advisory Role: Daiichi Sankyo

Frances A. Shepherd
Stock or Other Ownership: Eli Lilly, AstraZeneca
Honoraria: Eli Lilly, AstraZeneca, Bristol-Myers Squibb, Merck Serono, Roche/Genentech, Merck/Schering Plough, Boehringer Ingelheim
Consulting or Advisory Role: Eli Lilly, AstraZeneca, GlaxoSmithKline, Boehringer Ingelheim
Research Funding: Boehringer Ingelheim (Inst)
Travel, Accommodations, Expenses: Novartis

Lecia V. Sequist
Consulting or Advisory Role: Clovis Oncology, Novartis, Merrimack Pharmaceuticals, AstraZeneca, Genentech, Taiho Pharmaceutical, Boehringer Ingelheim
Research Funding: Boehringer Ingelheim (Inst), Clovis Oncology (Inst), Genentech (Inst), Merrimack Pharmaceuticals (Inst), GlaxoSmithKline (Inst), ArQule (Inst), Daiichi Sankyo (Inst), Novartis (Inst), AstraZeneca (Inst), Johnson & Johnson (Inst), Eli Lilly (Inst), Merck (Inst), Taiho Pharmaceutical (Inst)

Alan Sandler
Employment: Genentech/Roche
Stock or Other Ownership: Roche
Honoraria: Genentech/Roche, Eli Lilly, Pfizer, GlaxoSmithKline, Johnson & Johnson, Boehringer Ingelheim
Consulting or Advisory Role: Genentech/Roche, Johnson & Johnson, Boehringer Ingelheim, Eli Lilly, GlaxoSmithKline, Amgen, Pfizer
Speakers’ Bureau: Eli Lilly, Pfizer, Genentech/Roche
Research Funding: ArQule

Jeffrey S. Ross
Employment: Foundation Medicine
Leadership: Foundation Medicine
Stock or Other Ownership: Foundation Medicine
Honoraria: Genentech/Roche, Pfizer, Bristol-Myers Squibb
Research Funding: Foundation Medicine

Qiang Wang
Employment: Daiichi Sankyo

Reinhard von Roemeling
Employment: Daiichi Sankyo

Dale Shuster
Employment: Daiichi Sankyo

Brian Schwartz
Employment: ArQule
Leadership: ArQule
Stock or Other Ownership: ArQule

www.jco.org
© 2015 by American Society of Clinical Oncology

Downloaded from ascopubs.org by Universita Studi Di Torino on November 2, 2018 from 130.192.222.029
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.
Acknowledgment

We thank all of the study participants and their families, the clinical investigators and site staff, and the data monitoring committee members (Paul Bunn, Thomas Fleming, Nicholas Thatcher). We also thank Joan Schiller, MD, and Professor Jean-Charles Soria, who provided advice during the study; Anila Qureshi, who provided medical support; Hamim Zahir, who provided clinical pharmacology and biomarker support; Peter McCroskery, who provided safety oversight; and Jane Diamond, who provided operational support. Yvonne E. Yarker, PhD, CMPP, and Robert Schupp, PharmD, CMPP, of inScience Communications, Springer Healthcare, provided medical writing support funded by Daiichi Sankyo.

Presented as an oral/poster presentation at the European Cancer Congress, Amsterdam, the Netherlands, September 27-October 1, 2013, and the International Association for the Study of Lung Cancer 15th World Conference on Lung Cancer, Sydney, New South Wales, Australia, October 27-30, 2013.