Modelling of the impact of bentonite treatment on ‘Muscat blanc’ must before of ‘prise de mousse’ in the production of Asti DOCG aromatic sweet sparkling wine.

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1565044 since 2016-06-09T11:07:51Z

Publisher:
Fondazione Edmund Mach

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Modelling of the impact of bentonite treatment on ‘Muscat blanc’ must before prise de mousse’ in the production of Asti DOCG aromatic sweet sparkling wine

Ilena Lambri, Roberta Mastrocinque, Donato Colangelo, Dante Marco De Faveri, Luca Rolle, Incenzo Gerbi, Fabrizio Torchio

Istituto di Enologia e Ingegneria Agro-Alimentare, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
Università degli Studi di Torino, DISAFA - Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco (TO), Italy
ilena.lambri@unicatt.it

Abstract - The presence of terpenes in grape juices and wines is an enormous potential to enhance the aetal characteristics of wines, which contributes to a final product with increased fruit-like flvaors. In the of aromatic white wines, protein stability and the presence of intense, fine aromas are two important aments [1]. The removal of aromatic compounds during wine fining has long been a matter of debate. chers [2] suggested the use of bentonite as a clarifying agent during juice settling, since the volatile aution is not as drastic as it is in wine, but others observed that bentonite addition before fermentation causes our loss [3]. Therefore, the role of bentonite added to settling juices from aromatic grapes is still unclear ecially when Ca-bentonites are considered.

This study focuses on the impact of one Na-bentonite and one Ca-bentonite for the clarification of ‘Muscat c’ must before ‘prise de mousse’. The clays were used both individually and mixed together at amounts ng from 10-100 g hL-1 as modelled by Central Composite Design. The heat-stability of colloidal matter, oncentration of total proteins and the content of the free- and glycosylated-terpenols of treated and control es were assessed through O.I.V. methods, HS-SPME-GC-MS techniques, and UPLC-MS approaches.

POSTER - METABOLOMICS, CHEMOMETRICS AND AUTHENTICITY OF PRODUCTS

Results showed that the significant effect on the protein reduction was operated by 10 and 100 g hL-1 of 100% a-bentonite and by 55 and 100 g hL-1 of the mixture at 50% of both clays. The heat unstable colloidal matter as highly reduced by the mixtures in which Na-bentonite was higher than 85% and by pure Ca-bentonite at 5 and 100 g hL-1. The free-terpenols and β-damascenone were depleted by low amounts of Ca-bentonite, whilst they were not significantly affected by Na-bentonite even at high doses.

Finally, the impact on the glycosylated forms of linalool, nerol, and geraniol was negligible irrespective of the entonite type and its dose. These outcomes allowed at validating the effects of a clarifying agent usually applied for grape juice settling and wine fining in order to achieve findings that are partially unknown especially when the aromatic grapes are considered.

References