Photoactive TiO2–montmorillonite composite for degradation of organic dyes in water

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/156522 since

Published version:
DOI:10.1016/j.jphotochem.2014.08.017

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Photoactive TiO$_2$-montmorillonite composite for degradation of organic dyes in water

R. Djellabia, M. F. Ghoraba, G. Cerratoc, S. Morandic, S. Gattob, V. Oldanib, A. Di Micheled, C.L. Bianchib*

aLaboratory of Water Treatment and Valorization of Industrial Wastes, Chemistry Department, Faculty of Sciences, Badji-Mokhtar University, BP12 2300, Annaba, Algeria

bUniversità degli Studi di Milano & Consorzio INSTM-UdR Milano, Dip.Chimica, Via Golgi, 19 – 20133 Milano, Italy

cUniversità degli Studi di Torino, Dipartimento di Chimica & NIS Interdept. Centre & Consorzio INSTM-UdR Torino, Via Giuria, 7 – 10125 Torino, Italy

dUniversità degli Studi di Perugia, Dipartimento di Fisica e Geologia, Via Pascoli – 06123 Perugia, Italy

Corresponding author: claudia.bianchi@unimi.it

Abstract

TiO$_2$-montmorillonite composite (TiO$_2$-M) was prepared by impregnation with TiCl$_4$ followed by calcination at 350°C. The synthesized material was characterized by FTIR, TG-TDA, BET, XRD and SEM-EDX. The results show that TiO$_2$ was efficiently formed in Na-montmorillonite (Na-M) framework, and only a crystalline, pure anatase phase was produced. The mean crystallite size is of about 15-20 nm. Photoactivity tests were carried out under UV-A irradiation using five selected organic dyes. The results show that the activity of TiO$_2$-M is more important for cationic dyes, where the removal rates are in the order: Crystal violet (97.1%) > Methylene blue (93.20%) > Rhodamine B (79.8 %) > Methyl orange (36.1 %) > Congo red (22.6 %). The results of the TiO$_2$-M activity were compared with that of the commercial P25. The comparison demonstrates that the synthesized TiO$_2$-M exhibits a higher adsorptive behavior and can be used as low-cost alternative to the commercial TiO$_2$ for
wastewater treatment, showing also an extreme easiness to completely recover the composite catalyst at the end of the test.

Keywords: TiO$_2$-montmorillonite; Composite; Photoactivity; Dye; Decolourization; Water.
1. Introduction

Heterogeneous photocatalysis is becoming more interesting in recent years for several research areas, especially, for environmental applications [1, 2]. Among these applications, water remediation and in particular the decolourization of wastewaters is one of the most important area where scientific research has been focused [3, 4]. Among different kinds of photocatalysts, TiO₂ has been the most widely used for wastewater treatment because of its strong oxidizing properties for the removal of organic pollutants, super-hydrophilicity and chemical stability [1, 5]. It is known that the optical properties of TiO₂ and, as a consequence, its photoactivity, are strongly influenced by its characteristics like structure, morphology, particles size. For this purpose, many researchers have developed several methods for the preparation of new TiO₂ photocatalysts, with tailored features aimed at improving the final photoactivity towards the degradation of pollutants both in gas and water phase: TiO₂ nanopowders [6-8], N-doped carbon-TiO₂ [9, 10], doping of TiO₂ by transition metals [11] or noble metals [12] and TiO₂ in conjunction with other semiconductors [13-15].

Moreover, the photoactivity performances are strongly depended on the adsorption capacity of the photocatalyst, as it is known that the photocatalytic reaction occurs on the photocatalyst surface [16]. In order to improve the adsorption process, the immobilization of TiO₂ on porous materials like natural clays is a successful method. Furthermore, Ooka et al. reported that TiO₂/clay composites exhibit the advantage to photodecompose organic pollutants in water due to their hydrophobic interlayers [17]. TiO₂/clay composites have been synthesized by deposition (or pillaring) TiO₂ particles either on the surface of the clays or into their interlayers, thus obtaining dispersed TiO₂ nanoparticles with a high photoactivity. Different kinds of clays have been used. These included sepiolite [18], bentonite [19], kaolinite [20], zeolite [21] and montmorillonite [22]. Moreover, several methods have been used for the synthesis of TiO₂/clay composites. Such methods include the TiCl₄ adsorption followed by
calcination [23], sol-gel synthesis [24], TiCl₄ hydrolysis [25] and by wet grinding in an agate mill [26].

In the present work, a TiO₂-montmorillonite composite (TiO₂-M) was synthesized using a natural Na-montmorillonite impregnated with TiCl₄ and followed by calcination. Physico-chemical properties of the photocatalyst were determined by FTIR spectroscopy, TG-TDA, BET, XRD and SEM-EDX, whereas photoactivity was evaluated using five selected organic dyes in aqueous solution under UV-A irradiation. Photoactivity results were compared with those obtained employing the P25 by Evonik, a commercial sample often used as reference material in photocatalysis.

2. Materials and methods

2.1. Materials

The montmorillonite used in this study was a natural sodium-exchanged bentonite (Na-M) from the Roussel deposit in Maghnia (Algeria) and was used without any further treatment or purification. The cationic exchange capacity of Na-M, determined by methylene blue method [27], is 89.30 mmol/100 g.

TiO₂ P25 (Evonik) was used in the present study as a reference material. It is composed of approximately 80% anatase and 20% rutile, a BET surface area of 49 m²/g and with crystallites size of about 25 nm [28].

Dyes used in this work were Cristal violet (Fluka), Rhodamine B (SIGMA-ALDRICH), Congo red (Fluka), Methylene blue (Fluka) and Methyl orange (SIGMA-ALDRICH). The structure of each dye is presented in Figure 1.
2.2. Synthesis of titania-montmorillonite

The photocatalyst synthesis method was similar to that reported by Rossetto et al.[29]. Titania-montmorillonite (TiO$_2$-M) was prepared by impregnation with TiCl$_4$ (Aldrich, 99.99%). Firstly, TiCl$_4$ was diluted with CH$_2$Cl$_2$ to obtain a clear solution. Then, the mixture was slowly added to Na-M suspension under vigorous stirring at 65°C for 4 hours under reflex system. The weight ratio of Ti/montmorillonite was 10% (g/g). The wet solid obtained was washed by double-distilled water, filtered and then dried at 110°C for 24 h: finally it was calcined in air at 350°C for 4 h.

2.3. Characterization

Fourier Transform InfraRed (FT-IR) spectra of Na-M and TiO$_2$-M (as self-supporting pellets, ~20 mg cm$^{-2}$) were recorded at room temperature at a 2 cm$^{-1}$ resolution in the 4000-400 cm$^{-1}$ spectral range using a Perkin–Elmer FT-IR System 2000 spectrophotometer, equipped with a
Hg–Cd–Te cryo-detector. The self-supporting pellets were posed in a quartz cell equipped with KBr windows: before recording the FTIR spectra, all samples have been activated in vacuo connecting the cell to a vacuum line (residual pressure < 10⁻⁴ mbar). Thermogravimetry-Differential Thermal Analysis (TG-DTA) was performed using a thermogravimetric analyzer (NETZSCH STA 409 PC/PG) at a heat rate of 10°C/min from 25 to 500°C under air atmosphere.

The BET specific surface areas were determined using a Thermo Quest Sorptomatic 1990 Technical Specification instrument.

The morphology of Na-M and TiO₂-M particles was determined by Field Emission Scanning Electron Microscopy (FEG LEO 1525, ZEISS Company, Germany). The Energy Dispersion X-ray Spectroscopy (EDS) analysis (Quantax 200 with Xflash 400 detector, Bruker Company, Germany), coupled with the Scanning Electron Microscopy, was used to analyze the elements content of the samples.

The XRD patterns were recorded on a diffractometer instrument (Philips PW3830/3020 X’Pert diffractometer, PANalytical) using monochromatized CuKα radiation at λ = 1.54 Å. The interlayer d-spacing reflection was calculated using the Bragg equation [30]. The crystallite size of anatase TiO₂ was calculated using Scherrer’s formula.

3.4. Photocatalytic tests

The photocatalytic experiments were carried out in a static quartz reactor (500 mL), equipped with a cold finger to avoid thermal reactions (Figure 2). A UV-A lamp (λmax = 365nm, 100W/m²) was placed next to the reactor at 10 cm. In a typical experiment, 0.08 g of the photocatalyst and 500 mL of dye solution at 10⁻⁴ mol/L were stirred under irradiation for 6 h. During the reaction, samples were collected at selected time intervals. The adsorption experiments were performed under the same conditions without irradiation. The powdered
photocatalysts were removed by filtration (0.45 µm, Whatman) and the residual concentration of dyes was determined using a UV–visible spectrophotometer (T60 PG Instruments). The removal rate of the dyes was calculated using the following equation:

\[
R(\%) = \frac{(C_0 - C_t)}{C_0} \times 100
\]

(1)

Where \(C_0\) and \(C_t\) represent the dye concentration (mol/L) before and after reaction.

![Figure 2. Scheme of the photoreactor](image)

3. Results and discussion

3.1. Physico-chemical characterization

3.1.1. FTIR

Figure 3 shows the FTIR spectra (in the 4000-1200 cm\(^{-1}\) range) of Na-M and TiO\(_2\)-M obtained after activation \textit{in vacuo} at room temperature (RT).
For both samples there are present bands in the 3700-3000 cm$^{-1}$ range: on the basis of their spectral behavior and of literature data [31-33], they can be assigned to the stretching vibration modes of all (either structural and/or surface) OH groups mutually interacting by H-bonding. The spectroscopic counter part of these modes can be observed at \sim1630 cm$^{-1}$: it corresponds to the bending mode of all undissociated H$_2$O molecules present in/on the materials. Moreover, in the 2000-1700 cm$^{-1}$ range a complex envelope of bands is present for both materials: it can be assigned to the typical overtones of the SiO$_2$-like matrix [34]. On the other hand, it is worth noting that Na-M exhibits a sharp and complex spectral component at \sim1490 cm$^{-1}$: this component, totally absent in the case of TiO$_2$-M, is ascribable to some modes typical of carbonate anions [35]. The absence of this component in the TiO$_2$-containing material can be related to the addition of TiO$_2$, as reasonably in the synthetic step the anions present in the interlayers of the montmorillonite material are totally substituted by the anions formed by titanium-containing species. In the calcination step, the presence of the latter

Figure 3. FTIR spectra of Na-M and TiO$_2$-M after activation in vacuo at RT.
species brings about the formation of TiO$_2$ and leads to the retaining of a higher amount of water, as evidenced in TiO$_2$-M spectrum reported in Figure 3: the envelope assigned to the OH stretching mode and the component located at 1630 cm$^{-1}$ (bending mode of undissociated molecular water) are much larger/more intense in the case of TiO$_2$-M.

3.1.2. TG/DTA

The TG/DTA curves of Na-M and TiO$_2$-M samples in the temperature range from 25 to 500 °C are reported in Figure 4. The TG curve shows weight loss in two stages of 25-200 and 200-500°C for both samples. The first stage corresponds to a weight loss of 11.18 and 5.66 % for Na-M and TiO$_2$-M, respectively. This mass change is due to the evaporation of physisorbed water [24, 36]. The DTA curve exhibits endothermic peaks at 99.5 °C (Na-M) and 105.4 °C (TiO$_2$-M) which confirms the loss of adsorbed water. The lower mass change in the case of TiO$_2$-M, if compared to Na-M, can be related to the presence of TiO$_2$ itself, and also confirmed by the major amount of OH groups observed in the FTIR spectra after activation in vacuo (see Figure 3). The second stage shows a lower weight loss of 0.50% and 1.03% for Na-M and TiO$_2$-M, respectively. This is due to desorption of more strongly adsorbed water [37].
3.1.3. Specific surface area and porosity measurements

The BET specific surface area of the Na-M and TiO$_2$-M samples is shown in Table 1. It can be seen that the introduction of TiO$_2$ changes to a very limited extent the value of surface area of the starting material (49.4 to 51.5 m2/g). The change of the pore volume is more evident (from 0.107 to 0.144 cm3/g): it might be related to the addition of TiO$_2$. As a matter of fact, for both samples the isotherms related to adsorption/desorption branch of N$_2$ at 77K exhibit the shape typical of mesoporous materials and belong to type 2, with an evident hysteresis loop of type H$_3$ [38]. Moreover, if we analyse these data applying the BJH method, we can
preliminary conclude that both materials exhibit a net mesoporosity with a medium pore width of ~ 40 Å.

Table 1 Result of adsorption–desorption measurements

<table>
<thead>
<tr>
<th>Samples</th>
<th>Specific surface area (m²/g)</th>
<th>Pore volume (cm³/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na-M</td>
<td>49.4</td>
<td>0.107</td>
</tr>
<tr>
<td>TiO₂-M</td>
<td>51.5</td>
<td>0.144</td>
</tr>
</tbody>
</table>

3.1.4. XRD

The XRD patterns of Na-M and TiO₂-M samples are reported in Figure 5. The small angle XRD pattern of Na-M shows a strong peak at 2θ=5.87° due to the d(100) basal spacing reflection of the montmorillonite [39]. In the case of the TiO₂-M sample this peak is split into two components located at 2θ = 5.68° and 7.47°: this splitting is a clear indication that the introduction of TiO₂ brings about a decreasing of the basal spacing of a part of the montmorillonitic material. The latter result demonstrates that the titanium species are really inserted in the montmorillonite interlayers. On the wide-angle diffraction, in the TiO₂-M diffractogram we observe the typical peaks ascribable to a montmorillonite material; moreover, titanium crystallization reflections are also observed, in which only the anatase polymorph is evidenced. The average crystallite size of anatase was estimated of ~ 15-20 nm employing the (101) reflex for the calculation.
3.1.5. SEM-EDX

Figure 6 reports the SEM images of Na-M and TiO$_2$-M. The Na-M sample has a spongy integrated flakes-like structure; furthermore, it exhibits some smooth regions in its structure. The TiO$_2$-M image shows a clear change of the montmorillonite morphology: this feature can be ascribed to the decreasing of the interlayer spacing brought about by the addition of TiO$_2$, as also indicated by the XRD characterization.

The results of the EDS analysis of Na-M and TiO$_2$-M are reported as numerical values in Table 2. The results of the elemental analysis of Na-M indicate that Si and Al are the main constituents of the material, which are estimated to be 60.06 and 20.81 wt%, respectively. Furthermore, Na content in Na-M is larger than that of Ca. The content of Ti element in TiO$_2$-M is 48.6 wt%. The high Ti content observed is much more than that added from TiCl$_4$ during the preparation (which was only 10 wt %). This is related to the calcination step operated at 350°C: as revealed by TG/DTA measurements, the loss of both adsorbed and structural water justifies the observed increasing of the Ti content [22].
Figure 6. SEM images of Na-M (left-hand section) and TiO₂-M (right-hand section) samples.

Table 2 Elemental analysis of Na-M and TiO₂-M

<table>
<thead>
<tr>
<th>Element</th>
<th>Si</th>
<th>K</th>
<th>Al</th>
<th>Mg</th>
<th>Fe</th>
<th>Na</th>
<th>Ca</th>
<th>Cl</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na-M</td>
<td>60.06</td>
<td>1.03</td>
<td>20.81</td>
<td>5.37</td>
<td>6.07</td>
<td>4.84</td>
<td>1.25</td>
<td>0.57</td>
<td>-</td>
</tr>
<tr>
<td>TiO₂-M</td>
<td>25.26</td>
<td>1.27</td>
<td>8.58</td>
<td>1.64</td>
<td>2.24</td>
<td>3.25</td>
<td>1.48</td>
<td>7.72</td>
<td>48.56</td>
</tr>
</tbody>
</table>

3.2. Photocatalytic activity

The results of the decolourization of different dyes using both P25 and TiO₂-M under UV-A irradiation compared with direct photolysis and dark adsorption are reported in Figures 7-11. Furthermore, the removal rates of different dyes are summarized in Table 3. From these results it can be observed that, after 6 h, the direct photolysis was different for each dye and was in the order: Methylene blue (20.6 %) > Rhodamine B (10.3 %) > Congo red (6.2 %) > Crystal violet (5.7 %) > Methyl orange (4.4 %).

The results of the dark adsorption on the P25 were in the range of 6.0 % to 18.6 %, where the Congo red and the Crystal violet possess the highest values. The photodegradation rates of dyes by P25 were higher than 80% except for the Methyl orange (59.6 %). In the case of
TiO$_2$-M, the dark adsorption effectiveness of the same dyes follows the order: Methylene blue (67.6 %) > Crystal violet (58.8 %) > Rhodamine B (45.0 %) > Methyl orange (14.9 %) > Congo red (6.2 %), reflecting the higher adsorptive capacity of the cationic dyes (Methylene blue, Crystal violet and Rhodamine B). On the other hand, the anionic dyes show a smaller adsorption. This is due to less attraction charges of TiO$_2$-M for the anionic dyes. The dissimilarity observed between P25 and TiO$_2$-M on the adsorption rate of dyes can be explained by the different properties and morphologies of these materials. The surface of TiO$_2$-M is porous and spongy, on the contrary TiO$_2$ P25 particles exhibit a smooth surface. Furthermore, the high cation exchange capacity of TiO$_2$-M due to negative charge in its interlayer increases the attraction and the adsorption of cationic dyes [40]. In addition, the point of zero charge (PZC) of TiO$_2$ P25 is reported to be in the pH range of 6-7.5 [41], which is near to our pH range working. At this point, the surface charge is null thus resulting to be less attractive to the dye molecules.

The photodegradation of dyes by TiO$_2$-M is in the order: Crystal violet (97.1 %) > Methylene blue (93.2 %) > Rhodamine B (79.8 %) > Methyl orange (36.1 %) > Congo red (22.6 %). It is worth mentioning the similarity in the orders obtained in the adsorption and photodegradation of the dyes under investigation. These results confirm the relationship between the adsorption and the photocatalytic activity, as the photodegradation reaction of organic pollutants occurs after their adsorption on the surface [40]. It is important to note that the adsorption behavior of this material contributes simultaneously to accelerate the photocatalytic action and to participate for the total removal of dyes. Hence, the total degradation rate of dyes should include an adsorption part of dye especially when dye molecules are accumulated inside the pores of TiO$_2$-M: in this case, UV irradiation and produced radicals cannot reach them. Furthermore, it is difficult to evaluate the adsorption contribution in the degradation rate, but
we can ensure that this material combines the adsorption and the photocatalytic reaction to remove dyes from water.

The comparison between P25 and the synthesized TiO$_2$-M composite demonstrates the advantages of this latter with a high adsorptive behavior and a cation exchange capacity of 96.5 mmol/100g, which favours the adsorption of a larger number of dye molecules. Consequently, it facilities their degradation by the photoactive deposed TiO$_2$ particles, leading to a higher concentration of dye molecules around the TiO$_2$ particles as compared to that in the bulk solution, resulting in an increase in the degradation rate [42-43]. In addition, the adsorptive behavior of TiO$_2$-M may contribute to the fixation of the intermediates produced during the degradation in order to be further oxidized.

![Figure 7. Photocatalytic decolorization of Crystal violet. (a):photolysis, (b):P25 (dark), (c): TiO$_2$-M (dark), (d): P25 (UV), (e): TiO$_2$-M (UV).]
Figure 8. Photocatalytic decolorization of Rhodamine B. (a): photolysis, (b): P25 (dark), (c): TiO$_2$-M (dark), (d): P25 (UV), (e): TiO$_2$-M (UV).

Figure 9. Photocatalytic decolorization of Congo red. (a): photolysis, (b): P25 (dark), (c): TiO$_2$-M (dark), (d): P25 (UV), (e): TiO$_2$-M (UV).
Figure 10. Photocatalytic decolorization of Methylene blue. (a): photolysis, (b): P25 (dark), (c): TiO$_2$-M (dark), (d): P25 (UV), (e): TiO$_2$-M (UV).

Figure 11. Photocatalytic decolorization of Methyl Orange. (a): photolysis, (b): P25 (dark), (c): TiO$_2$-M (dark), (d): P25 (UV), (e): TiO$_2$-M (UV).
Table 3. Comparison of the removal rates of different dyes using P25 and TiO$_2$-M

<table>
<thead>
<tr>
<th></th>
<th>Crystal violet</th>
<th>Congo red</th>
<th>Methylene blue</th>
<th>Methyl orange</th>
<th>Rhodamine B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photolysis</td>
<td>5.7</td>
<td>6.2</td>
<td>20.6</td>
<td>4.4</td>
<td>10.3</td>
</tr>
<tr>
<td>P25</td>
<td>16.5</td>
<td>18.6</td>
<td>7.6</td>
<td>6.0</td>
<td>8.1</td>
</tr>
<tr>
<td>Under UV</td>
<td>95.8</td>
<td>85.9</td>
<td>80.7</td>
<td>59.6</td>
<td>81.2</td>
</tr>
<tr>
<td>TiO$_2$-M</td>
<td>In dark</td>
<td>58.8</td>
<td>6.2</td>
<td>67.6</td>
<td>14.9</td>
</tr>
<tr>
<td>Under UV</td>
<td>97.1</td>
<td>22.6</td>
<td>93.2</td>
<td>36.1</td>
<td>79.8</td>
</tr>
</tbody>
</table>

4. Conclusions

TiO$_2$-montmorillonite was synthesized using a simple method which consists in the impregnation of the clay with TiCl$_4$ followed by calcination.

The characterization results show that TiO$_2$ particles were, at least in part, introduced in the interlayer spaces of the montmorillonite. The Ti content in TiO$_2$-M was 48.6 wt% with an anatase crystallite size of about 15-20 nm. The adsorption effectiveness and the photocatalytic degradation reactions of TiO$_2$-M were more pronounced for the cationic dyes. Additionally, the photoactivity of TiO$_2$-M increases when the dye molecules are more adsorbed: this is due to the increase of the contact between the TiO$_2$ particles deposited on the TiO$_2$-M surface and the dye molecules.

The use of TiO$_2$-M composite for water treatment is an attractive alternative to the commercial TiO$_2$ taking into account the higher adsorptive behavior, its low-cost and also its rapid recovery at the end of the test by simple filtration.
References

