
This is the author’s final version of the contribution published as:

Matteo Baldoni, Luciano Baresi, Mehdi Dastani (eds.) Engineering Multi-
Agent Systems. Third International Workshop, EMAS 2015 Istanbul, Turkey,
May 5th, 2015. Workshop Notes.

The publisher’s version is available at:
http://www.di.unito.it/~baldoni/EMAS2015/papers/

EMAS2015-WorkshopNotes.pdf

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/1566871

This full text was downloaded from iris -AperTO: https://iris.unito.it/

iris-AperTO
University of Turin’s Institutional Research Information System and Open Access Institutional Repository

Matteo Baldoni, Luciano Baresi,
Mehdi Dastani (eds.)

Engineering
Multi-Agent Systems

Third International Workshop, EMAS 2015
Istanbul, Turkey, May 5th, 2015

Workshop Notes

EMAS 2015 Home Page:
http://www.di.unito.it/~baldoni/EMAS2015/

Preface

The engineering of multi-agent systems (MAS) is a multi-faceted, complex task.
These systems consist of multiple, autonomous, and heterogeneous agents, and
their global behavior emerges from the cooperation and interactions among the
agents. MAS have been widely studied and implemented in academia, but their
full adoption in industry is still hampered by the unavailability of comprehensive
solutions for conceiving, engineering, and implementing these systems.

Being at the border between software engineering and artificial intelligence,
they can benefit from both disciplines, but at the same time they lack proper
mainstream solutions. For example, even if the artificial intelligence side has been
proposing conceptual models for years, there is still a lack of proper abstrac-
tions unanimously recognized as effective design solutions for the conceptions of
agents and of their interactions. Similarly, there is still a significant gap between
the availability of “standard” software engineering implementation and valida-
tion solutions, and their adoption in the conception of MAS. More recently, the
emergence of self-adaptive software systems, and more in general of the idea of
software systems that can change their behavior at runtime has imposed MAS
as one conceptual solution for their realization, but it has also emphasized the
need for proper and sound engineering solutions. Conversely, design artifacts
(e.g., agent or MAS models) can be also used to support and assist the testing
and debugging of conventional software, while the use of agent-oriented pro-
gramming languages results in programs that are more readily verifiable. There
many pieces belong to the same puzzle, but significant work is still needed to
put them together.

As said, many solutions have already been proposed. They address the use
of common software engineering solutions for the conception of MAS, the use of
MAS for ameliorating common software engineering tasks, and also the proper
blending of the two disciplines to conceive MAS-centric development processes.
Academia has been working on ideas and solutions; industry should have ex-
ploited them to improve the state of the art. The cross-fertilization is needed to
make the two sides of the same coin cooperate, and a single, common venue can
help exchange ideas, compare solutions, and learn from one another.

The International Workshop on Engineering Multi-Agent Systems (EMAS)
aims to be this comprehensive venue, where software engineering and artificial
intelligence researchers can meet together and discuss the different viewpoints
and findings, and where they can also try to present them to industry. EMAS
was created in 2013 as a merger of three separate workshops (with overlapping
communities) that focused on the software engineering aspects (AOSE), the
programming aspects (ProMAS), and the application of declarative techniques
to design, program, and verify (DALT) MAS. The workshop is traditionally
co-located with AAMAS (International Conference on Autonomous Agents and
Multi-agent Systems) and thus this year it is in Istanbul (Turkey).

This year the workshop is a single-day event. It got 19 submissions, and
after a thorough review process, the program committee selected 11 papers for
presentation. Even if accepted papers are fewer than in previous years, we are

v

pretty confident that they can offer an interesting perspective of the work that
has been done for conceiving sound and complex MAS, and they will also offer
the opportunity for fruitful and interesting discussions.

We would like to thank all the members of the Program Committee for their
excellent work during the reviewing phase. Moreover, we would like to thank all
the members of the Steering Committee of EMAS for their valuable suggestions
and support.

We hope to see you all in Istanbul.

March 26th, 2015 Matteo Baldoni
Luciano Baresi
Mehdi Dastani

vi

Table of Contents

Designing a Flexible Interface for Knowledge Representation in Agent
Systems . 1

Timea Bagosi, Joachim De Greeff, Koen V. Hindriks and Mark A.
Neerincx

A Probabilistic BPMN Normal Form to Model and Advise Human
Activities . 19

Hector G. Ceballos, Victor Flores-Solorio and Juan Pablo Garćıa-Vázquez

ACE: a Flexible Environment for Complex Event Processing in Logical
Agents . 37

Stefania Costantini

Tractable Inquiry in Information-rich Environments 53
Barbara Dunin-Keplicz and Alina Strachocka

A Testbed for Agent Oriented SmartGrid Implementation 70
Jorge J. Gomez-Sanz, Nuria Cuartero-Soler and Sandra Garcia-Rodriguez

Towards Quantitative Analysis of Multiagent Systems through
Statistical Model Checking . 83

Benjamin Herd, Simon Miles, Peter McBurney and Michael Luck

Semantic Mutation Testing for Multi-Agent Systems 100
Zhan Huang and Rob Alexander

A Formal Description of a Mapping from Business Processes to Agents . . 117
Tobias Küster, Marco Lützenberger and Sahin Albayrak

Validating Requirements Using Gaia Roles Models . 134
Nektarios Mitakidis, Pavlos Delias and Nikolaos Spanoudakis

Programming Mirror-Worlds: An Agent-Oriented Programming
Perspective . 152

Alessandro Ricci, Angelo Croatti, Pietro Brunetti and Mirko Viroli

Evaluating Different Concurrency Configurations for Executing
Multi-Agent Systems . 169

Maicon Rafael Zatelli, Alessandro Ricci and Jomi Fred Hübner

vii

Program Committee

Natasha Alechina University of Nottingham
Matteo Baldoni University of Torino
Luciano Baresi Politecnico di Milano
Cristina Baroglio University of Torino
Jeremy Baxter QinetiQ
Olivier Boissier ENS Mines Saint-Etienne
Lars Braubach University of Hamburg
Rem Collier UCD
Massimo Cossentino National Research Council of Italy
Fabiano Dalpiaz Utrecht University
Mehdi Dastani Utrecht University
Louise Dennis University of Liverpool
Juergen Dix Clausthal University of Technology
Amal El Fallah Seghrouchni LIP6 - University of Pierre and Marie Curie
Aditya Ghose University of Wollongong
Paolo Giorgini University of Trento
Adriana Giret Technical University of Valencia
Jorge Gomez-Sanz Universidad Complutense de Madrid
Christian Guttmann Institute of Value Based Reimbursement System
James Harland RMIT University
Vincent Hilaire UTBM/IRTES-SET
Koen Hindriks Delft University of Technology
Benjamin Hirsch EBTIC / Khalifa University
Tom Holvoet Dept. of Computer Science, K.U.Leuven
Jomi Fred Hubner Federal University of Santa Catarina
Joao Leite Universidade NOVA de Lisboa
Yves Lespérance York University
Brian Logan University of Nottingham
Viviana Mascardi University of Genova
Philippe Mathieu University of Lille 1
John-Jules Meyer Utrecht University
Frederic Migeon IRIT
Ambra Molesini Alma Mater Studiourum - Universtà di Bologna
Pavlos Moraitis Paris Descartes University
Haralambos Mouratidis University of Brighton
Jörg P. Müller TU Clausthal
Andrea Omicini Alma Mater Studiorum - Università di Bologna
Juan Pavón Universidad Complutense de Madrid
Alexander Pokahr University of Hamburg
Enrico Pontelli New Mexico State University
Alessandro Ricci Alma Mater Studiorum - Università di Bologna
Ralph Ronnquist Real Thing Entertainment Pty Ltd
Sebastian Sardina RMIT University

viii

Valeria Seidita University of Palermo
Guillermo R. Simari Universidad Nacional del Sur in Bahia Blanca
John Thangarajah RMIT University
Paolo Torroni Alma Mater Studiorum - Università di Bologna
M. Birna van Riemsdijk TU Delft
Wamberto Vasconcelos University of Aberdeen
Jørgen Villadsen Technical University of Denmark
Gerhard Weiss University Maastricht
Danny Weyns Linnaeus University
Michael Winikoff University of Otago
Wayne Wobcke University of New South Wales
Neil Yorke-Smith American University of Beirut

ix

Additional Reviewers

Abushark, Yoosef
Sabatucci, Luca

x

Designing a Flexible Interface for Knowledge
Representation in Agent Systems

Timea Bagosi, Joachim de Greeff, Koen V. Hindriks, and Mark A. Neerincx

Delft University of Technology, Delft, Netherlands
{T.Bagosi,J.deGreeff,K.V.Hindriks,M.A.Neerincx}@tudelft.nl

Abstract. Creating intelligent agents involves a knowledge representa-
tion (KR) to formally represent and manipulate information relevant for
agents. In practice, agent programming frameworks are dedicated to a
specific KR, limiting the use of other possible ones. In this paper we
address the issue of creating a flexible choice for agent programmers
regarding the technology they want to use. We propose a generic inter-
face, that provides an easy choice of KR for agent systems. Our proposal
is governed by a number of design principles, an analysis of functional
requirements that cognitive agents pose towards a KR, and the identifi-
cation of various features provided by KR technologies that the interface
should capture. We provide two use-cases of the interface by describing
its implementation for Prolog and OWL with rules.

Keywords: knowledge representation technology, agent programming
framework, generic interface design

1 Introduction

In agent systems knowledge representation is used to store, retrieve and update
information relevant for agents. In principle, knowledge can be represented in
many different ways, but in practice programmers tend to be limited to a specific
approach regarding knowledge representation that a particular agent program-
ming framework offers. In many agent frameworks (e.g. Jason [5], 2APL [7] and
GOAL [13]) Prolog (or a variant) has become the de-facto standard. However,
there may exist a variety of reasons for preferring different knowledge repre-
sentation approaches, but it is typically not possible to switch to a different
language within an agent framework. Agent development frameworks often in-
clude assumptions regarding the specific approach to knowledge representation
they use, and are as such committed to this.

In this paper we propose a design for a Knowledge Representation Interface
(KRI) that facilitates an easy choice of KR for agent frameworks. Currently, this
interface presupposes the adoption of the chosen KR by all agents in an agent
system. In principle, it is conceivable that a single agent would use multiple KRs,
or multiple interacting agents would each utilize different KRs. The combination
of multiple KRs into a single agent framework poses a number of issues that are
investigated by [8]. This work is orthogonal to our work as our aim is to facilitate

1

the easy integration of an arbitrary single KR technology into a cognitive multi-
agent system. Investigating issues relating to multiple interacting agents that
each may use a different KR technology also is outside the scope of this work.
Here, instead, we focus on the design of an interface that allows for flexible choice
of KR for all agents of an agent systems.

Our proposed interface design is applicable to a range of agent frameworks
that facilitate agents with mental states, and all classes of KR that comply to
the definition of [8], as described in detail in section 3.

1.1 Motivation

A generic interface for flexible use of KRs in agent frameworks is useful for
several reasons. Motivations include the following aspects:

Expressivity Knowledge representation languages differ in the expressivity
that they offer. Depending on the task, domain, or scenario, one language
might be more appropriate than another.

Agent programmer A programmer of the agent system may have a personal
preference based on, e.g., ease of use, familiarity, or other factors. For exam-
ple, a programmer may be familiar with one language but not with another,
and might prefer using the agent framework in combination with the KR
language he or she knows best.

Modularity The Dagstuhl report on “Engineering Multi-Agent Systems” [10]
advocates a component-based agent design, as this would provide flexibility,
reduce overhead, bridge the gap to other architectures and could facilitate
more widespread adoption of agent systems in real-world applications. A
separation of the agent framework and the KR it uses – that is agnostic
with respect to the underlying agent programming language – subscribes to
this modular approach.

Legacy systems When using agent programming as part of real-world appli-
cations, one commonly has to access existing infrastructure, which typi-
cally may include industry-standard approaches for data storage (e.g. Ora-
cle database). Rather than implementing some kind of bridge between these
legacy databases and the knowledge representation language used in the
agent framework on an ad-hoc basis, a much better approach would be the
use of a generic interface, so that the agent framework can use the legacy
database directly.

Multiple sources An agent may need to combine knowledge from multiple
sources, that are either distributed or not. A generic interface supporting a
variety of KR languages, allowing the use of several KR sources from several
locations is useful in this context. A particular case is when dealing with
large multi-agent systems that may include different manifestations of the
agents, such as embodied in robots, software agents and modeling users.

Reusability A wide range of agent frameworks could benefit from providing a
flexible choice of various logic-based KR technologies. Reusability prevents
the need for reinventing the wheel, as the interface eliminates the need to

2

implement a framework-specific integration for a KR. Moreover, the effort
to support this interface for a particular agent framework is a one time
investment that enables the use of any KR for which the proposed interface
has been implemented.

1.2 Scope and Methodology

The aim of this paper is to introduce a KRI that is reusable across a range
of agent platforms which can benefit from providing a flexible choice of various
logic-based KR systems. The interface is aimed to be generic, and can be applied
to agent frameworks that fit our basic assumptions. By supporting the interface,
an agent framework facilitates the choice of a technology that provides the re-
quired expressivity or other feature, and the choice of a preferred knowledge
technology by its user.

Creating a generic KRI poses a number of challenges. For instance, it is im-
portant to identify the right abstraction level for the KRI specification. Striking
the right balance between a high level description (to be as inclusive as possible)
and a low level description that may be close to a particular KR language (to be
able to specify the details) is essential for the interface design. Leading in this
will be the functionalities required by the agent frameworks.

We use the following methodology to derive the interface. First, we explore
related literature, describing the various approaches of how each agent framework
incorporates a specific KR. Usually the choice of representing knowledge through
a certain language is implicitly integrated within a given framework, rather than
being explicitly considered, let alone providing users with any sort of choice.
To the best of our knowledge, no work has yet been done on the design and
development of a generic interface that facilitates the use of a range of KRs.

Having identified the need for such a KRI (based on the motivations described
above), and given the apparent lack of such a construct in related work, we then
present the design of the KRI, governed by the following three aspects: 1) a
number of design principles serving as guidelines, 2) the concept of cognitive
agents and related assumptions that we make about agent frameworks, and
3) the identification of features provided by various KR technologies that are
considered as requirements for a KRI.

After having presented the KRI, we describe its application with two imple-
mentation: in the first implementation the KRI is instantiated with SWI Prolog
(representing a logic programming KR language), and in the second it is instan-
tiated with the ontological web language OWL with SWRL rules (a description
logics language), with Pellet [29] as the reasoning engine. After that we assess the
KRI usability for these two cases, and based on this draw conclusions regarding
the interface’s effectiveness and limitations.

The remainder of this paper is organized as follows. Section 2 discusses related
work on the usage of knowledge representation systems into agent frameworks
with a focus on the agent programming literature. In section 3 we introduce
a number of design principles and present a structural analysis of agents and
features of KR technologies that guide the design of the proposed interface.

3

Section 4 presents the design of the KR interface itself and motivates the choices
that we have made. In section 5 we discuss two instantiations of the interface
(Prolog and OWL). Section 6 briefly discusses a preliminary analysis of the
interface that was implemented for Prolog, and OWL with rules. Finally, we
conclude the paper with future work in section 7.

2 Related Work

In this section we discuss related work with respect to the choice and possible use
of KR languages in agent frameworks. It is useful to note here that some agent
frameworks such as JACK [31] and Jadex [26] have taken a more pragmatic
road, and use object oriented technology in combination with, e.g., XML, to
implement the beliefs and goals of an agent, rather than using a knowledge
technology in the sense that we use it here (cf. Davis [9]). The focus of our paper
is more on generic logic-based agent frameworks that use an existing technology
for representing an agent’s environment.

Most work on logic-based agent programming frameworks has built on top
of logic programming or some kind of variant thereof, e.g. 2APL [7], GOAL [13],
Jason [5]. Alternatively, several works have described approaches towards the
integration of semantic web technologies (such as OWL) into agent-based frame-
works. For example, for Jason there exist the JASDL extension [17], which allows
for integration with OWL, and as such lets agents incorporate OWL knowledge
into their belief base. The Java-based agent framework, JIAC [14], also uses OWL
for representing agent knowledge. While comparable in the sense that these sys-
tems allows for the use of OWL in the agent framework, the KR interface that
we propose here is aimed to be more general, and allow a range of KRs to be
used in an agent framework .

The work in [20] defines a version of the BDI agent-oriented programming
language AgentSpeak based on description logic, rather than one based on pred-
icate logic (e.g. Prolog). The work reported in [12] proposes the use of a se-
mantic web language as a unifying framework for representing and reasoning
about agents, their environment, and the organizations they take part in. The
work is presented as a first step towards the use of ontologies in the multi-agent
framework JaCaMo, but does not discuss the particulars to achieve this.

Probabilistic approaches have also been considered as KRs in conjunction
with multi-agent systems. E.g. [30] propose an extension of the 3APL language
based on a probabilistic logic programming framework, while [28] discuss the use
of Bayesian networks for representing knowledge in agent programs.

Access to external data sources by agents in the IMPACT agent frame-
work [11] is achieved through an abstraction layer, dubbed body of software
code, that specifies a set of all data-types and functions the underlying data
source provides.

The work described in [8] investigated the issue of integrating multiple KR
technologies into a single agent. The paper proposes techniques for combining
knowledge represented in different knowledge representation languages. This is

4

orthogonal to our work as our aim is to facilitate the easy use of an arbitrary
single KR within a cognitive agent system.

The usefulness of facilitating the use of a particular KR in other frameworks
has been recognized in the literature, and has driven several efforts in defining an
Application Programming Interface (API) for several technologies. [3] and [15]
for instance, have proposed an API for description logics and OWL respectively,
and [6] proposes an API for a Fuzzy Logic inference engine. These APIs are
facilitating all aspects of a specific KR. In contrast, in this paper we aim at
a generic KRI to connect arbitrary agent frameworks with arbitrary KRs that
comply to our minimal assumptions.

Although most work has focused on the integration of logic programming
and semantic web technologies and Bayesian networks, we are not aware of any
work that has investigated the use of these technologies in agent frameworks in
a generic manner.

3 Dimensions of the KRI design

Our aim is to design a standardized, extensible and easy to use interface that
allows for a flexible choice of KR languages in agent frameworks. To this end, we
first present a methodological approach for the design of such a framework. In
section 4 we propose an interface specification that facilitates choice of KRs. In
order to design such an interface, three design dimensions are taken into account.
The first dimension concerns the design principles, which we discuss in section
3.1. The second dimension concerns the concept of a cognitive agent and related
assumptions that we make about agent frameworks. In section 3.2 we present a
structural and generic analysis of the features and components that are typically
required by agent frameworks. The third dimension concerns the features that
are made available by existing knowledge representation technologies that can be
supported by the proposed interface. In section 3.3 we analyze and identify these
KR features. Taken together, these three dimensions define the design space of
the proposed interface.

3.1 Design Principles

For creating a generic KR interface for agent frameworks, reuse is a key concern.
We want the interface to serve all agent frameworks that could benefit from an
easy choice of KRs. To this end, we present and briefly discuss various reuse
design principles that we have taken into account in the design of the interface.

One of the most important reuse principles in the design of a well-defined in-
terface concerns abstraction. Abstraction plays a central role in software reuse,
and is essential for the reuse of software artifacts [18]. By means of abstraction,
important aspects are put in focus while unimportant details are ignored [18,
1]. Each KR technology introduces a specific language and a key issue for our
interface specification is how to abstract from differences in the grammar be-
tween KR languages. We want to be largely agnostic about the particular type

5

of agent framework that a knowledge representation is used in. We will only
assume, for example, that an agent decides what to do next based on a state
representation expressed in some KR language and will make no stronger as-
sumptions about the particular structure of the mental state of an agent (see for
a more detailed discussion section 3.2). Similarly, we want to be largely agnostic
about the particular type of KR languages. We assume, for example, that a KR
language provides variables, but will not assume that such a language provides
rules (which would exclude, e.g., SWRL and PDDL without axioms; see for a
more detailed discussion section 3.3). The interface that we propose here pro-
vides an abstraction in the sense that it is a high-level, succinct, natural, and
useful specification that facilitates easy use of KRs in agent frameworks.

Two closely related design principles that are very important when designing
for reuse are the principles of generality and genericity [1]. Generality refers to
the abstraction of commonalities and the ignoring of (detailed) differences that
relate to the how, when, or where things are done by a technology. Generality
is important when looking at different KR technologies, as our aim is to be
as general as possible and support any KR class that fits our assumptions. An
obvious example is to abstract from the particulars of how a reasoning engine
made available by a technology answers a query; an interface should only assume
that some engine is made available. Genericity refers to the abstraction of specific
parameters of a technology and the introduction of generic parameters that
represent generic types. The use of generic parameters is an aid to reusability,
because it allows to define generic functionality instead of functionality that is
tight to technology specific features.

The principle of modularity refers to considerations of size and number
of a reusable software components. The general principle dictates to split large
software components into smaller subcomponents; the basic idea being that ad-
equate modular design increases reusability. In order to obtain a loosely coupled
system, we design a modular interface whose components are determined by the
functional requirements it has to fulfill.

3.2 Cognitive Agent Frameworks: Functional Requirements

In this section we examine which features are required for using a KR within an
agent system. Importantly, an interface only provides an effective specification
if it includes all of the information that is needed to realize its purpose. In other
words, the KRI needs to provide support for all of the functions that an agent
is supposed to be able to implement. To identify these functional requirements,
we discuss and make explicit the notion of an agent that has been used for the
interface specification defined in the next section.

Because we do not want to commit to any particular agent concept, we start
from the very abstract concept of an agent as an entity that perceives and acts
in its environment of [27]. Starting from this notion of agent, we assume that
an agent maintains a state in order to represent its environment by means of
a knowledge representation language. As is usual in most agent literature on
cognitive agents, we call this agent state a mental state, even though we do not

6

Fig. 1. A Cognitive Agent Architecture, consisting of a Mental State and Decision
Making module. Optional components are automated planning (PL), machine learning
(ML) model checking (MC), and other modules. Mental states are realized with a KR,
accessed through an interface.

make any additional assumptions on the structure of this state. Mental states
in agent frameworks differ significantly, and we do not want to commit to any
particular framework. A state of a Jason agent, for example, consists of events,
beliefs, and plans [4], whereas a state of a Goal agent consists of knowledge,
beliefs, and declarative goals [13].

A cognitive agent (cf. Figure 1) maintains a mental state in order to be able to
evaluate whether certain conditions hold, by querying its state. Querying is one of
the most important uses of a KR technology, as it provides an essential capability
required for effective decision making of an agent, which we identify here as the
main functional component of an agent. Another reason for an agent to maintain
a mental state is to maintain an accurate and up to date representation of the
state of its environment by updating its state with information received through
percepts or other events. The basic notion of agent of [27] already implies that
an agent is connected to an environment. Such an agent needs to be able to
align percepts it receives from an environment with its mental state. An agent
also needs to be able to evaluate when it can perform an action, and represent
what the effects of an action are. In other words, an agent needs some kind
of action specification to be able to interact with its environment. Finally, we
also assume that an agent can be part of a multi-agent system, and is able to
exchange messages with other agents. Figure 1, which represents the basic agent
architecture that is used in the design of the interface, illustrates this.

Summarizing, we identify the following list of capabilities that are required
for creating a functional cognitive agent in a multi-agent framework:

1. represent the contents of a mental state

2. store the contents of a mental state

7

3. query the contents of a mental state in order to evaluate conditions by means
of some form of reasoning

4. update the contents of a mental state to reflect changes in an environment

5. process percepts received from an environment

6. process actions by evaluating preconditions and reflecting postconditions

7. process messages exchanged between agents

Next, we discuss the functional requirements that these items introduce to-
wards the KR language and technology, and its consequences regarding the de-
sign of a generic interface.

Item 1 above does not introduce any requirements as representing is the
main purpose of a knowledge representation language. We do not assume, for
example, that an agent’s state must be consistent in a specific sense. Item 2
requires that a KR provides support for the (temporary) storage of the contents
of an agent’s state. This item does not require such a store to be persistent. Item
3 requires support from a KR technology to evaluate queries on the mental state
of an agent. Without any additional assumptions on the structure of a mental
state, this item does not introduce new requirements, as querying is a common
feature provided by the KR. Item 4 requires support from a KR technology
to update, i.e., to add and remove, contents of a mental state. This is a basic
requirement, that only requires that a KR makes available the capabilities of
adding and removing content from a store. Item 5 requires support in principle
for representing any information that an agent receives from its environment, and
updating the representation of the environment that the agent maintains, these
functionalities being already mentioned in Item 1 and 4. Item 6 requires that
the knowledge representation language can also be used to represent the actions
that the agent can perform. We assume an action can be expressed as a list of
preconditions and postconditions. It is essential to be able to evaluate whether an
action can be performed, processing preconditions being fulfilled by the querying
functionality of Item 3. The ability to process the effects of an action, i.e. its
postconditions, is fulfilled by item 4 that requires support for updating a mental
state. Item 7 requires support for representing and processing the content of
a message that agents exchange. We assume here that communication between
agents does not introduce any additional requirements besides those already
introduced by previous items 1 - 4.

Apart from very generic features and components of cognitive agents such
as mental state, we also take into account that agent frameworks might support
additional optional components that are only available in some frameworks but
not all. The components drawn with dotted lines in Figure 1 represent these
components. For example, an agent framework might support automated plan-
ning (PL), model checking (MC), and even learning mechanisms, such as, for
example, reinforcement learning (RL). These components do not exhaust the
possible optional components as indicated by the three dots. It is likely that
such optional components introduce additional demands on the interface, since
they provide support to an agent framework through the interface.

8

3.3 Features of Knowledge Representation Technologies

Figure 1 includes an abstract definition of a knowledge representation technology
as a tuple 〈L, |=,⊕〉, where L is a language, |= is an inference relation, and ⊕ is
an update operator (definition taken from [8] and based on [9]). The inference
relation evaluates a subset Lq ⊆ L of expressions of the language called queries
on a store or set of language elements. We consider our interface to be applicable
to the classes of KR that comply to this definition.

This notion of a KR technology covers most, but not all existing technologies,
including, for example, logic programming (Prolog), answer set programming
(ASP), database languages (e.g., SQL, Datalog), semantic web languages (e.g.,
OWL, SWRL), description logic programming (DLP), planning domain defini-
tion language (PDDL), fuzzy logic, and Bayesian networks. Using this abstract
definition as a starting point, we identify more concrete features and functions
that are supported by KR technologies that can be included in an interface
specification. Each of these technologies is characterized by a particular logical
language and a corresponding inference mechanism, even though these widely
vary between different technologies.

Having described KR technologies in a general sense above, we now define
those aspects that have an impact on the design of a generic KR interface, either
on its structure or its provided funtionality.

Language. Although expressivity is a very important aspect of any knowl-
edge representation language, we do not explicitly list it here, as it does not
appear to be useful to control expressivity by means of a KR interface. It is
essential for a KR to provide a parser, necessary to be able to operate with
the textual representation of the language, and perform syntax checking. Syntax
highlighting is an extra feature that the parser can provide.

Support for data types may widely differ between KRs, but it is important
for the engineering of practical agent systems. Typically, basic data types such
as (big) integers, floats, booleans, strings, and lists are distinguished from more
complex data structures such as stacks in programming languages. Representing
data types in the KR language is a very basic feature, and hence it is considered
a requirement for our interface.

Storage. The main purpose of a storage is to store knowledge. As a basic
feature of any KR system is a knowledge base, creating a store is an important
requirement towards a generic abstraction. In addition, modifying a store poses
the requirement to be able to insert into and delete from a knowledge store.

Even though we did not identify a functional requirement for stores to be
persistent in Section 3.2, still, a knowledge technology may provide support
for persistence, and a KR interface may make this capability available to an
agent. An example for such a knowledge technology is persistent triple stores
for ontologies. This feature should be included in order to create multi-agent
systems, where the knowledge base of an agent (or multiple agents sharing a
database) needs to be preserved for a later use.

Integrating knowledge from other sources can be realized in many forms, such
as accessing existing (legacy) databases, or accessing information on the web.

9

One example is the linked open data repositories of the Semantic Web. This
feature, however favorable, cannot be considered as a general requirement.

Reasoning. Querying is the basic operation to retrieve information from a
knowledge base. We can assume the basic form of querying is to retrieve ground
data that matches a query pattern with free variables. Without querying there
can be no interaction with a knowledge base, hence it is a main requirements
towards a KR interface.

Parallel querying is to be able to ask multiple queries simultaneously. This
feature is available for some technologies only (like triplestores), but not for
others (such as Prolog), where one needs to first exhaust all solutions of a query
at a time, hence it is considered an extra feature, and not a basic requirement.

We assume that a substitution based parameter instantiation mechanism is
supported, as is usual for logic-based languages for all practical purposes. Note
that this does not mean that we make any strong assumptions about the domains
of computation. Query results are in the form of bindings between variables and
some arbitrary terms. A substitution to represent a variable to term binding
therefore is the basic form of expressing a query result.

Other. Error handling provides support for errors that might occur dur-
ing parsing, knowledge base creation, modification, or other language-related
operations. Some form of error handling is indispensable from an interface.

A knowledge technology that supports modularization facilitates the struc-
turing of knowledge into different modules. This feature may greatly enhance
the simultaneous development of knowledge by a team of developers. A modular
architecture might greatly influence our design of interface, as mappings between
the modules of the knowledge and the interface might be identified.

Three forms of logical validation can be supported by a KR: consistency,
satisfiability and validity checking. As these validation forms are either provided
by the technology or not, we cannot generalize it into a feature requirement.

Summarizing the above, we identified the following list of basic features and
extra features:

Basic Features

1. Parsing
2. Data types (including checking)
3. Creating a store
4. Modifying a store
5. Querying
6. Parameter instantiation
7. Error handling

Extra Features

1. Persistent storage

2. Integrate other knowledge sources

3. Parallel querying

4. Modularization

5. Logical validation

4 The KR Interface

Next, we describe the KR Interface (KRI) designed, a Java-based API to ad-
dress the issues of creating a generic, a specific KR-independent abstraction.
Throughout the description of the interface we show how each design choice was

10

based on the generic features of KRs, described in section 3.3, and how it fulfills
the functionality requirements that an agent programming framework poses in
section 3.2.

Based on the principle of modularization, we want to ensure a separation of
concerns related to language, storage, reasoning, and others. We propose a struc-
tured interface design, such that it facilitates these sub-interfaces, as described
next in detail.

Language. The language module of the interface contains the abstract gram-
matical constructs of a knowledge representation technology. This fulfills the re-
quirement of being able to express all items on the list of section 3.2, since the
language concepts need to be able to represent the contents of an agent’s mental
state, queries and updates, percepts of the environment, and agent messages.

Our generic language proposal, shown as a conceptual hierarchy in Figure
2, abstracts any language construct into the higher level Expression concept,
corresponding to a well-formed sentence or formula in the knowledge repre-
sentation language. An expression can be of type: Term, Update, Query and
DatabaseFormula. A Term can be simple: Var, and Constant or complex: a
Function.

From a knowledge representation language’s point of view, differentiation
between the concepts of querying and updating is dictated by the syntax, and
hence can differ per language. From an agent programming’s perspective such
a distinction is necessary to require that performing a query never results in an
update. It would be difficult to understand the behavior of a system that can
change the state as a side-effect of performing a query.

Fig. 2. Language concepts architecture

The Term concept represents a language construct of a formula or sentence
(ground formula, i.e. without free variables). It can be simple or complex. A
variable is a simple term expressed with the concept Var. The interface does not
enforce variables to be present, however, most languages that support parameter
instantiation and querying, need to represent variables. Another simple term is
a Constant, which is a basic unstructured name that refers to some object or
entity, e.g. a number. A Function is the representation of a complex term, with
a functor and arguments. No restriction on the type or the number of arguments
is imposed.

11

A Substitution is a mapping of distinct variables to terms. A substitution
binds the term to the variable if it maps the variable to the term. A substitution
may be empty. Its functionality includes the usual map operations. It fulfills Item
6 of the language features’ list, namely, to have some form of substitution-based
parameter mechanism, as we have assumed a set of substitutions to be also the
result of a query.

An Expression is any grammatically correct string of symbols of a KR lan-
guage, fulfilling the responsibility of Item 1 of section 3, to be able to represent
the contents of an agent’s mental state. Every expression has a different signa-
ture, a definition of the form operatorname/arity, where the operator name is
the functor, and the arity is the number of arguments associated with the oper-
ator. In case we need to unify two expressions, the most general unifier method
returns a substitution that makes two expressions equal. To apply a substitution
to an expression means to substitute variables in the expression that are bound
by the substitution with the term bound to the variable, or, only rename it in
case the substitution binds a variable to another one.

It is important for an agent to be able to understand which expressions
it can use to query, put in a database, and to update a database with. A
DatabaseFormula stands for an expression that can be inserted into a storage
facility. The Query concept is used to query the database, and hence it should
contain at least one free variable. An Update is semantically equivalent with the
combination of a delete and an insert operation. To reflect this, it offers two
methods to retrieve the list of database formulas to be added and to be deleted
from the knowledge base. For example, in Prolog these classes are different, but
may overlap: database formulas are facts (positive literals), a query is an arbi-
trary conjunction of literals, and an update is a conjunction of basic literals,
where basic means the predicate used in the literal is not defined by a rule.

Based on the assumption that every KR should provide its own parsing
mechanism identified in Item 1 of the identified KR features’ list, the interface
should provide a parser for parsing the source (files) represented in the KR
language. In case a parser initialization error occurs, proper error handling should
be defined and provided.

The Parser class fulfills the functionality of a KR to provide its own parser,
Item 1 of section 3.3. We abstract a parser to receive an input source file, and
return language constructs of our KR interface; database formulas, queries, up-
dates, terms, etc. In case an error occurs during parsing, a method to get the
errors returns the source object, which can be inspected for error handling pur-
poses.

Basic data types, such as numbers (integers, floats), strings, booleans, are
provided together with the functionality of returning the data type of a constant,
and data type checking, thus fulfilling the requirement mentioned as Item 2 of
section 3.3.

Storage. To create a storage, the main class of the interface provides the way
to create a database in the specific KR it hides away. Using the getDatabase(

Collection<DatabaseFormula> content) method, it creates a new Database

12

with the provided content, that is a list of database formulas to be inserted in
the database before it being returned. Thus it fulfills the requirement of creating
a store by Item 3 of section 3.3.

The Database class fulfills the second item of the functional requirements
listed in section 3.2. It holds the content represented in the KR language, viewed
as a set of DatabaseFormula-s. It provides the functionality to store new infor-
mation in the database by inserting a formula in it, deleting a formula from it,
fulfilling the update operation, listed as Item 4 of section 3.2, and Item 4 of
3.3. Upon insertion of a formula or an update, the database should entail the
information added. The converse applies to deleting a formula, after removal of
the formula, in principle, the database should no longer entail the information
removed from the database. Any occurring error during insertion, deletion, or
destruction of the database is signaled by throwing a database exception.

Reasoning. In order for an agent to inspect its knowledge base, querying
functionality has to be provided by the KR, as we mentioned in our assumptions
sections, Item 3, and our KR features section, Item 5. The query(Query query)

method fulfills that functionality, and returns as a result a set of Substitutions.
In case of an error, a query failed exception is thrown .

Other. The KRException and its more specific classes capture the several
different types of exceptions, and take the responsibility of error reporting, Item
7 of KR features support list. Separate error types are differentiated for parsing,
database operations, failed query errors. In case of parsing, error handling is
capable to refer to the source (file) where the error occurred. Two exception types
are created for the interface initialization and for requesting a not supported KR
language.

5 KR Interface Implementations

In this section we describe the two use cases we studied in depth, and imple-
mented the interface with: Prolog and OWL with SWRL rules. Implementing the
KR interface with a new language puts our design choices to the test. We want
to investigate how much the interface fits other, different logic-based languages,
and provide a first proof of concept for our proposal.

5.1 Prolog Implementation

Prolog was the default logic used for knowledge representation in the GOAL
agent framework, as it is a first natural choice for agent system programming,
due to its computational powers and the features of logic programming.

Next we describe how we instantiated the interface with SWI-Prolog us-
ing the JPL API. The high-level API’s class hierarchy consists of the top-level
classes: Term, Query, JPLException. The abstract superclass Term consists of
subclasses for variables, compounds, atoms as a specialization of compounds,
integers and floats. A Query is a wrapper around a term, but it also has a
mechanism to hold the retreived results and much more.

13

A clear match of terminology could be found between the way the KRI cap-
tures language constructs and the hierarchy of the JPL API. An Expression is a
JPL term representing a Prolog expression, the most general language construct
in Prolog. The Var is mapped to a JPL variable, Constants to integers, floats,
and strings, and a Function is matched to a Compound term. A JPL term is
the representation of both a Term, a DBFormula, and a Query. We chose not
to map the JPL’s query class to the KRI’s Query. The former attaches more
functionality of the querying process to the class than what the representation
a query formula would necessitate. The solution to use a term as a query conve-
niently matches the JPL idea. Then, performing the check if a term is valid to
be inserted in a database, or can be used as a query is delegated to the parser
for efficiency reasons (to avoid such checks at runtime).

An Update is a term that is assumed to be a conjunction that can be split
into a list of conjuncts. We needed to separate the literals to be added or deleted,
so we distinguished the positive from the negative literals (with a preceding not

operator) to denote the two lists. A Substitution is a mapping of distinct
variables to terms. We do not use JPL variables as keys, because it has no
implementation for hash code, and therefore putting these in a map will fail.
Thus, we were forced to using strings.

The main issue encountered during the implementation was the question of
a parser. Existing Prolog implementations do not completely conform to the
ISO/IEC 13211-1 International Standard. We created our own lexer and parser,
following the standard in most cases. Our reasons for deviating have been prag-
matically motivated: we wanted to keep our grammar simple, and we did not
want it to support certain options that quickly lead to unreadable code, such as
using graphic tokens as predicate names, or redefine operators’ precedence.

The module feature of Prolog has been used to implement different types of
stores. As a conclusion of this choice, modules cannot be made available to an
agent programmer any more, as it would potentially clash with the modules that
are introduced automatically by the interface.

SWI-Prolog has one fast database to hold all formulas. To be able to dif-
ferentiate different Databases for various mental state construction, we need to
specify for each clause which database it belongs to. Our solution was to prefix
each database formula with the database name.

Destroying a database removes all predicates and clauses from the SWI-
Prolog database, but this is not fully implementable in SWI-Prolog. The JPL
interface does not support removing the dynamic declarations. The suggested
practice is to reset a database to free up some memory, but after resetting not
to re-use this database, but to make a new one.

SWI-Prolog needs access to various libraries at runtime and to load these
dynamically. If many agents try to do this at the same time, this creates access
errors. A possible solution is to load these libraries upfront when we need them,
that implies a check whether we need a library of course. The benefit is that we
only need to synchronize the creation of databases and not all query calls. As a
pragmatic choice, we solved this issue by adding synchronized querying.

14

5.2 Ontological Language Implementation

We implemented the proposed KR interface using the OWL ontological language
with DL-safe SWRL rules, such an agent being considered a novelty in the field
of agent programming. The web ontology language standard (OWL) is a W3C
standard recommendation [19] for formalizing an ontology. It is based on the
underlying logic called: Description Logic (DL) [2], which has become one of the
main knowledge representation formalism. The Semantic Web Rule Language
(SWRL) [16] is an OWL-based rule language, and is an extension to the existing
ontology language OWL, to provide more expressivity through rules. In order to
preserve decidability, SWRL rules are restricted to so called DL-safe rules [21],
which requires each variable in a rule to occur in a data atom in the rule body.
A data atom is one that refers to existing named individuals in the ontological
knowledge base.

In order to instantiate the interface, two APIs are available for the ontological
language: the OWL API [15], that contains representation for SWRL rules as
well, or the SWRL API [23] of Protégé-OWL, which is built on top of the OWL
API, but extends it further with a query language and provides a parser.

In the following we describe the identified matching between the KRI con-
structs and the ontological rule language. The higher level concept Expression
was mapped to SWRLRule, that consists of a head and a body. The Function

concept was mapped to SWRLAtom, since atoms are the building blocks of rules, a
Constant to a SWRLArgument, representing a data object or an individual object.
A variable is corresponding to SWRLVariable.

In order to create a shared, persistent storage, and to access the Semantic
Web, a Database is mapped to an RDF repository (or triple store). The Resource
Description Framework (RDF) is a serialized representation of an ontology, in
triple format [24]. The most performant reasoners are available for triple store
technologies, and can be queried using the query language SPARQL [25], the
adopted standard by the community.

The choice of query language for OWL and SWRL was not a straightforward
decision. Query languages for Semantic Web ontologies are categorized into two:
RDF-based and DL-based. The default and mostly used querying mechanism
is the RDF-based SPARQL, but since it operates on the RDF serialization of
OWL, it has no semantic understanding of the language constructs that those
serializations represent. On the other hand, the Semantic Query-enhanced Web
Rule Language (SQWRL) [22] is a DL-based query language designed on top
of the SWRL rule language, with a working implementation provided by the
Protégé-OWL API, which would be a very convenient choice in our case.

Faced with the decision between using two different languages for represent-
ing knowledge and querying on one hand, or not benefiting from the available
advanced triplestore technologies on the other hand, we decided to try to keep
the advantages of both. We created a transformation from SWRL rules into
SPARQL queries, by treating them as query bodies, with all free variables being
considered as part of the query pattern. Having established a querying mecha-

15

nism, an Update then consists of an addition and a deletion operation, provided
by the SPARQL Update syntax’s insert and delete.

6 Evaluation of the KR Interface

In this section we reflect on the outcomes of our work: the KRI design, and how
well it performed when put to the test by implementing it with two different
KRs. We assess whether our proposal provides a design that is generic enough
to correctly represent logic programming (SWI-Prolog) and description logics
(OWL-DL with DL-safe SWRL rules). Even though they are based on different
kinds of logics, the interface proved to be generic and able to capture all possible
language constructs.

The KRI can make use of the extra features that come along with the two
languages, e.g., it allows for ontological language with rules to use triple store
technologies existing on the web, accessing the Semantic Web thus becoming
implicitly available to agents. Another example is parallel querying, that again,
agents are at liberty to perform using OWL and SWRL, which comes from
exploiting the benefit of a triple store for an agent’s mental database. A third
benefit of OWL agents that the interface makes possible, is the creation of a
shared database, so many agents can operate on the same set of knowledge,
incrementing data reuse and sharing. On the other hand, when chosing Prolog
as the KR, the agent is powerful in computational tasks, and can work easily
with lists. This support that would not have been available when chosing OWL,
since lists are not by default present in OWL, and are not supported by reasoners
that can handle rules. The major benefits of the two languages could be exploited
through the instantiation of the interface, which shows that our proposal does
not limit the use of a KR for agents.

Revisiting the creation of mental states for agents, GOAL poses a difficult
requirement: it should be possible to query the combination of a knowledge and
belief base (and knowledge and goal base), i.e., query the union of two bases.
It was possible to do this with the proposed KRI, since most KR technologies
provide either some mechanism to import knowledge from one base into an-
other (e.g., modules in SWI-Prolog) or allow for multi-base querying (federated
SPARQL queries for OWL).

An implementation of a specific KR with the interface was highly dependent
on the available Java API for the technology. In case several API-s for a lan-
guage were available, we assessed which one fits best our needs, and can provide
most features. Then, the concept hierarchy had to be matched to the interface’s
corresponding elements, and the functionality correspondence validated. In gen-
eral the proposed KRI turns out to be generic enough to be implemented for
different knowledge representation technologies. Following the design principles
described in section 3.1 and incorporating features identified in section 3.3, the
KRI satisfies all requirements deemed fundamental to represent mental states
for agents in an agent system (section 3.2); moreover, different types of states
(cf. Jason vs GOAL, section 3.2) can be implemented.

16

7 Conclusions and Future Work

In conclusion, this paper introduced a generic KRI that is reusable across a range
of agent frameworks that can benefit from the use of different KR languages. Our
contribution is a methodological analysis of the features and requirements be-
tween knowledge representation technologies and cognitive agent programming
frameworks. We proposed a generic interface to create an abstraction layer and
a modular setup to how agents can use a language for representing knowledge.
The need for such a KR interface and the apparent lack of such a construct in
related work has motivated the design of the interface, governed by the following
three aspects (as described in section 3): 1) a number of design principles serving
as guidelines, 2) the concept of cognitive agents and related assumptions that we
make about agent frameworks, and 3) the identification of features provided by
various KRs that are considered as requirements for a KRI. We put this interface
to the test with two knowledge representations, namely Prolog and OWL with
SWRL rules, in the agent programming framework GOAL. Based on these two
cases we conclude that the KRI is generic enough to support a variety of KR
languages, and could be easily applied in the GOAL agent framework.

In the future we will focus on the improvement points identified during the
process, and move to a next step of having different agents with different knowl-
edge representation technologies able to communicate and work together in a
multi-agent system through our proposed interface.

References

1. Anguswamy, R., Frakes, W.B.: Reuse design principles (2013)
2. Baader, F.: The description logic handbook: theory, implementation, and applica-

tions. Cambridge university press (2003)
3. Bechhofer, S., Horrocks, I., Patel-Schneider, P.F., Tessaris, S.: A proposal for a

description logic interface. In: Proceedings of Description logics. pp. 33–36 (1999)
4. Bordini, R.H., Hübner, J.F.: Jason–A Java-based interpreter for an extended ver-

sion of AgentSpeak (2007)
5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems

in AgentSpeak using Jason, vol. 8. John Wiley & Sons (2007)
6. Cingolani, P., Alcala-Fdez, J.: jfuzzylogic: a robust and flexible fuzzy-logic inference

system language implementation. In: Fuzzy Systems (FUZZ-IEEE), 2012 IEEE
International Conference on. pp. 1–8 (June 2012)

7. Dastani, M.: 2APL: a practical agent programming language. Autonomous agents
and multi-agent systems 16(3), 214–248 (2008)

8. Dastani, M.M., Hindriks, K.V., Novák, P., Tinnemeier, N.A.: Combining multi-
ple knowledge representation technologies into agent programming languages. In:
Declarative Agent Languages and Technologies VI, pp. 60–74. Springer (2009)

9. Davis, R., Shrobe, H., Szolovits, P.: What is a knowledge representation? AI mag-
azine 14(1), 17 (1993)

10. Dix, J., Hindriks, K.V., Logan, B., Wobcke, W.: Engineering multi-agent systems
(dagstuhl seminar 12342). (2012)

11. Dix, J., Zhang, Y.: IMPACT: A multi-agent framework with declarative semantics.
Multi-Agent Programming pp. 69–94 (2005)

17

12. Freitas, A., Schmidt, D., Panisson, A., Meneguzzi, F., Vieira, R., Bordini, R.H.:
Integrating Multi-Agent Systems in JaCaMo using a Semantic Representations. In:
Workshop on Collaborative Agents, CARE for Intelligent Mobile Services (2014)

13. Hindriks, K.: Programming rational agents in GOAL. In: El Fallah Seghrouchni, A.,
Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming: Languages,
Tools and Applications, pp. 119–157. Springer (2009)

14. Hirsch, B., Konnerth, T., Heßler, A.: Merging agents and servicesthe JIAC agent
platform. In: Multi-Agent Programming:, pp. 159–185. Springer (2009)

15. Horridge, M., Bechhofer, S.: The OWL Api: A Java Api for OWL ontologies.
Semantic Web 2(1), 11–21 (2011)

16. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.,
et al.: SWRL: A semantic web rule language combining OWL and RuleML. W3C
Member submission 21, 79 (2004)

17. Klapiscak, T., Bordini, R.H.: JASDL: A practical programming approach combin-
ing agent and semantic web technologies. In: Declarative Agent Languages and
Technologies VI, pp. 91–110. Springer (2009)

18. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (Jun 1992)
19. McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview.

W3C recommendation 10(10), 2004 (2004)
20. Moreira, A.F., Vieira, R., Bordini, R.H., Hübner, J.F.: Agent-oriented program-

ming with underlying ontological reasoning. In: Declarative Agent Languages and
Technologies III, pp. 155–170. Springer (2006)

21. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Web
Semantics: Science, Services and Agents on the World Wide Web 3(1), 41–60 (2005)

22. O’Connor, M.J., Das, A.K.: Sqwrl: A query language for owl. In: OWLED. vol.
529 (2009)

23. O’Connor, M.J., Shankar, R.D., Musen, M.A., Das, A.K., Nyulas, C.: The SWR-
LAPI: A Development Environment for Working with SWRL Rules. In: OWLED
(2008)

24. Pan, J.Z.: Resource description framework. In: Handbook on Ontologies, pp. 71–90.
Springer (2009)

25. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (sep 2009)

26. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In:
Multi-agent programming, pp. 149–174. Springer (2005)

27. Russell, S., Jordan, H., OHare, G.M., Collier, R.W.: Agent factory: a framework
for prototyping logic-based AOP languages. In: Multiagent System Technologies,
pp. 125–136. Springer (2011)

28. Silva, D.G., Gluz, J.C.: AgentSpeak (PL): A new programming language for BDI
agents with integrated bayesian network model. In: Information Science and Ap-
plications (ICISA), 2011 International Conference on. pp. 1–7. IEEE (2011)

29. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-
dl reasoner. Web Semantics: science, services and agents on the World Wide Web
5(2), 51–53 (2007)

30. Wang, J., Ju, S.E., Liu, C.N.: Agent-oriented probabilistic logic programming.
Journal of Computer Science and Technology 21(3), 412–417 (2006)

31. Winikoff, M.: JACK intelligent agents: An industrial strength platform. In: Multi-
Agent Programming, pp. 175–193. Springer (2005)

18

A Probabilistic BPMN Normal Form to Model
and Advise Human Activities

Hector G. Ceballos1, Victor Flores-Solorio1, and Juan Pablo Garcia2

1 Tecnologico de Monterrey, Campus Monterrey, Mexico
2 Universidad Autonoma de Baja California, Mexico

ceballos@itesm.mx, vmfsolorio@gmail.com, pablo.garcia@uabc.edu.mx

Abstract. Agent-based technologies, originally proposed with the aim
of assisting human activities, have been recently adopted in industry for
automating business processes. Business Process Model and Notation
(BPMN) is a standard notation for modeling business processes, that
provides a rich graphical representation that can be used for common
understanding of processes but also for automation purposes. We propose
a normal form of Business Process Diagrams based on Activity Theory
that can be transformed to a Causal Bayesian Network, which in turn
can be used to model the behavior of activity participants and assess
human decision through user agents. We illustrate our approach on an
Elderly health care scenario obtained from an actual contextual study.

Keywords: BPMN, Agent-Based Systems Engineering, Bayesian Networks, Ac-
tivity Theory.

1 Introduction

BPMN is a standard notation for modeling business processes that provides a
rich graphical representation that can be used for common understanding of
processes [13]. Furthermore, BPMN has been used for process automation with
support of agent technologies [10].

BPMN uses gateways for representing decisions, which are usually labeled
with textual descriptions indicating the criterion followed. These decisions are
based on information that is available at the moment of decision making and
may refer to information of the process in course or to historical information
(data-based decisions).

But when the BPMN workflow describes a human activity in terms of user
tasks this decision criterion might be unknown or inaccessible to the modeler, e.g.
the buying decision of a customer. For dealing with the uncertainty introduced
by human intervention, approaches like [6] have proposed annotating edges with
the probability of each alternative. Nevertheless, this approach does not permit
to determine if the cause of such variability comes from some part of the process
under the control of some participant, i.e. capture causal relationships between

19

non-consecutive nodes. And despite BPMN has been recently used for agent-
based software engineering, decision making under uncertainty has not been
addressed in current approaches [3, 7, 12, 10].

For these reasons, we propose a normal form of BPMN Process Diagrams
for modeling human activities suitable for generating a probabilistic representa-
tion of activity’s dynamic suitable for discovering causal relationships. Possible
scenarios specified in the BPMN workflow can be used for predicting the be-
havior of human participants based on observable events. The BPMN normal
form is inspired by Activity Theory [4], providing goal-oriented BPMN Process
Diagrams capable of representing collective human activities.

This paper is organized as follows. In section 2, we present other applications
of BPMN for agent-based software engineering and introduce probabilistic for-
malisms traditionally used for agent decision making. In section 3 we discuss the
pertinence of using BPMN for modeling human activities and propose a BPMN
normal form suitable for its transformation to a Bayesian Network. We provide
an automatic transformation procedure that produces a probabilistic represen-
tation of activity’s dynamics that can be used for agent decision making based
on previous activity developments. In section 4, we present other probabilistic
approaches to BPMN and compare our selection of BPMN elements with other
agent engineering approaches. Finally, in section 5, we present our conclusions
and future work.

2 Background

We revise current applications of BPMN for agent-based system engineering,
and review probabilistic graphic models used for decision making.

2.1 Business Process Diagrams for Agent Engineering

Business Process Model and Notation (BPMN) is a standard notation used by
organizations for understanding internal business procedures in a graphical no-
tation. Due to its expressivity and its growing adoption by industry, it has been
also used as a tool for modeling MultiAgent Systems [3, 7, 12, 10].

Endert et al [3] proposed a mapping of Business Process Diagram (BPD)
elements to agent concepts. In particular they considered a BPMN fragment
constituted by: event nodes (start, intermediate and end), activity nodes, sub-
process nodes, split and merge gateways (XOR, OR, AND), and pools. They
map each pool to an agent and the process itself constitutes a plan; properties
of start (and end) events constitute inputs (respectively outputs) for the plan.
Independent subprocesses are mapped to goals and embedded subprocesses are
mapped to plans. Activity nodes are represented by plan operations, whereas
control flows are mapped to sequences, if-else blocks and loops. Data flow, i.e.
arguments passed to messages and operations, is captured in node attributes
and it is used for modeling agent beliefs.

20

Hinge and colleagues developed a tool for annotating BPMN in order to
provide a semantic description of events and actions [7]. Actions are described by
their direct effects: the observable conditions that hold immediately after action
execution. These annotations are used for calculating the current development
of a process, this is, determining which events and actions have occurred by
observing the accumulation of effects on a knowledge base. The knowledge base
is considered non-monotonic as long as this approach counts with a procedure
for detecting the removal of facts.

Muehlen and Indulska evaluated the combination of modeling languages for
business processes and business rules [12]. Their overlap analysis look for the
minimization of redundancy on constructors and the maximization of model-
ing expressivity. Modeling constructors were grouped in four categories: sort of
things, states, events and systems. They conclude that the highest representa-
tion power is given by the combination of BPMN for representing the business
process and SWRL [8] for representing business rules. Nevertheless, their anal-
ysis reveals that this combination, despite it is the most complete, lacks of a
representation of states.

Jander and colleagues proposed Goal-oriented Process Modeling Notation
(GPMN), a language for developing goal-oriented workflows [9]. The process
is initially modeled by decomposing a main goal into subgoals, and then each
subgoal is linked to a BPMN diagram that represents the plan to achieve that
goal. This graphical language includes activation plans which decide subgoal
parallelization or serialization, replicating the functionality of gateways in the
goal hierarchy tree. A goal can be connected to multiple plans, enabling means-
end reasoning.

Finally, Kuster and colleagues provide a full methodology for process oriented
agent engineering that complements BPMN process diagrams with: declaration
of data types (ontology engineering), a model for agent organization and dis-
tribution, low-level algorithms for activity nodes (service engineering), and use
cases diagrams that link roles and process diagrams [10]. This framework imple-
ments the mapping of BPMN to agents described in [3] for agent engineering.

These approaches show how BPMN workflows can be used for designing agent
specifications from the description of their interactions in a process. Nevertheless
they assume that all the information needed by agent for making a decision is
available, which in turn produces reactive agent specifications but is not sufficient
for coping with uncertainty.

2.2 Decision Making based on Bayesian Networks

Bayesian Networks (BNs) have been used for quite a while for representing de-
cision making under uncertainty and learning through observation/experience.
BNs are suitable for identifying causal dependencies between random variables
representing events and actions occurred at different time steps. Despite Marko-
vian Decision Processes (MDPs) have gained popularity for their capacity for
providing efficient probabilistic inference in long term processes, their represen-

21

tation lacks of memory, i.e. it only captures conditional dependencies between
contiguous time steps.

Bayesian Networks. A Bayesian Network is a probabilistic graphical model
that represents a set of events denoted by random variables, and their conditional
dependencies via a directed acyclic graph (DAG), denoted:

M = 〈V,GV , P (vi|pai)〉

where V is a set of random variables, GV is the graph consisting of variables in
V and directed arcs between them, and P (vi|pai) is a conditional probabilistic
distribution where the probability of vi depends on the value of its parents (pai)
in GV .

A random variable Vi is a numerical description of the outcome of an ex-
periment, and can be either discrete or continuous. The set of possible values a
discrete random variable may hold, or domain Dom(Vi) = {vi1, ..., vin}, repre-
sents the possible outcomes of a yet-to-be-performed experiment, or the potential
values of a quantity whose already-existing value is uncertain.

The realization of a random variable Vi to the value vij ∈ Dom(Vi) is rep-
resented as Vi = vij , or vi if the realization value is not relevant in a given
context.

Random variables satisfy the probability theory requisite which dictates that
in an experiment, a random variable can be realized to a single value of its
domain. This means that all events represented by a random variable are disjoint.

GV is an independence map (I-Map), i.e. a minimal graph where the presence
of an arc from Vi to Vj indicates conditional dependence whereas its absence
indicates conditional independence. An I-Map is called minimal because indirect
dependencies are not included.

Bayesian Networks can be modeled from two distinct perspectives: evidential
or causal. If arrows go from effects to causes the perspective is evidential, e.g.
determining the disease based on the patient symptoms. A network is modeled
from a causal perspective if arcs go from causes to effects. For instance, in
Dynamic Bayesian Networks a different set of random variables represents the
state of the system at time t, t+ 1, ... , t+n; arcs can go from a variable in t to
another in t+ i, but the opposite is not allowed.

Bayesian networks are used to find out updated knowledge of the state of a
subset of variables v̄1 when another variables v̄2 (evidence) are observed, denoted
P (v̄1|v̄2). This process of computing the posterior distribution of variables given
certain evidence is called probabilistic inference.

Influence Diagrams. An Influence Diagram is a generalization of a Bayesian
Network devised for modeling and solving decision problems using probabilis-
tic inference. Nodes may represent decisions (rectangles), uncertain conditions
(ovals) or the utility obtained in a given scenario (diamond).

22

Arcs ending in decision nodes denote the information taken into account for
making the decision. Arcs between uncertain nodes propagate uncertainty or
information like in Bayesian Networks.

Decision nodes and their incoming arcs determine the alternatives. Uncer-
tainty nodes and their incoming arcs model the information. Value nodes and
their incoming arcs quantify the preference on the outcome. An alternative is
chosen based on the maximum expected utility in the given scenario, calculated
by the a posteriori probability of all nodes (including unknown values).

Causal Bayesian Networks. Judea Pearl introduced the notion of Causality
on Bayesian Networks under the concept of intervention, where the value of a
variable could be subject to alteration through a mechanism F or let its value
being freely set [15]. Pearl and Robins proposed that nodes in a Bayesian network
can be classified into purely observable variables, or Covariates (Z), and con-
trollable variables (X) which are subject to intervention, denoted by do(xi) [16].
From this distinction they establish a graphical method for identifying the set of
covariates (Wk ⊂ Z) that must be observed for determining the causal effect of a
sequence of interventions do(x1), ..., do(xk) on Y , i.e. P (y|do(x1), ..., do(xk), wk).
This sequence of interventions constitutes a plan, which probability of success
can be evaluated a priori and be revised once that the network is updated with
information.

3 Probabilistic Decision Making on Business Process
Diagrams

An Activity of Daily Living (ADL) modeled as a BPMN workflow is used for
illustrating the proposed normal form. Then a procedure for transforming this
workflow to a Bayesian Network is provided and some examples of probabilistic
inference are given to validate the model.

The subset of graphical elements of the BPMN 2.0 specification [13] we use
in our example and in our normal form is shown in Figure 1. BPMN Business
Process Diagrams (BPDs) basically describe a process in terms of events and ac-
tions connected through control flows that indicate valid sequences in the process
development. Gateways are special nodes connected through control flows that
indicate whether the process develops in parallel (AND), alternatively (XOR)
or optionally (OR). The beginning of the process is denoted by an initial event
node and its conclusion by a set of end event nodes.

3.1 An example of an ADL modeled in BPMN

We motivate the discussion using as example the medical consultation of an
elder person, taken from an actual contextual study based on Activity Theory
[5]. In this activity, the subject is an older adult who has a medical appointment
(the object). The objective of the activity is having a medical appraisal and its

23

Fig. 1. BPMN graphical notation.

outcome includes getting a prescription, supply medicines and schedule a next
appointment. The community involved in the activity includes a family member
(optionally) and the doctor.

This diagram is used for compensating the lack of a formal representation
of the activity’s dynamic in Activity Theory (AT) [4]. At some extent, control
flows and gateways formalize the set of rules specified in the AT specification.

Figure 2 shows the activity diagram modeled with BPMN. It illustrates two
alternative ways the elder may choose for getting to the hospital: going by him-
self, or being carried out by a family member. It also shows five possible outcomes
for the activity: 1) treatment finished, 2) taking new medication, 3) taking med-
ication and follow up, 4) medication not available at the hospital’s pharmacy,
and 5) missing the appointment (failure outcome).

3.2 A Probabilistic BPMN normal form

The proposed normal form has the purpose of illustrating alternative sequences
of actions performed by activity participants, mediated by intermediate events
that the subject or other participants can observe. XOR gateways are used for
representing disjoint alternatives. Activity’s development has a triggering condi-
tion (initial event) and a set of successful or failure outcomes (end events). The
resulting graph must be acyclic for facilitating its translation to a Bayesian Net-
work through a graphical procedure. A BPMN BPD satisfies the probabilistic
normal form if it observes the following constraints:

1. A Business Process Diagram W is represented by a set of pools (P), lanes
(L), nodes (N) and control flows (F).

W = {P,L,N,F}
2. Nodes (N) allowed in the diagram are: start events (NS), intermediate events

(N I), end events (NE), atomic actions (NA) and gateways (NG).

N = NS ∪N I ∪NE ∪NA ∪NG

24

Elderly Healtcare
Elder

Elder

Z1 - Time for
Consultation

X1 - Elder
goes by

himself to the
Hospital

X4 - Elder
re!lls medicine

X5 - Elder
request

appointment

Z7.3 - New
medicine

Z7.4 - Medicine
and

follow up

Z7.2 - Pending
medicine

Z6 - Next
appointment

Z5.1 - Medicine
incomplete/missing

Z5.2 - Medicine
available

Z3.1 - Elder
at Hospital

Z3.2 - Elder
doesn't show up

Family Member

Family Member
X2 - Family

member takes
Elder to the

hospital
Z7.5 - Appointment

missed
Z2.1 - Family

member arrives
on time

Z2.2 - Family
member arrives

late

Doctor
Doctor

X3 - Doctor
auscultates to

Elder

Z7.1 - Treatment
!nished

Z4.3 - Doctor
prescribes
medicine and
follow up

Z4.1 - Follow up !nishedZ4.2 - Doctor prescribes
more/new medication

Z2.2 - Family
member arrives

late

Fig. 2. Business Process Diagram of the Medical Consultation Activity.

25

3. The diagram must have a single pool (p ∈ P) containing at least one lane
(li ∈ L, i ≥ 1). Each lane represents a human participant in the activity, and
nodes must be allocated in a single lane (in(n, li), n ∈ N).

4. All sequence flows are unconditional, denoted as F (ni, nj) ∈ F where ni, nj ∈
N . Conditional or default control flows are not allowed; instead, intermedi-
ate event nodes are used for representing both data-based and event-based
control flow.

5. A single start event s ∈ NS is defined (|NS | = 1), given that the activity
is modeled from the perspective of a single individual (the subject), and it
must be labeled with the condition perceived by the subject that triggers
activity’s development.

6. Intermediate event nodes (i ∈ N I) are labeled with a natural language de-
scription that corresponds to the condition (partial world state) that must
hold for proceeding with the activity’s course.

7. Similarly, atomic action nodes or tasks (a ∈ NA) are labeled with a verb
expressed in active voice that denotes the action performed by a participant,
indicating other actors involved in collective actions, as well as required
artifacts and locations.

8. Two consecutive action nodes must be mediated by at least one intermediate
event node and as many gateways as needed, i.e. two action nodes are not
connected directly through sequence flows. Observable intermediate events
will permit monitoring the activity development and introducing agent as-
sistance [2].

∀a ∈ NA, (F (n, a) ∈ F ∨ F (a, n) ∈ F)→ n 6∈ NA

9. Each split or merge of control flows must be mediated by a splitting gateway
(NG

S ⊆ NG) or a merging gateway (NG
M ⊂ NG), respectively. Gateways

can be of type Parallel-AND (A), Optional-OR (O), or Exclusive-XOR (X).
Gateways with both multiple incoming and outgoing flows are not permitted.

∀g ∈ NG, type(g, t)→ t ∈ {A,O,X}

10. Splitting gateways XOR (g ∈ NG
S , type(g,X)) must be followed by interme-

diate event nodes (F (g, i) ∈ F, i ∈ N I) or other XOR gateways, denoting
alternative ways on which the activity can develop. Event node labels indi-
cate the reason for selecting each alternative.

11. The diagram might have multiple end nodes, but two end nodes cannot
represent the same outcome; their labels must reflect some difference. Control
flows and gateways must be used for connecting all possible workflows ending
in the same outcome.

∀e1, e2 ∈ NE → Label(e1) 6≡ Label(e2)

12. The graph GN constituted by all F (ni, nj) ∈ F must not have any directed
cycle or loop, i.e. it must be a Directed Acyclic Graph (DAG).

13. All other nodes, gateways and control flows are disallowed in the diagram.
BPMN artifacts (associations, groups and text annotations) are ignored.

26

3.3 Translating BPDs to Bayesian Networks

Next we describe the rules and the procedure used for translating a BPD sat-
isfying the previous normal form to a Bayesian Network. In short, events and
actions are mapped to observable and controllable random variables, respec-
tively, whereas control flows and gateways are used for building the conditional
dependency graph and the probabilistic distribution of the model.

Events. Events represent partial world states in the activity context, hence their
representation is associated to observable random variables (Zi), whereas their
occurrence is represented probabilistically by the realization of these variables
(Zi = zi).

The start event is detected by the activity subject and it is represented by the
boolean variable ZS , which realization to True holds on any process execution.
ZS has no parents and it is used for start process monitoring. In our example,
the start event is the doctor’s appointment time (ZS = Z1).

s ∈ NS → define(ZS), Dom(ZS) = {True, False},map(s, ZS = True) (1)

The function define(Vi) is used for declaring random variables, whereas the
function map(n, Vi = vi), n ∈ N, establishes the correspondence between ele-
ments of both representations.

A BPD might include multiple end nodes as shown in our example. Given
that each end node corresponds to different outcomes of the activity, all of them
are represented by a single random variable ZE . Each outcome node e represents
a possible realization of ZE . In our example Z7 represents ZE , with Dom(Z7) =
{7.1, 7.2, 7.3, 7.4, 7.5}.

∀e ∈ NE → e ∈ Dom(ZE),map(e, ZE = e) (2)

Intermediate event nodes are used in the BPD for two reasons: 1) observing
the evidence of actions performed by people in the real world (event-based control
flow), and 2) controlling the workflow based on data produced during process
execution (data-based control flow). Additionally to generic intermediate event
nodes that can be expressed with expressions in First Order Logic, timeout nodes
are introduced for representing temporal reasoning for process monitoring.

Intermediate event nodes are classified as subgoals or alternative events. Sub-
goal events are event nodes that must be performed in order to continue with pro-
cess execution in a given workflow. A subgoal event is represented by a boolean
random variable, where its realization to True indicates that the condition/event
was met and False if it did not occurred during process execution. The node
representing the scheduling of the Next appointment (Z6) is an example of a
subgoal event.

∀i ∈ N I , F (n, i) ∈ F, (n 6∈ NG ∧ (n ∈ NG,¬type(n,X))))→ (3a)

define(Zi), Dom(Zi) = {True, False},map(i, Zi = True) (3b)

27

Alternative events are mutually exclusive world states denoted by interme-
diate event nodes preceded by a XOR gateway, and are represented by a single
observable random variable. We define the set Alt for identifying these gate-
ways in further steps of the transformation. For instance, the events Follow up
finished (Z4.1), Doctor prescribes more/new medication (Z4.2), and Doctor pre-
scribes medicine and follow up (Z4.3), are represented by the random variable
Z4. Successor intermediate events mediated exclusively by XOR gateways are
included in the set of disjoint events as well (see 4c–4e).

∀g ∈ NG
S , type(g,X), F (g, i) ∈ F, i ∈ N I → (4a)

define(Zg), i ∈ Dom(Zg),map(i, Zg = i), g ∈ Alt (4b)

∀g ∈ NG
S , type(g,X), F (g, g1) ∈ F, g1 ∈ NG, type(g1, X), ..., (4c)

F (gk−1, gk) ∈ F, gk ∈ NG, type(gk, X), F (gk, i) ∈ F, i ∈ N I → (4d)

define(Zg), i ∈ Dom(Zg),map(i, Zg = i), g ∈ Alt (4e)

Observable random variables Zi representing intermediate events are consid-
ered mandatory if Zi is included in all paths connecting the start variable ZS

with the end variable ZE . And it is considered optional if other alternative paths
exist that connect ZS and ZE that do not pass through it. All optional random
variables include the value False in their domain for considering those cases
where the process develops through an alternative path. This rule is applied
after having obtained the conditional dependence graph GV as explained next.
Z3 is an example of a mandatory variable with Dom(Z3) = {3.1, 3.2}, whereas
Z4 is optional given the alternative path through Z3.2, making Dom(Z4) =
{4.1, 4.2, 4.3, False}.

∃pi = path(ZS , ZE) ∈ GV , Zj 6∈ pi → False ∈ Dom(Zj) (5)

Actions. Action nodes in BPDs might represent atomic actions or subprocesses.
In this analysis we only consider atomic actions, which correspond to the def-
inition of action given by Leontiev [11], i.e. something that the person makes
consciously to achieve a goal. This action might require the participation of
other actors, like in the auscultation made by the doctor to the elder (X3), or
be performed individually, like when the elder going by himself to the hospital
(X1).

Similarly to subgoal events, atomic actions are represented by boolean ran-
dom variables, denoted Xi, where the value True denotes the execution of the
action, and False represents its omission. If the action is not performed, the
value of the variable is set to False at the end of activity’s monitoring.

∀a ∈ NA → define(Xa), Dom(Xa) = {True, False},map(a,Xa = True) (6)

Control Flows. Control flows encode necessary conditions for the development
of a process, this is, the occurrence of previous events or actions enables event

28

observation or action execution. For instance, medical consultation (X3) requires
the patient being at the hospital (Z3 = 3.1), and the next appointment (Z6)
requires that the elder had request it (X5).

A control flow Vi → Vj indicates: 1) temporal precedence of the action/event
Vi with respect to another action/event Vj , and 2) conditional dependence of Vj
on Vi. For this reason, the equivalent representation of the BPD is a Bayesian
Network modeled from a causal perspective.

In order to identify conditional dependencies between events and actions, we
use control flows incoming and outgoing to their corresponding random variables.
A copy of the DAG constructed with these control flows, denoted G′N : N ×N ,
is modified according to rules (7a) – (7d) in Figure 3 for removing unnecessary
gateways and unifying end nodes in a single one. In these rule we use graph
operations such as adding/removing arcs and absorbing nodes. Absorbing n
consists on adding control flows F (ni, nj) for the cross product given by every
pair F (ni, n) – F (n, nj), and then removing the node n and those arcs connected
to it.

∀i ∈ NI , F (g, i) ∈ G′
N , g ∈ Alt → absorbe(i, G′

N) (7a)

∀g ∈ NG
M → absorbe(g,G′

N) (7b)

∀g ∈ NG
S , g 6∈ Alt → absorbe(g,G′

N) (7c)

∀ei ∈ NE , i > 1, F (n, ei) ∈ G′
N → remove(F (n, ei), G

′
N), add(F (n, e1), G′

N) (7d)

Fig. 3. Transformation of GN to G′
n.

The resulting DAG G′N and those mappings generated in the first stage of the
process are used for defining the arcs that constitute the conditional dependence
graph between random variables GV : V × V .

∀F (ni, nj) ∈ G′N ,map(ni, Vi = vi),map(nj , Vj = vj)→ add(Arc(Vi, Vj), GV)
(8)

At this point, the conditional dependence graph GV of the medical con-
sultation activity is shown in Figure 4. Random variables labeled Zi represent
observable variables, whereas Xi denote atomic actions. Note that alternative
event nodes are grouped in random variables Z2, Z3, Z4 and Z5.

Gateways. Gateways, on the other hand, codify how likely is that two or more
events/actions occur during process execution, which corresponds to the defini-
tion of the Conditional Probabilistic Distribution (CPD), i.e. P (vi|pai).

The different process developments (scenarios) that can be generated ac-
cording to gateway constraints provide the joint probabilistic distribution of the
process. This distribution assumes that all scenarios are equally likely and it is
used for learning the CPDs of random variables using the dependencies given

29

Fig. 4. The Medical Consultation Activity’s conditional dependence graph

Fig. 5. Valid process developments.

30

by the graph in Figure 4. Figure 5 shows the 15 scenarios that can be generated
from the process in Figure 2, where columns indicate the realization of random
variables in each scenario.

Table 1 shows the structures supported by our normal form, aligned with the
corresponding transformation rules. The column Mappings shows the correspon-
dence between BPD nodes and random variables, indicating the rule applied,
and the last column indicates which nodes prevail in the reduced graph G′N ,
indicating the rule that makes the reduction.

Table 1. Valid structures in the BPD normal form.

3.4 The Activity Causal Bayesian Network

The Bayesian Network produced by the transformation process described above
is defined as follows.

Definition 1. An Activity Causal Bayesian Network (ACBN) is represented by

D = 〈GV , X, Z, ZS , ZE , P (vi|pai)〉

where GV is a minimal DAG which arcs denote temporal precedence and con-
ditional dependence between observable events (Z) and actions (X), P (vi|pai)
encodes conditional probabilistic dependencies between random variables V =
Z ∪X, and GV has at least one directed path from the initial condition ZS ∈ Z
to the outcome variable ZE ∈ (Z \ ZS).

31

The Causal Bayesian Network of the activity modeled in Figure 2 has seven
observable conditions or events (Z1 – Z7) and five human actions (X1 – X5).
The initial condition is the appointment time (Z1) and the outcome variable is
Z7. Its graph GV is shown in Figure 4 and the corresponding P (vi|pai) is learned
from the process instances shown in Figure 5.

Probabilistic inference. Figure 6 shows an example of probabilistic inference
for a partially observed activity instance where the observed evidence (e) is: the
family member arrived late to elder’s house (Z2 = 2.2), the elder arrived to the
hospital on time (Z3 = 3.1), and the doctor prescribed new medication only
(Z4 = 4.2). Posterior probabilities for the other variables are shown in Fig. 6.

Fig. 6. Probabilistic inference on a valid scenario.

Posterior probabilities of human actions (Xi) indicate how likely is their
execution despite the model is only feed with information of observable events.
For instance, it predicts that the elder will refill medicine (P (X4 = True|e) =
0.9285) but he will not request a new appointment (P (X5 = False|e) = 0.9285),
which is consistent with the BPMN workflow. On the other hand, the probability
of the elder going to the hospital alone (X1 = True) is slightly higher than he
being carried out by his family member (X2 = True), which can be explained

32

by the fact that the last arrived late to elder’s home but the elder arrived on
time at the hospital.

The probability of the elder getting all the medicine (Z7 = 7.3) or part of
it (Z7 = 7.2) are slightly higher than the other outcomes. Both probabilities
increase if more evidence is given (e.g. Z5 and Z6). Given that the Bayesian
network was trained with valid process developments only, it predicts well the
outcome on similar scenarios (see P (z7|e) in Fig. 6), but it assigns the same
probability to all the five outcomes in invalid scenarios, which represents an
uncertain outcome.

4 Discussion

First we analyze other probabilistic approaches to BPMN. Then we compare
our selection of BPMN elements with other approaches that transform BPDs to
agent-based system specifications. Finally we discuss the applications of proba-
bilistic workflows as agent engineering tool.

4.1 Probabilistic approaches to BPMN

In 2008, Prandi and colleagues [17] proposed a formal semantics for BPMN based
on the process calculus COWS. Each BPD node is considered as a COWS ser-
vice and the translation describes the message flow between them. They provide
a COWS formula for each node-centered structure supported by their normal
form and produce a single composite formula that represents the flow of tokens
across the BPD. BPDs are formalized as Continuous Time Markov Chains, a
model used for automated verification of Web Service composition. Thanks to
the implementation of COWS in the probabilistic model checker PRISM, the
probability of observing certain event or condition at a time t can be estimated.
Tasks, annotated with a duration range, occur at a different time in each al-
ternative workflow produced by gateways present in the workflow; hence the
probability of observing an event or action at a time t is expressed probabilisti-
cally.

Herbert and Sharp [6] proposed stochastic BPMN workflows, an extension
of Core BPMN that includes: probabilistic flows (sequence flows with a given
probability) and rewards associated to the execution of tasks. Using PRISM,
authors transform BPMN workflows into Markovian Decision Processes (MDPs).
A PRISM module is generated for each task based on a structure supported by
their normal form; code templates codify transitions between states (represented
by tasks), mediated by actions (represented by gateway conditions and task
completion). PRISM is then used for generating all valid action sequences and
calculating: 1) transitory and steady state probabilities of process conditions,
2) the probability of occurrence of an event (at a time t), 3) best and worst
scenarios, and 4) the average time of process execution.

On the other hand, Bobek and colleagues [1] proposed a transformation of
BPMN workflows to Bayesian Networks (BNs). The translation is straightfor-
ward, each node (action, event or gateway) is translated into a Boolean random

33

variable whereas control flows are used for constructing the conditional depen-
dency graph. The Bayesian Network is trained with BPMN workflows obtained
from a process library, producing CPTs that indicate how likely is to observe a
node N1 followed by another node N2. The resulting BN is used for recommend-
ing missing nodes during a new process specification. This approach lacks of a
mechanism for recognizing disjoint events and detecting equivalent events/tasks
across different BPDs.

4.2 Translatable Fragments of BPMN workflows

The BPMN fragment of our approach differs from the one used in the translation
of BPMN to BPEL [14] in two aspects. First, in [14] exist two types of end events,
one for indicating that the participation of a component has finished, and another
for indicating process termination. Given that we model the process from the
perspective of the activity’s subject, end events represent the different ways on
which the process might terminate, successfully or on failure for the subject.
Second, in our approach we don’t consider data/event-based XOR gateways
as long as an equivalent expressivity is provided by XOR gateways followed by
intermediate events that might represent the event to observe for deciding which
branch is followed during process execution.

Unlike the mapping of BPMN to agents proposed in [3], we only consider a
single pool on which every lane represents a role. The use of multiple pools forces
to specify illocutions between agents as part of the activity description, which
produces a low-level specification which is not the purpose of our approach at
this point. In contrast, BPEL, used for specifying systems based on Web Services,
does not capture the attribution of agent capabilities (perceptions and actions)
grouped around roles, which is evidenced on that it does not consider BPMN
pools and lanes on its translation [14].

A limitation of our normal form is that we do not permit the representation
of cycles in the BPMN workflow as long as it would produce non-acyclic graphs.
This can be solved by replacing the feedback arc by a subprocess that replicates
the cyclical section and it is called recursively until reaching the stop condition.

Another limitation is that the definition of random variables from interme-
diate events relies in a single fixed structured (XOR gateways); this mechanism
can be generalized by calculating the different ways on which the graph can
be traversed and determining which events never occur together, establishing a
criterion for grouping proximate disjoint nodes.

4.3 Probabilistic workflows as agent engineering tool

Modeling human activities using BPMN from an Activity Theory perspective
provides a goal-oriented plan representation for the User agent representing to
the activity’s subject in a MAS. The corresponding ACBN can be used for
modeling other participants and providing recommendations to the user. Given
that human actions are not directly observable, observable events between them
can be used for estimating what happened or what will occur next.

34

As we show in [2], the causal network can be further used for introducing
the participation of software agents and generating Prometheus scenarios. In
this work we propose the use of BPMN as a user-friendly way of specifying the
activity dynamics and its probabilistic distribution.

In this paper we illustrate how the BPD can be modeled from the perspective
of a single actor (the subject) meanwhile it captures his interactions with other
participants. Modeling a complex system where other actors should achieve their
own goals requires capturing in a single BPD the perspective of other partic-
ipants, or modeling their perspectives in separate BPDs and calculating their
intersections. For instance, the participation of the Doctor is conditioned to his
presence at the hospital previous to the appointment time; this is not repre-
sented in Figure 2, but such precondition should be available in the Doctor’s
consultation workflow.

5 Conclusions

We introduced a BPMN Business Process Diagram (BPD) normal form based
on Activity Theory that can be used for representing the dynamics of a collective
human activity from the perspective of a subject. We introduce a novel automatic
procedure that transforms this workflow into a Causal Bayesian Network that
can be used for modeling human behaviors and assessing human decisions.

The resulting Bayesian Network is not only consistent with the valid process
developments encoded in the BPD, but it can be further complemented with
causal dependencies discovered by algorithms like Pearl’s Inferred Causation
[15] from actual process developments in order to improve goal achievement’s
prediction.

Providing a semantic representation of event and action nodes will permit
to overcome the limitations of other approaches for detecting equivalent nodes
and will provide the platform for the composition of workflows, the generation
of agent role descriptions and plans, and the implementation of a process moni-
toring procedure. Using these descriptions, the proposed transformation can be
extended with a proper translation of loops and subprocesses, which in turn
could be used for providing a work around for cycles.

Acknowledgments

This research was supported by Tecnologico de Monterrey through the “Intelli-
gent Systems” research group, and by CONACyT through the grant CB-2011-
01-167460.

References

[1] Bobek, S., Baran, M., Kluza, K., Nalepa, G.J.: Application of bayesian networks to
recommendations in business process modeling. In: Proceedings of the Workshop
AI Meets Business Processes 2013. vol. CEUR 1101, pp. 41–50 (2013)

35

[2] Ceballos, H.G., Garcia-Vazquez, J.P., Brena, R.: Using activity theory and causal
diagrams for designing multiagent systems that assist human activities. In: Pro-
ceedings of the 12th Mexican International Conference on Artificial Intelligence,
MICAI 2013. pp. 185–198. Mexico City (Nov 2013)

[3] Endert, H., Kuster, T., Hirsch, B., Albayrak, S.: Mapping BPMN to agents: An
analysis. In: Agent, Web Services, and Ontologies Integrated Methodologies -
International Workshop MALLOW-AWESOME 2007. pp. 43–58 (2007)

[4] Engeström, Y., Miettinen, R., Punamäki, R.: Perspectives on Activity Theory.
Learning in Doing: Social, Cognitive and Computational Perspectives, Cambridge
University Press (1999)

[5] Garcia-Vazquez, J.P., Rodriguez, M.D., Tentori, M.E., Saldana, D., Andrade,
A.G., Espinoza, A.N.: An agent-based architecture for developing activity-aware
systems for assisting elderly. Journal of Universal Computer Science 16(12), 1500–
1520 (jun 2010)

[6] Herbert, L., Sharp, R.: Precise Quantitative Analysis of Probabilistic Business
Process Model and Notation Workflows. Journal of Computing and Information
Science in Engineering 13(1), 011007(1–9) (2013)

[7] Hinge, K., Ghosey, A., Koliadisz, G.: Process seer: A tool for semantic effect
annotation of business process models. In: Proceedings of 13th IEEE International
Enterprise Distributed Object Computing Conference, EDOC 2009. pp. 54–63
(2009)

[8] Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A semantic web rule language combining OWL and RuleML. W3C Mem-
ber Submission 21 May 2004

[9] Jander, K., Braubach, L., Pokhar, A., Lamersdorf, W., Wack, K.J.: Goal-oriented
processes with GPMN. International Journal on Artificial Intelligence Tools (20),
1021–1041 (2011)

[10] Kuster, T., Lutzenberger, M., Hessler, A., Hirsh, B.: Integrating process modelling
into multi-agent systems engineering. In: Multiagent and Grid Systems. pp. 105–
124 (2012)

[11] Leont’ev, A.: Activity, Consciousness, and Personality. Prentice-Hall, Inc. (1978)
[12] zur Muehlen, M., Indulska, M.: Modeling languages for business processes and

business rules: A representational analysis. Information Systems 35(4), 379–390
(2010)

[13] OMG: Business Process Model and Notation (BPMN), Version 2.0 (January
2011), http://www.omg.org/spec/BPMN/2.0

[14] Ouyang, C., van der Aalst, W., Dumas, M., Hofstede, A.: Translating BPMN to
BPEL. BPM Center Report BPM-06-02, BPMcenter.org (2006)

[15] Pearl, J.: Causality. Models, Reasoning, and Inference. Cambridge University
Press (2000)

[16] Pearl, J., Robins, J.: Probabilistic evaluation of sequential plans for causal models
with hidden variables. In: Besnard, P., Hanks, S. (eds.) Uncertainty in Artificial
Intelligence 11. pp. 444–453 (1995)

[17] Prandi, D., Quaglia, P., Zannone, N.: Formal analysis of bpmn via a translation
into cows. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5052 LNCS.
pp. 249–263 (2008)

36

ACE: a Flexible Environment
for Complex Event Processing in Logical Agents

Stefania Costantini

DISIM, University of L’Aquila, Italy, email: stefania.costantini@univaq.it

Abstract. In this paper we propose the general software engineering approach
of transforming an agent into an Agent Computational Environment (ACE) com-
posed of: 1) the “main” agent program; 2) a number of Event-Action modules for
Complex Event Processing, including generation of complex actions; 3) a number
of external contexts that the agent is able to access in order to gather information.
In our view an ACE is composed of heterogeneous components: therefore, we
do not make assumptions about how the various components are defined, except
that they are based upon Computational Logic. In order to show a concrete in-
stance of ACE, we discuss an experiment based upon the DALI agent-oriented
programming language and Answer Set Programming (ASP).

1 Introduction

Event processing (also called CEP, for “Complex Event Processing”) has emerged as
a relevant new field of software engineering and computer science [1, 2]. In fact, a lot
of practical applications have the need to actively monitor vast quantities of event data
to make automated decisions and take time-critical actions (the reader may refer to the
Proceedings of the RuleML Workshop Series). Several products for event processing
have appeared on the market, provided by major software vendors and by start-up com-
panies. Many of the current approaches are declarative and based on rules, and often
on logic-programming-like languages and semantics: for instance, [3] is based upon a
specifically defined interval-based Event Calculus [4].

Complex Event Processing is particularly important in software agents. Naturally
most agent-oriented languages, architectures and frameworks are to some extent event-
oriented and are able to perform event-processing. The issue of Event Processing
Agents (EPAs) is of growing importance in the industrial field, since agents and multi-
agent systems are able to manage rapid change and thus to allow for scalability in
applications aimed at supporting the ever-increasing level of interaction.

This paper is concerned with logical agent-oriented languages and frameworks, i.e.,
those approaches whose semantics is rooted in Computational Logic. There are several
such approaches, some mentioned below (for a recent survey cf., e.g., [5]). For lack
of space, we are not able here to discuss and compare their event-processing features.
Rather, we recall only the ones that have more strongly influenced the present work.

A recent but well-established and widely used approach to CEP in computational
logic is ETALIS [6–8], which is an open source plug-in for Complex Event Processing
implemented in prolog which runs in many Prolog systems. ETALIS is in fact based

37

on a declarative semantics, grounded in Logic Programming. Complex events can be
derived from simpler events by means of deductive rules. ETALIS, in addition, sup-
ports reasoning about events, context, and real-time complex situations, and has a nice
representation of time and time intervals aimed at stream reasoning. Relations among
events can be expressed via several operators, reminiscent of those of causal reasoning
and Event Calculus.

In logical agents, some relevant work about CEP is presented in [9] and [10], which
discuss the issue of complex reactivity, by considering the possibility of selecting dif-
ferent reactive patterns by means of simple preferences. [11] introduces more complex
forms of preferences among applicable reactive behaviors. Such preferences can be also
defined in terms of “possible worlds” elicited from a declarative description of a current
or hypothetical situation, and can depend upon past events, and the specific sequence in
which they occurred. [12] and [13, 14] discuss event-based memory-management, and
temporal-logic-based constraints for complex dynamic self-checking and reaction.

In this paper, we propose a novel conceptual view of Complex Event Processing
in logical agents and a formalization of the new approach. We observe that a complex
event cannot always result from simple deterministic incremental aggregation of simple
events. Rather, an agent should be able to possibly interpret a set of simple events in
different ways, and to choose among possible interpretations. We also consider com-
plex actions, seen as agent-generated events. To this aim, we propose to equip agents
with specific modules, that we call Event-Action modules (whose first general idea was
provided in [15, 16]), describing complex events and complex actions. Such modules
are activated by a combination of simple events, and may return: (i) possible interpreta-
tions of a set of simple events in terms of complex events; (iii) detection of anomalies;
(iv) (sets of) actions to perform in response. An Event-Action module is re-evaluated
whevener new instances of the “triggering” events become available.

Each agent can be in principle equipped with a number of such modules, possibly
defined in different heterogeneous languages/formalisms. Also, in order to reason about
events, an agent may have to resort to extracting knowledge from heterogeneous exter-
nal sources, that in general cannot be “wrapped” and considered as agents. We draw
inspiration from the Multi-Context Systems (MCS) approach, which has been proposed
to model information exchange among heterogeneous sources [17–19]. MCSs are de-
fined so as to drop the assumption of making such sources in some sense homogeneous:
rather, the approach deals explicitly with their different representation languages and
semantics. Heterogeneous sources are called “contexts” and in the MCS understanding
are fundamentally different from agents, as they do not have reactive, proactive and
social capabilities, but can simply be queried and updated. MCSs have evolved from
the simplest form [17] to managed MCS (mMCS) [20], and reactive mMCS [19] for
dealing with external inputs such as a stream of sensor data. MCSs adopt “bridge rules”
for knowledge interchange, which are special rules assumed to be applied whenever
applicable, so that contexts are constantly “synchronized”.

In this paper we propose the software engineering approach of transforming an
agent into an Agent Computational Environment (ACE) composed of: 1) the “main”
agent program, or “basic agent”; 2) a number of Event-Action modules; 3) a number of
external contexts that the agent is able to access. We assume the following. (1) Agents

38

and modules can query (sets of) contexts, but not vice versa. (2) Agents and modules are
equipped, like contexts in MCSs, with bridge rules for knowledge interchange. Their
application is however not only aimed at extracting knowledge from contexts, but also
at knowledge interchange among the basic agent and Event-Action modules. On the
one hand modules can access the agent’s knowledge base, on the other hand the agent
can access modules’ conclusions. 3) We do not make assumptions about how the vari-
ous components are defined, except that they are based upon Computational Logic. We
propose a full formalization with a semantics, where again we draw inspiration from
MCSs’ equilibrium semantics, on which we make necessary non-trivial enhancements,
though aiming at a smooth extension which introduces as little additional technical ma-
chinery as possible. The approach proposed here constitutes a substantial enhancement
towards [15, 16], and the formalization and semantics are fully novel.

To demonstrate practical applicability of ACEs, we discuss a prototypical example
that we have been experimented using the DALI agent-oriented language [21, 22]. In
this setting we adopt Answer Set Programming for implementing Event-Action mod-
ules. Answer Set Programming (ASP, cf, among many, [23–25]) is in fact a well-
established logic programming paradigm, where a program may have several (rather
than just one) “model”, called “answer set”, each one representing a possible interpre-
tation of the situation described by the program. We show how ASP-based Event-Action
modules can be defined in a logic-programming-like fashion (we adopt in particular a
DALI-like syntax) and then translated into ASP and executed via an ASP plugin inte-
grated into the DALI interpreter. We provide a sketch of the translation.

The paper is organized as follows. In Section 2 we provide the necessary back-
ground on MCSs. In Section 3 we present the proposal, its formal definition and its
semantics. In Section 4 we discuss one particular instance, based upon ASP modules.
Finally, in Section 5 we conclude.

2 Background

Managed Multi-Context systems (mMCS) [18, 20, 19]) model the information flow
among multiple possibly heterogeneous data sources. The device for doing so is con-
stituted by “bridge rules”, which are similar to datalog rules (cf., e.g., [26] for a survey
about datalog and the references therein for more information) but allow for knowledge
acquisition from external sources, as in each element of their “body” the “context”, i.e.
the source, from which information is to be obtained is explicitly indicated. In the short
summary of mMCS provided below we basically adopt the formulation of [19], which
is simplified w.r.t. [20].

Reporting from [18], a logic L is a triple (KBL;CnL;ACCL), where KBL is the
set of admissible knowledge bases of L, which are sets of KB-elements (“formulas”);
CnL is the set of acceptable sets of consequences, whose elements are data items or
”facts” (in [18] these sets are called “belief sets”; we adopt the more neutral terminology
of “data sets”); ACCL : KBL → 2CnL is a function which defines the semantics of
L by assigning each knowledge-base an “acceptable” set of consequences. A managed
Multi-Context System (mMCS) M = (C1, . . . , Cn) is a heterogeneous collection of
contexts Ci = (Li; kbi; bri) where Li is a logic, kbi ∈ KBLi is a knowledge base

39

(below “knowledge base”) and bri is a set of bridge rules. Each such rule is of the
following form, where the left-hand side o(s) is called the head, also denoted as hd(ρ),
the right-hand side is called the body, also denoted as body(ρ), and the comma stand
for conjunction.

o(s)← (c1 : p1), . . . , (cj : pj),
not (cj+1 : pj+1), . . . , not (cm : pm).

For each bridge rule included in a contextCi, it is required that kbi∪o(s) belongs to
KBLi and, for every k ≤ m, ck is a context included inM , and each pk belongs to some
set in KBLk

. The meaning is that o(s) is added to the consequences of kbi whenever
each pr, r ≤ j, belongs to the consequences of context cr, while instead each pw, j <
w ≤ m, does not belong to the consequences of context cs. While in standard MCSs the
head s of a bridge rule is simply added to the “destination” context’s knowledge base
kb, in managed MCS kb is subjected to an elaboration w.r.t. s according to a specific
operator o and to its intended semantics: rather than simple addition. Formula s itself
can be elaborated by o, for instance with the aim of making it compatible with kb’s
format, or via more involved elaboration.

If M = (C1, . . . , Cn) is an MCS, a data state or, equivalently, belief/knowledge
state, (according to everyone’s favorite terminology) is a tuple S = (S1, . . . , Sn) such
that each Si is an element of Cni. Desirable data states are those where each Si is
acceptable according to ACCi. A bridge rule ρ is applicable in a knowledge state iff
for all 1 ≤ i ≤ j : pi ∈ Si and for all j + 1 ≤ k ≤ m : pk 6∈ Sk. Let app(S) be the set
of bridge rules which are applicable in a data state S.

For a logic L, FL = {s ∈ kb | kb ∈ KBL} is the set of formulas occurring in
its knowledge bases. A management base is a set of operation names (briefly, opera-
tions) OP , defining elaborations that can be performed on formulas, e.g., addition of,
revision with, etc. For a logic L and a management base OP , the set of operational
statements that can be built from OP and FL is FOPL = {o(s) | o ∈ OP, s ∈ FL}.
The semantics of such statements is given by a management function, which maps a
set of operational statements and a knowledge base into a modified knowledge base.
In particular, a management function over a logic L and a management base OP is a
function mng : 2F

OP
L × KBL → 2KBL \ ∅. The management function is crucial for

knowledge incorporation from external sources, as it is able to perform any elaboration
on the knowledge base given the acquired information.

Semantics of mMCS is in terms of equilibria. A data state S = (S1, . . . , Sn) is
an equilibrium for an MCS M = (C1, . . . , Cn) iff, for 1 ≤ i ≤ n, kb′i = Si ∈
ACCi(mngi(app(S), kbi)) . Thus, an equilibrium is a global data state composed of
acceptable data states, one for each context, encompassing inter-context communication
determined by bridge rules and the elaboration resulting from the operational statements
and the management functions.

Equilibria may not exist (where conditions for existence have been studied, and
basically require the avoidance of cyclic bridge-rules application), or may contain in-
consistent data sets (local inconsistency, w.r.t. local consistency). A management func-
tion is called local consistency (lc-) preserving iff, for every given management base,
kb′ is consistent. It can be proved that a mMCS where all management functions

40

are lc-preserving is locally consistent. Algorithms for computing equilibria have re-
cently been proposed (see, e.g., [27] and the references therein). Notice that bridge
rules are intended to be applied whenever they are applicable. In [19], where mMCS
are adapted so as to continuous reasoning in dynamic environments, where contexts’
contents are updated by external input, the notion of a “run” is in fact introduced.
A run of mMCS M under a sequence Obs0, Obs1, . . . of observations is a sequence
R = 〈S0,KB0〉, 〈S1,KB1〉 . . . such that 〈S0,KB0〉 is a full equilibrium of M under
Obs0, and for i > 0 〈Si,KBi〉 is a full equilibrium ofM underObsi, a full equilibrium
being obtained by taking the observations into consideration in every context for bridge
rules application (as observation literals can occur in bridge rule bodies).

3 Agents as Computational Environments

In the approach that we present here, an agent is equipped with a number of Event-
Action modules for performing Complex Event Processing, and with a number of con-
texts which are known to the agent and to which the agent may resort for gathering
information. We assume the agent to be based upon its own underlying logic, and so
are the Event-Action modules and the contexts. Different Event-Action modules may
be based on different logics, depending upon the task they are supposed to perform: for
instance, some modules might be aimed at event interpretation, some others at learning
patterns from event occurrences, some others at evaluating possible courses of action,
etc.

In order to finalize an agent’s operation, we assume that each Event-Action module
admits just one acceptable sets of consequences, differently from MCSs where each
context may in principle admit several. In such case, we assume to choose one by means
of some kind of selection function. In [19] the problem is mentioned in the conclusions,
referring to unwanted sources of non-determinism that may arise. They thus suggest to
adopt a global preference criteria to fix the problem, and also mention some existing
preference functions that might be exploited. However, as seen below we will take the
problem as solved for contexts to which agents are able to refer to, so we will care only
about consequences selection for Event-Action modules.

Let a logic L be defined as reported in previous section.

Definition 1. Let a preferential logic LP be a quadruple (KBLP ;CnLP ;ACCLP ;P)
where ACCLP is a function which selects the “preferred” one among acceptable set of
consequences of given knowledge base, according to the preference criterion P .

As seen, we leave the preference criterion as an open parameter, as each module
may in principle employ a different one. In general, a preference criterion is some kind
of device which induces a total order on CnLP . On one extreme it can even be random
choice, though in general domain/application-dependent criteria will be defined.

Similarly to what is done in Linear Time Logic (LTL) we assume a discrete, lin-
ear model of time where each state/time instant can be represented by an integer
number. States t0, t1, . . . can be seen as time instants in abstract terms, as we have
ti+1 − ti = δ, where δ is the actual interval of time after which we assume a given
system to have evolved. In particular, agent systems evolve according to the perception
of events (among which we include communications with other agents).

41

Definition 2. Let Π = Π1, Π2, . . . be a sequence of sets of events, where Πi is as-
sumed to have been perceived by given agent at time i > 0. Each event in Π , say E,
can be denoted as E : ti where ti is a time-stamp indicating time i. By E : [ti, tj] with
1 ≤ i ≤ j we mean that E persists during an interval, i.e., we have E : ts for every
i ≤ s ≤ j.

A number of expressions can be defined on events, for instance:E1, . . . , Ek : [ti, tj]
to mean that all the Eis, i ≤ k, persist in given interval; E1, . . . , Ek \ E : [ti, tj]
intending that all the Eis persist in given interval, where E does not occur therein. We
do not go into the detail, but we assume that some syntax is provided for defining Event
Expressions, where each such expression can be evaluated to be true or false w.r.t. Π .

Definition 3. LetΠ = Π1, Π2, . . . be a sequence of sets of events as defined above. Let
E be a set of event expressions and let evE : E , Π → {true, false} be an evaluation
function which establishes whether ε ∈ E is true/false w.r.t. Π .

Below we define Event-Action modules, which include an event expression that
functions as a trigger, meaning that the module is evaluated whenever the given event
expression is entailed by the present event sequence. Event-Action modules may re-
sort to bridge rules for obtaining knowledge from both external contexts, and from the
agent’s knowledge base. They elicit, by means of some kind of reasoning, complex
events that may have occurred and/or actions that the agent might perform. In case
several possibilities arise, preferences are employed to finalize the reasoning.

Definition 4. We let an Event-Action module be defined as M =
(LM

P ; kbM ; brM ; trM) where LM
P
i is a preferential logic, kbM ∈ KBLM

P is
a knowledge base and brM is a set of bridge rules of the form defined for mMCS (seen
in previous section). trM is an event expression which triggers the module evaluation,
belonging to given set E associated to evaluation function evE .

Definition 5. An Event-Action module M is active w.r.t. sequence Π of sets of events
(or simply “active” if leaving Π implicit) iff evE(trM , Π) = true, i.e., if Π enables
the module evaluation.

Complex events and/or actions derived from the module will be included in the set
of consequence deriving from its application, that also involves, as seen below, bridge-
rules application.

An agent program can be defined in any agent-oriented computational-logic-based
programming language, such as, e.g., DALI (cf. [21, 22, 28]), AgentSpeak (cf. [29, 30]
and the references therein), GOAL (cf. [31] and the references therein) 3APL (cf. [32]
and the references therein), METATEM (cf. [33] and the references therein) or any
other agent-oriented language [34], KGP (cf [35] and the references therein). So, to our
purposes we provide a very simple general definition of a basic agent, able to encompass
any of the mentioned approaches. Only, we add bridge rules, in a form which allows
an agent to access contexts, and Event-Action modules results. Precisely, in literals
which occur in the the body of such rules we allow expression to appear of the form: (i)
m : cem : p meaning that Event-Action module m has (not) concluded p as a complex
event; m : actm : p meaning that Event-Action module m has (not) concluded p as an
action to perform.

42

Definition 6. We let a basic agent be defined as A = (LA; kbA; brA) where LA is a
logic, kbA ∈ KBLA

is a knowledge base (encompassing the agent program), and brA
is a set of bridge rules of the form:

o(s)← B1, . . . , Bj,
notCj+1, . . . , notCm.

where, for j > 0, m ≥ 0, each of the Bs and Cs can be in one of the following forms:
(i) (c : p) where c is a context; (ii) m : cem : p or m : actm : p where M is an
Event-Action module.

Definition 7. An Agent Computational Environment (ACE) A is a tuple

〈A,M1, . . . ,Mr, C1, . . . , Cs〉

where, for r, s ≥ 0, A is a basic agent, the Mis are Event-Action modules and the Cis
are contexts in the sense of MCSs1. We put the following restrictions on bridge rule
bodies: (i) bridge rules in A are of the form seen above; (ii) both contexts and basic
agent A can be mentioned in bodies of bridge rules in the Mis; (iii) only contexts can
be mentioned in bodies of bridge rules in the Cis.

That is, contexts can only query other contexts; Event-Action modules can query
contexts, but also the basic agent (thus, they have some access to its knowldedge base);
the basic agent can query every component (and will in general interact with the envi-
ronment and with other agents).

Definition 8. LetA = 〈A1, . . . , Ah〉 be an ACE, defined as above (i.e., the Ais include
the basic agent, and, possibly, Event-Action modules and contexts). A data state ofA is
a tuple S = (S1, . . . , Sh) such that each of the Sis is an element of Cni.

As for MCSs, desirable data states are those where each Si is acceptable according
to ACCi taking bridge rules application into account. However, bridge rules applica-
bility here is different. In fact, it is required that each Event-Action module which is
queried is also active.

Definition 9. Let S be a data state of ACEA, and letΠ be a sequence of sets of events.
A bridge rule ρ is applicable in S given Π iff every Event-Action module mentioned
in the body is active w.r.t. Π , and for every positive literal in the body referring to
component Ai the atom occurring therein belongs to Si and for every negative literal
in the body referring to component Ai the atom occurring therein does not belong to
Si. Let app(S,Π) be the set of bridge rules which are applicable in a data state S w.r.t.
sequence of sets of events Π .

We can extend to ACEs the definition of equilibrium already provided for MCSs.

Definition 10. A data state S = (S1, . . . , Sn) of ACE A is an equilibrium w.r.t. se-
quence of sets of events Π , denoted as ΞA

Π , iff for 1 ≤ i ≤ n, kb′i = Si ∈
ACCi(mngi(app(S,Π), kbi)) .

1 The acronym “ACE” emerged by chance: nevertheless, with the occasion the author wishes to
dedicate the ACE approach to the memory of Alan Turing.

43

where for every component based upon a preferential logic (i.e., at least Event-Action
modules) ACCi is, as said before, univocal. It is easy to see that if the set of contexts
included in ACE A constitutes in itself an mMCS which admits equilibria, then also A
does so. As soon as the sequence of set of events acquires more elements over time, this
determines new equilibria to be formed.

Definition 11. Given ACE A and sequence of sets of events Π = Π1, Π2, . . . , Pk, . . .,
the corresponding ACE-Evolution is the sequence of equilibria ΞA

Π1 ,ΞA
Π1,Π2 , . . .,

ΞA
Π1,Π2,...,Pk , . . .

This implies that each Event-Action module is either evaluated or not in different
stages of an ACE’s evolution. In case a bridge rule queries a module which at that
stage is not active, no result will be returned. This is a departure from MCSs, where
each literal in a bridge rules is supposed to always evaluate to either true or false. In
case of ACEs, some bridge rules will be “idle” at some evolution stages, i.e., unable to
return results. Results may anyway have been returned previously or may be returned
later, whenever the involved modules become active. Event-Action modules might be
for instance defined in ETALIS, or in Reactive Answer Set Programming [36], or in
Abductive Logic Programming or in many other formalisms.

For lack of space we cannot dicuss verification. However we may notice that by
adopting LTL (i.e., Linear Temporal Logic), interesting properties of an ACE can be
defined and verified. For instance, for proposition ϕ it can be checked whether ϕ holds
for agent A in some equilibrium reached at a certain time or within some time interval.

4 Event-Action Modules in DALI and ASP

The ACE framework is especially aimed at designing agent-based computational en-
vironments involving heterogeneous components. Purposedly, the proposal does not
make assumptions about the logics and the preference rules the various component are
based upon. In order to make the proposal less abstract by demonstrating its practical
applicability, in this section we however report about an experiment that we have been
developing in DALI, where: the basic agent is a DALI agent; contexts are simple Pro-
log knowledge bases; Event-Action modules are defined in a DALI-like syntax, and
are then translated into Answer Set Programming (ASP), and thus executed by means
of the ASP plugin which has been integrated into the DALI interpreter. ASP is in fact
quite suitable for obtaining plausible scenarios from a set of constraints, and several
approaches to preferences have been defined for ASP: cf., e.g., [19] and the references
therein, and also [37–39] and [40, 41]).

In the examples below syntax is reminiscent of DALI, which is a Prolog-like lan-
guage with predicates in lowercase and variables in uppercase. Postfix E designs a
predicate as an event, postfix A as an action. Special keywords indicate, for the conve-
nience of programmers and readers, different parts of each module. However, there is
no special reason for adopting these keywords rather than a different syntax.

44

4.1 Examples of Event-Action Modules

Deriving Complex Events The following example illustrates an Event-Action Module
evaluating symptoms of either pneumonia, or just flu, or both (clearly, we do not aim
at medical precision). An Event-Action Module will be activated whenever the trigger-
ing events occur within a certain time interval, and according to specific conditions: in
the example, the module is evaluated whenever in the last two days both high tempera-
ture and intense cough have been recorded. For the sake of conciseness the example is
propositional, thus referring to an unidentified single patient. In general, it might refer
to any patient/person P .

EVENT-ACTION-MODULE diagnosis

TRIGGER
(high temperatureE AND intense coughE) : [2days]

COMPLEX EVENTS
suspect flu OR suspect preumonia

suspect flu :- high temperatureP .
suspect pneumonia :- high temperatureP : [4days], intense coughP .
suspect pneumonia :-

diagnosis(clinical history , suspect pneumonia) : diag knowledge base.
PREFERENCES
suspect flu :- patient is healty .
suspect pneumonia :- patient is at risk .
ACTIONS
stay in bedA :- suspect flu.
take antibioticA :- suspect flu,

high temperatureP : [4days], not suspect pneumonia.
take antibioticA :- suspect preumonia.
consult lung doctorA :- suspect preumonia.
MANDATORY
suspect preumonia :- high temperatureP : [4days],

suspect fluP , take antibioticP : [2days].

From given symptoms, either a suspect flu or a suspect pneumonia or both can be
derived. This is stated in the COMPLEX EVENTS section, which in general lists the
complex events that the module might infer from the given definition. For suspecting
pneumonia high temperature should have lasted for at least four days, accompanied by
intense cough. Pneumonia is also suspected if the patient’s clinical history suggests this
might be the case. This is an example of a bridge rule, as the analisys of clinical history
is demanded to an external context, here indicated as diag knowledge base. Notice
that, in our implementation, every predicate not defined within the module is obtained
from the agent’s knowldge base via a standard bridge rule, that might look, for agent
Ag, of the form A :-A : Ag. As stated before in fact, in an ACE every Event-Action
module has access, via bridge rules, to the basic agent knowledge base.

Explicit preferences are expressed in the PREFERENCES section. A conclusion is
preferred if the conditions are true: therefore, in this case it is stated that hypothesizing
a flu should be preferred in case the patient is healthy, while pneumonia is the preferred
option for risky patients. Actions to undertake in the two cases are specified, and the
agent can access them via bridge rules. In this case, if a flu is suspected then the patient

45

should stay in bed, and if the high temperature persists then an antibiotic should also
be assumed (even if pneumonia is not suspected). In case of suspect pneumonia, an
antibiotic is mandatory, plus a consult with a lung doctor.

The MANDATORY section of the module includes constraints, that may be of vari-
ous kinds: in this case, it specifies which complex events must be mandatorily inferred
in module (re)evaluations if certain conditions occur. Specifically, pneumonia is to be
assumed mandatorily whenever flu has been previously assumed, but high tempera-
ture persists despite at least two days of antibiotic therapy (postfix P indicates events
perceived in the past).

Monitoring the Environment The next Event-Action-module models an agent’s be-
havior if encountering a traffic light. The triggering events are the presence of the traffic
light, and the color of the traffic light as perceived by the agent. The objective of the
module is to assess whether the observed color is correct (CHECK section), to detect
and manage possible anomalies, and to determine what to do then. The module evalu-
ates as correct any color which is either red or yellow or green. Section ANOMALIES
detects violations to the the expected color or color sequence which is, namely, yel-
low after green, red after yellow and green after red. Actions for both the normal and
anomalous case are specified. Postfix P indicates previous value of an event.

Thus if the agent meets a traffic light which is, say, red, then the agent stops, and
the event colorE(tl, red) is recorded as a past event colorP (tl, red). If, after some lit-
tle while, the event colorE(tl, green) arrives, then the module is re-evaluated and the
agent passes. The ANOMALIES section copes with two cases: (i) the color is incorrect,
e.g., the traffic light might be dark or flashing; (ii) the agent has observed the traffic
light for a while, and the color sequence is incorrect. This is deduced by comparing the
present color colorE (tl , c1) with previous color colorP(tl , c2). Actions to undertake
in case of anomaly are defined, that in the example imply passing with caution and re-
porting to the police in the former case, and choosing another route and reporting to the
police in the latter. Anomaly detection is in our opinion relevant, as anomalies in event
occurrence may be considered themselves as particular (and sometimes important) in-
stances of complex events.

EVENT-ACTION-MODULE traffic

TRIGGER traffic lightE(tl) AND colorE(tl ,C)
CHECK
color ok(tl ,C),C = red XOR
color ok(tl ,C),C = green XOR
color ok(tl ,C), C = yellow :- colorE(tl ,C)

ANOMALIES
anomaly1 (tl) :-

colorE(tl ,C), not color ok(tl ,C).
anomaly2 (tl) :-

colorE(tl , red), not colorP(tl , yellow).
anomaly2 (tl) :-

colorE(tl , yellow), not colorP(tl , green).
anomaly2 (tl) :-

colorE(tl , green), not colorP(tl , red).

46

ACTIONS
stopA :- color ok(tl , red).
stopA :- color ok(tl , yellow).
passA :- color ok(tl , green).

ANOMALY MANAGEMENT ACTIONS
pass with cautionA,
report to policeA(tl) :- anomaly1 (tl).
stopA,
change wayA,
report to policeA(tl) :- anomaly2 (tl)

Generating Complex Actions The last example is related to what happens when
two persons meet. In such a situation, it is possible that the one who first sees the
other smiles, and then either simply waves or stops to shake hands: section RE-
LATED EVENTS specifies, as a boolean combination, events that may occur contex-
tually to the triggering ones. There are some conditions, for instance that one possibly
smiles and/or waves if (s)he is neither in a bad temper nor angry at the other. Also, one
who is in a hurry just waves, while good friends or people who meet each other in a
formal setting should shake hands. Actions simply consist in returning what the other
one does, and it is anomalous not doing so (e.g., if one smiles and the other does not
smile back). In the formalization below, the expression meet friend(A,F) means that
agent A meets agent F : then, each one possibly makes some actions and the other one
will normally respond. This module is totally revertible, in the sense that it manages
both the case where “we” meet a friend and the case where vice versa somebody else
meets us. This is the reason why in some module sections events have no postfixes. In
fact, meet friend(A,F), smile, wave and shake hands are present events if a friend meets
“us”, and are actions if “we” meet a friend.

Postfixes appear in the ACTIONS and ANOMALY sections, where all elements
(whatever their origin) have become past events to be coped with. The PRECONDI-
TIONS section expresses action preconditions, via connective :< . Section MANDA-
TORY defines obligations, here via a rule stating that it is mandatory to shake hands in
a formal situation. The anomaly management section may include counter-measures to
be taken in case of unexpected behavior, that in the example may go from asking for
explanation to getting angry, etc.

EVENT-ACTION-MODULE meet

TRIGGER meet friend(A,F),
RELATED EVENTS
smile(A,F)OR
(wave(A,F) XOR shake hands(A,F))

PRECONDITIONS
smileA(A,F) :<not angry(A,F), not bad temper(A).
waveA(A,F) :<not angry(A,F).
shake handsA(A,F) :<

good friends(A,F),
not angry(A,F), not in a hurry(A), not in a hurry(F).

MANDATORY
shake handsA(A,F) :- formal situation(A,F).

47

ACTIONS
smiled(X,Y) :- smileP(X,Y).
waved(X,Y) :- waveP(X,Y).
shaken hands(X ,Y) :- shake handsP(X ,Y).
smileA(A,F) :- smiled(F,A).
waveA(A,F) :- waved(F,A).
shake handsA(A,F) :- shaken hands(F ,A).

ANOMALY
anomaly1 (meet friend(A,F)) :-

smileP(A,F), not smileA(F,A).
anomaly2 (meet friend(A,F)) :-

waveP(A,F), notwaveA(F,A).
anomaly3 (meet friend(A,F)) :-

shake handsP(A,F), not shake handsA(F,A).
ANOMALY MANAGEMENT ACTIONS
. . .

4.2 ASP Representation of DALI Event-Action Modules

Each Event-Action module can be translated in a fully automated way into an ASP
module. Sections ACTIONS, ANOMALY MANAGEMENT ACTIONS and PRECONDI-
TIONS, do not even need translation, as they include only plain logic programming
rules. The way of evaluating Event-Action modules within the DALI ACE basic func-
tioning is the following.

– At each agent’s evolution step, i.e., when new events have been perceived, ASP
modules corresponding to Event-Action modules are (re-)evaluated given the his-
tory of all events perceived, and the agent’s current knowledge base. It is required
to evaluate whether the condition in the TRIGGER headline is satisfied, which is
specified in terms of a boolean combination of present and/or past events. DALI is
equipped with timestamps and time intervals as is thus able to perform the evalua-
tion.

– A module will admit as a result of evaluation none, one or more answer sets. Non-
existence of answer sets can result from constraint violation, and implies that no
reaction to triggering events can be determined at present.

– If the module admits answer sets, one answer set among the available ones must be
selected. Answer set selection is performed according to the preferences expressed
in section PREFERENCES. If there are answer sets which are equally preferred,
the current solution in the prototypical implementation is random choice.

The answer set programming (module) Π corresponding to a given Event-
Action module is obtained by translating into ASP the contents of sections COM-
PLEX EVENTS, CHECK, RELATED EVENTS, ANOMALIES and MANDATORY. The
translation can be fully defined and automated. In particular, it can be performed by
exploiting the following ASP patterns. Notice that we do not need stream or reactive
answer set programming, as triggers and time intervals are coped with by the under-
lying DALI interpreter, while each module is evaluated in the standard ASP fashion
whenever the conditions for doing so occur.

48

conj In ASP, the conjunction among a number of elements a1, . . . , an is simply ex-
pressed as conj ← a1, . . . , an.

or-xor Disjunction among two elements a and b is expressed by the cycle a← b b←
a. This disjunction is not exclusive, since either a or b or both might be derived
elsewhere in the program. To obtain exclusive disjunction, a constraint
← a, b must be added. A constraint in ASP can be read as it cannot be that.... In
the case of exclusive disjunction, it cannot be that both a and b belong to the same
answer set. Disjunction (also exclusive) can be expressed also on several elements.

choice Choice, or possibility, or hypothesis, expressing that some element a may or
may not be included in an answer set, can be expressed by means of a cycle involv-
ing a fresh atom, say na. The cycle is of the form a← na na← a. Therefore, an
answer set will contain either a or na, the latter signifying the absence of a.

choyf Makes the choice pattern stronger: element a can be in fact chosen only if cer-
tain conditions Conds are satisfied, is expressed by a choice pattern plus a rule
c ← Conds and a constraint ← a, not c. The constraint states that a cannot be
hypothesized in an answer set if c does not hold, i.e., if Conds are not implied by
that answer set.

mand Mandatory presence in an answer set of atom a defined by rule a← Body when-
ever Body is implied by that answer set can be obtained as follows. In addition to
the defining rule a← Body , a constraint must be added of the form← not a,Body
stating that it cannot be that an answer set implies Body but does not contain a. The
constraint is necessary for preventing a to be ruled out by some other condition oc-
curring elsewhere in the program.

Specifically, the translation can be performed by means of the following guidelines
(a full and formal definition of the translation, not possible here for lack of space, is
deferred to an extended version of this paper).

– Events in the RELATED EVENTS section can be expressed by means of the choice
pattern, and their combinations via the conj and or-xor patterns. Constraints in the
MANDATORY can be expresses by means of the mand pattern.

– Section COMPLEX EVENTS is coped with by the choice and choyf patterns.
– Sections CHECK and ANOMALIES can be translated by a plain transposition of

their rules into ASP, possibly exploiting the conj and or-xor patterns.

5 Related Work Concluding Remarks

In this paper we have proposed ACE, as a framework for the design of component-based
agent-oriented environments where a “main” agent program, the basic agent, is enriched
with a number of Event-Action modules for Complex Event Processing and complex
actions generation, and with a number of external data sources it can access. These
components are in principle heterogeneous, though we assume them to be based upon
Computational Logic. We have proposed a formalization and a semantics for ACE. We
have also discussed a prototypical experimentation of the approach in the DALI agent-
oriented programming language employing ASP as a plugin.

49

A research work which is related to the present one is DyKnow [42], a knowledge
processing middleware framework providing software support for creating streams rep-
resenting high-level events concerning aspects of the past, current, and future state of a
system. Input is gathered from distributed sources, can be processed at many different
levels of abstraction, and finally transformed into suitable forms to be used by reasoning
functionalities. A knowledge process specification is understood as a function. DyKnow
is fully implemented, and has been experimented in UAVs (unmanned aerial vehicles)
applications. ACE can be considered as a generalization of such work, in that ACE
is: (i) agent-oriented; (ii) aimed at managing heterogeneity in the definition/description
of knowledge sources, that moreover can interact among themselves and with external
sources; (iii) aimed at providing a uniform semantics of single components and of the
overall system; (iv) aimed at allowing for verification of properties.

Several future directions are ahead of us. First of all, preferences are one way of
selecting among plausible alternatives. However, we plan to consider also informed
choice deriving from a learning process: i.e., an agent should learn with experience
what is the “best” interpretation to give to a situation, or which are the preference cri-
teria to (dynamically) adopt. Learning should be a never-ending process, as different
outcomes might be more plausible in different contexts and situations. Verification of
ACE systems is a very relevant aspect to be coped with. We believe that both a priori
verification and run-time assurance should be combined for ensuring desirable prop-
erties of this kind of systems. Formalization and verification of MASs (Multi-Agent
Systems) composed of ACE agents is a further important issue that we intend to con-
sider.

References

1. Chandy, M.K., Etzion, O., von Ammon, R.: 10201 Executive Summary and Manifesto –
Event Processing. In Chandy, K.M., Etzion, O., von Ammon, R., eds.: Event Processing.
Number 10201 in Dagstuhl Seminar Proc., Dagstuhl, Germany, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany (2011)

2. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co. (2010)
3. Paschke, A., Kozlenkov, A.: Rule-based event processing and reaction rules. In: RuleML.

Volume 5858 of Lecture Notes in Computer Science., Springer (2009) 53–66
4. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Computing 4

(1986) 67–95
5. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents: a road

map of current technologies and future trends. Computational Intelligence Journal 23(1)
(2007) 61–91

6. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Real-time complex event recognition
and reasoning-a logic programming approach. Applied Artificial Intelligence 26(1-2) (2012)
6–57

7. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex event
processing in ETALIS. Semantic Web 3(4) (2012) 397–407

8. : Etalis web site. http://code.google.com/p/etalis/
9. Costantini, S., Dell’Acqua, P., Tocchio, A.: Expressing preferences declaratively in logic-

based agent languages. In: Proceedings of Commonsense’07, the 8th International Sym-
posium on Logical Formalizations of Commonsense Reasoning. AAAI Spring Symposium
Series (2007) a special event in honor of John McCarthy.

50

10. Costantini, S.: Answer set modules for logical agents. In de Moor, O., Gottlob, G., Furche,
T., Sellers, A., eds.: Datalog Reloaded: First Intl. Workshop, Datalog 2010. Volume 6702 of
LNCS. Springer (2011) Revised selected papers.

11. Costantini, S., De Gasperis, G.: Complex reactivity with preferences in rule-based agents.
In Bikakis, A., Giurca, A., eds.: Rules on the Web: Research and Applications - 6th Intl.
Symposium, RuleML 2012, Proc. Volume 7438 of Lecture Notes in Computer Science.,
Springer (2012) 167–181

12. Costantini, S., De Gasperis, G.: Memory, experience and adaptation in logical agents.
In Casillas, J., Mart́inez-López, F.J., Vicari, R., la Prieta, F.D., eds.: Management Intelli-
gent Systems: Second Intl. Symposium, Proc. Advances in Intelligent and Soft Computing,
Springer (2013)

13. Costantini, S.: Self-checking logical agents. In Gini, M.L., Shehory, O., Ito, T., Jonker, C.M.,
eds.: Proceedings of AAMAS 2013, 12th Intl. Conf. on Autonomous Agents and Multi-
Agent Systems, IFAAMAS/ACM (2013) 1329–1330 Extended Abstract.

14. Costantini, S., De Gasperis, G.: Meta-level constraints for complex event processing in
logical agents. In: Online Proc. of Commonsense 2013, the 11th Intl. Symposium on Logical
Formalizations of Commonsense Reasoning. (2013)

15. Costantini, S., Riveret, R.: Event-action modules for complex reactivity in logical agents. In
Bazzan, A.L.C., Huhns, M.N., Lomuscio, A., Scerri, P., eds.: Proceedings of AAMAS 2013,
13th Intl. Conf. on Autonomous Agents and Multi-Agent Systems, IFAAMAS/ACM (2014)
1503–1504 Extended Abstract.

16. Costantini, S., Riveret, R.: Complex events and actions in logical agents. In Giordano, L.,
Gliozzi, V., Pozzato, G.L., eds.: Proceedings of the 29th Italian Conference on Computational
Logic. Volume 1195 of CEUR Workshop Proceedings., CEUR-WS.org (2014) 256–271

17. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
Proc. of the 22nd AAAI Conf. on Artificial Intelligence, AAAI Press (2007) 385–390

18. Brewka, G., Eiter, T., Fink, M.: Nonmonotonic multi-context systems: A flexible approach
for integrating heterogeneous knowledge sources. In Balduccini, M., Son, T.C., eds.: Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning - Essays Dedi-
cated to Michael Gelfond on the Occasion of His 65th Birthday. Volume 6565 of Lecture
Notes in Computer Science., Springer (2011) 233–258

19. Brewka, G., Ellmauthaler, S., Pührer, J.: Multi-context systems for reactive reasoning in
dynamic environments. In Schaub, T., ed.: ECAI 2014, Proc. of the 21st European Conf. on
Artificial Intelligence, IJCAI/AAAI (2014)

20. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In Walsh, T.,
ed.: IJCAI 2011, Proc. of the 22nd Intl. Joint Conf. on Artificial Intelligence, IJCAI/AAAI
(2011) 786–791

21. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems. In:
Logics in Artificial Intelligence, Proceedings of the 8th European Conf., JELIA 2002. LNAI
2424, Springer-Verlag, Berlin (2002)

22. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language. In:
Logics in Artificial Intelligence, Proc. of the 9th European Conf., Jelia 2004. LNAI 3229,
Springer-Verlag, Berlin (2004)

23. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In Kowalski,
R., Bowen, K., eds.: Proc. of the 5th Intl. Conf. and Symposium on Logic Programming
(ICLP/SLP’88). The MIT Press (1988) 1070–1080

24. Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge
University Press (2003)

25. Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation. Elsevier (2007)
26. Apt, K.R., Bol, R.: Logic programming and negation: A survey. The Journal of Logic

Programming 19-20 (1994) 9–71

51

27. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed evaluation of nonmono-
tonic multi-context systems. JAIR, the Journal of Artificial Intelligence Research (2015) To
appear.

28. Costantini, S.: The DALI agent-oriented logic programming language: References (2012) at
URL http://www.di.univaq.it/stefcost/info.htm.

29. Bordini, R.H., Hübner, J.F.: BDI agent programming in agentspeak using Jason (tutorial
paper). In Toni, F., Torroni, P., eds.: Computational Logic in Multi-Agent Systems, 6th
International Workshop, CLIMA VI, Revised Selected and Invited Papers. Volume 3900 of
Lecture Notes in Computer Science., Springer (2006) 143–164

30. Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In Fikes, R., Sande-
wall, E., eds.: Proc. of Intl. Conf. on Principles of Knowledge Representation and Reasoning
(KR), Cambridge, Massachusetts, Morgan Kaufmann (1991)

31. Hindriks, K.V., van der Hoek, W., Meyer, J.C.: GOAL agents instantiate intention logic. In
Artikis, A., Craven, R., Cicekli, N.K., Sadighi, B., Stathis, K., eds.: Logic Programs, Norms
and Action - Essays in Honor of Marek J. Sergot on the Occasion of His 60th Birthday.
Volume 7360 of Lecture Notes in Computer Science., Springer (2012) 196–219

32. Dastani, M., van Riemsdijk, M.B., Meyer, J.C.: Programming multi-agent systems in 3apl.
In Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E., eds.: Multi-Agent Program-
ming: Languages, Platforms and Applications. Volume 15 of Multiagent Systems, Artificial
Societies, and Simulated Organizations. Springer (2005) 39–67

33. Fisher, M.: MetateM: The story so far. In Bordini, R.H., Dastani, M., Dix, J., Fallah-
Seghrouchni, A.E., eds.: PROMAS. Volume 3862 of Lecture Notes in Computer Science.,
Springer (2005) 3–22

34. Bordini, R.H., Braubach, L., Dastani, M., Fallah-Seghrouchni, A.E., Gómez-Sanz, J.J., Leite,
J., O’Hare, G.M.P., Pokahr, A., Ricci, A.: A survey of programming languages and platforms
for multi-agent systems. Informatica (Slovenia) 30(1) (2006) 33–44

35. Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W., Mancarella, P., Sadri, F., Stathis,
K., Terreni, G., Toni, F.: The KGP model of agency: Computational model and prototype
implementation. In: Global Computing: IST/FET International Workshop, Revised Selected
Papers. LNAI 3267. Springer-Verlag, Berlin (2005) 340–367

36. Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set programming. In Del-
grande, J.P., Faber, W., eds.: Logic Programming and Nonmonotonic Reasoning - 11th Intl.
Conf., LPNMR 2011, Proc. Volume 6645 of Lecture Notes in Computer Science., Springer
(2011)

37. Bienvenu, M., Lang, J., Wilson, N.: From preference logics to preference languages, and
back. In: Proc. of the Twelfth Intl. Conf. on the Principles of Knowledge Repr. and Reasoning
(KR 2010). (2010) 414–424

38. Brewka, G., Niemelä, I., Truszczyński, M.: Preferences and nonmonotonic reasoning. AI
Magazine 29(4) (2008)

39. Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A classification and survey of preference
handling approaches in nonmonotonic reasoning. Computational Intelligence 20(12) (2004)
308–334

40. Costantini, S., Formisano, A., Petturiti, D.: Extending and implementing RASP. Fundamenta
Informaticae 105(1-2) (2010) 1–33

41. Costantini, S., Formisano, A.: Modeling preferences and conditional preferences on resource
consumption and production in ASP. Journal of of Algorithms in Cognition, Informatics and
Logic 64(1) (2009)

42. Heintz, F., Kvarnström, J., Doherty, P.: Bridging the sense-reasoning gap: Dyknow - stream-
based middleware for knowledge processing. Advanced Engineering Informatics 24(1)
(2010) 14–26

52

Tractable inquiry in information-rich environments

Barbara Dunin-Kȩplicz and Alina Strachocka

Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
keplicz,astrachocka@mimuw.edu.pl

Abstract. In the contemporary autonomous systems the role of complex inter-
actions such as (possibly relaxed) dialogues is increasing significantly. A diver-
sity of dialogue types: information seeking, inquiry, persuasion, negotiation or
deliberation, allows agents to achieve various communicative goals. In particular
inquiry aims at the growth of collective knowledge when solving a theoretic prob-
lem, and therefore is vital in information-rich environments, such as multi-agent
systems. Moreover, aiming at a realistic approach towards modeling agency, in-
complete and possibly contradictory information has to be considered.
In this paper we provide a paraconsistent and paracomplete implementation of
inquiry dialogue under realistic assumptions regarding availability and quality
of information. Various inquiry strategies for dealing with unsure and inconsis-
tent information are analyzed, leading to different dialogue outcomes. These out-
comes are further evaluated against the (paraconsistent and paracomplete) dis-
tributed beliefs of the group.
A specific 4-valued logic underpins the presented framework. Thanks to the qual-
ities of the implementation tool: a rule-based query language 4QL, our solution
is both expressive and tractable.

1 Paraconsistent Nonmonotonic Dialogues

The synergistic effect of collaborating agents is much attainable by their proper com-
munication. However, in dynamic and unpredictable environments up-to-date, sure and
complete information is hardly obtainable. This typically leads to conflicts, uncertainty
and paracompleteness, particularly when handling information originating from multi-
ple sources of diverse credibility, quality or significance. In the current paper we de-
velop a new approach to logical modeling of conversing agents, assuming that they
are prepared to handle inconsistency and lack of information. Therefore a non-classical
logic is needed, preferably a paraconsistent and paracomplete one. Introducing two new
truth values: unknown (u) and inconsistent (i) promotes fulfillment of this requirement.
In line with other paraconsistent (i.e., tolerating inconsistency) approaches to model-
ing dialogues [24, 20, 4], inconsistency does not immediately trivialize reasoning and is
treated as first-class citizen along with true (t) and false (f). Specifically the following
choices have been made in our approach.

– The solution is based on the four-valued logic of [23], which provides intuitive
results1 in realistic modeling of agency.

1 To model phenomena such as lack and inconsistency of information, a commonly used logic
is Belnap’s four-valued logic (see N.D. Belnap. A useful four-valued logic. 1977). However,

53

– Obtainment of undecided, unknown or inconsistent conclusions does not enforce
termination of the reasoning process.

– Such conclusions can be handled using various nonmonotonic methods or possibly
their combinations. However, this does not necessarily lead to knowledge comple-
tion or disambiguation.

Entailment in logic amounts to deriving conclusion on the bases of theories that can
be seen as complex knowledge bases. To reduce complexity, rather than querying arbi-
trary theories, we tailor them to their tractable version, like specific rule-based knowl-
edge bases. Thus, instead of reasoning in logical systems of high complexity, we query
paraconsistent knowledge bases. (For example we do not expect robots to prove theo-
rems but rather to act on the grounds of their knowledge bases.) Only recently has a tool
existed that allows for creation of paraconsistent belief bases and for querying them in
polynomial time: 4QL - a DATALOG¬¬-like four-valued rule-based query language.

The research methodology sketched above is a foundation of a series of papers on
modeling communication in multi-agent systems. This paper’s contribution is an imple-
mentation of a tractable, paraconsistent and paracomplete multi-party inquiry dialogue
suitable for agents situated in information-rich environments. The goal of inquiry is to
collectively solve a theoretic problem. Such a dialogue typically aims at widening the
common knowledge of the group of agents. Therefore, it becomes a powerful tool for
multi-agent systems, where it is a common situation that agents are ignorant about the
solution to some question or open problem.

As an example, consider a multi-agent system that consists of a group of diverse
swarm agents, each specialized in gathering different type of information via a system
of questionnaires (or polls), and an assistant agent whose goal is to find or verify certain
information for the human user. Assume that the human user wants to know whether it
is safe to travel to place X at the moment (safe(X)?). Suppose, none of the individual
agents knows the answer to that question. Engaging in inquiry on the topic safe(X)
will allow agents to share only the relevant pieces of their (possibly) vast knowledge
and collectively arrive at a conclusion which would serve as a recommendation for
the human user. In such dialogues conflicts may naturally appear on many different
levels [9]: in the information available to individual agents, between different agents

in areas we focus on it often provides results deviating from intuitions (see [8, 27] for details).
Consider the following example recalled after [17]. Assume a family owns two cars: a and
b. The question, whether the family has a safe car corresponds to the logical value of the
expression safe(a)∨ safe(b). Car a has gone through safety tests at two different stations s1
and s2. It has passed the safety tests at s1 but failed the tests at s2. Car b has not gone through
any safety test yet. The results of the tests determine the truth values of safe(a) and safe(b):
safe(a) has the value i while safe(b) has the value u. If the join operation ∨ is defined by
Belnap’s truth ordering, then safe(a) ∨ safe(b) = i ∨ u = t. However, the safety of car a
is unclear, since the results of both safety tests are contradictory, and we know nothing about
safety of car b! A more intuitive result here would be i. Asking instead, if all cars of the family
are safe, safe(a) ∧ safe(b), evaluates to f in Belnap’s logic (i ∧ u). However, actually we do
not have any information about the safety of car b. If in reality it would have failed the safety
tests then the expression above would evaluate to f. But, if car b would have passed the tests
then the expression would become i. Therefore, the above case seems to be better described
by u than by the answer obtained in the Belnap’s logic.

54

and between agents and groups. Notice however that it is not the goal of inquiry but
rather persuasion to resolve such conflicts.

In contrast to the classical case [30], our treatment of inquiry permits 4-valued state-
ments. Based on the initial valuation of the statement to prove, two types of inquiry are
distinguished: Inquiry-What and Inquiry-That. In this context several inquiry strategies
to handle missing and inconsistent information are investigated and their formal proper-
ties and computational complexity results are provided. Specifically, the outcomes of in-
quiry dialogues conducted under the proposed strategies are compared against the (pos-
sibly inconsistent and incomplete) distributed knowledge of the conversing group [12].
In this regard the soundness of a strategy means that whenever a dialogue terminates
with a given conclusion, this very conclusion would be obtained by an individual whose
knowledge base is the union of all the agents belief bases. On the contrary, completeness
of the strategy means that if a solution is obtainable from the union of agents beliefs,
the inquiry under such strategy will reach it. Accordingly, the main result of this paper
is Theorem 4 about soundness and completeness of the open-minded inquiry strategy.

Enriching the modeling perspective usually allows to us contemplate several new
cognitive situations when considering communication (see e.g., [11]). Such effect oc-
curs also in the context of inquiry. Our results imply that the normative models of dia-
logues should be reconsidered in the 4-valued approach.

The paper is structured as follows. First, in Section 2, the necessary notions from
theory of [16, 23] underpinning our solution are recalled. Section 3 is dedicated to our
formalization of inquiry dialogue, its strategies and properties. Finally, discussion and
conclusions are given in Section 4.

2 Language and Implementation Tool

The following definitions are adapted from [16, 23], where more intuition and examples
can be found. In what follows all sets are finite except for sets of formulas. We deal with
the classical first-order language over a given vocabulary without function symbols. We
assume that Const is a fixed set of constants, Var is a fixed set of variables and Rel is
a fixed set of relation symbols.

Definition 1. A literal is an expression of the formR(τ̄) or ¬R(τ̄), τ̄ being a sequence
of parameters, τ̄ ∈ (Const ∪ V ar)k, where k is the arity of R ∈ Rel. Ground literals
over Const, denoted by G(Const), are literals without variables, with all constants in
Const. If ` = ¬R(τ̄) then ¬` def

= R(τ̄). C

Though we use classical first-order syntax, the semantics substantially differs from the
classical one as truth values t, i, u, f (true, inconsistent, unknown, false) are explicitly
present; the semantics is based on sets of ground literals rather than on relational struc-
tures. The intuition behind these four logical values is the following:

– a is t: fact a holds (all sources claim a),
– a is f: fact a does not hold (all sources claim ¬a),
– a is u: it is not known whether a holds (no sources claim a nor ¬a),
– a is i: information about a is inconsistent (some sources claim a, other claim ¬a).

55

The semantics of propositional connectives is summarized in Table 1. The defini-
tions of ∧ and ∨ reflect minimum and maximum with respect to the ordering:

f < u < i < t, (1)

as argued in [2]. Whenever truth values are restricted to {f, t}, the semantics is compat-
ible with the semantics of the classical first-order logic.

Table 1: Truth tables for ∧, ∨,→ and ¬ (see [23, 16]).

∧ f u i t ∨ f u i t → f u i t ¬
f f f f f f f u i t f t t t t f t
u f uuu u uu i t u t t t t u u
i f u i i i i i i t i f f t f i i
t f u i t t t t t t t f f t t t f

Let v : Var → Const be a valuation of variables. For a literal `, by `(v) we mean
the ground literal obtained from ` by substituting each variable x occurring in ` by
constant v(x).

Definition 2. The truth value `(L, v) of a literal ` w.r.t. a set of ground literals L and
valuation v, is defined by:

`(L, v)
def
=





t if `(v)∈L and (¬`(v)) 6∈L;
i if `(v)∈L and (¬`(v))∈L;
u if `(v) 6∈L and (¬`(v)) 6∈L;
f if `(v) 6∈L and (¬`(v))∈L.

C

For a formula α(x) with a free variable x and c ∈ Const, by α(x)xc we understand
the formula obtained from α by substituting all free occurrences of x by c. Definition 2
is extended to all formulas in Table 2, where α denotes a first-order formula, v is a val-
uation of variables, L is a set of ground literals, and the semantics of propositional
connectives appearing at righthand sides of equivalences is given in Table 1.

The rule-based query language 4QL [23] allows for negation both in premisses and
conclusions of rules. In particular, negation in rule heads may lead to inconsistencies.
Even though openness of the world is assumed, rules can be used to close it locally or
globally. In 4QL, beliefs are distributed among modules. Each module can be treated as
a finite set of literals. If S is a set, then FIN(S) represents the set of all finite subsets of
S. In what follows let C def

= FIN(G(Const)) be the set of all finite sets of ground literals
over constants in Const.

For specifying rules and querying modules, we adapt the language of [23], where
the notion of multisource formulas was defined as follows.

56

Table 2: Semantics of first-order formulas.

– if α is a literal then α(L, v) is defined in Definition 2;

– (¬α)(L, v) def
= ¬(α(L, v));

– (α ◦β)(L, v) def
= α(L, v) ◦β(L, v), where ◦∈{∨,∧,→};

– (∀xα(x))(L, v) = min
a∈Const

(αx
a)(L, v),

where min is the minimum w.r.t. ordering (1);
– (∃xα(x))(L, v) = max

a∈Const
(αx

a)(L, v),

where max is the maximum w.r.t. ordering (1).

Definition 3. A multisource formula is an expression of the form: m.A or m.A ∈ T ,
where:

– m is a module name;
– A is a first-order or a multisource formula;
– T ⊆ {t, i, u, f}.

We write m.A = v (respectively, m.A 6= v) to stand for m.A ∈ {v} (respectively,
m.A 6∈{v}). C

The intuitive meaning of a multisource formula m.A is:

“return the answer to query expressed by formula A, computed within the con-
text of module m”.

The value of ‘m.A ∈ T ’ is:
{
t when the truth value of A in m is in the set T ;
f otherwise.

Let A(X1, . . . , Xk) be a multisource formula with X1, . . . , Xk being its all free vari-
ables and D be a finite set of literals (a belief base). Then A, understood as a query,
returns tuples 〈d1, . . . , dk, tv〉, where d1, . . . , dk are database domain elements and the
value of A(d1, . . . , dk) in D is tv.

Definition 4.

– Rules are expressions of the form:

` :– b11, . . . , b1i1 | . . . | bm1, . . . , bmim . (2)

where the conclusion ` is a positive or negative literal and the premisses
b11, . . . , b1i1 , . . . , bm1, . . . , bmim are multisource formulas and ‘,’ and ‘|’ abbrevi-
ate conjunction and disjunction, respectively.

– A fact is a rule with empty premisses (such premisses are evaluated to t).
– A module is a syntactic entity encapsulating a finite number of facts and rules.

57

– A 4QL program is a set of modules, where it is assumed that there are no cyclic
references to modules involving multisource formulas of the form m.A∈T . C

Notice that it is the concept of modules and multisource formulas that allows us
to deal with unknown or inconsistent conclusions without enforcing termination of the
reasoning process.

The semantics of 4QL is defined by well-supported models [16, 23], i.e., models
consisting of (positive or negative) ground literals, where each literal is a conclusion of
a derivation starting from facts. For any set of rules, such a model is uniquely deter-
mined and computable in deterministic polynomial time.

Definition 5. Let P be a 4QL program, A a formula, and MP the well-supported
(unique) model of P . Then: P |= A iff for any valuation v we haveMP |= v(A).

As an example, consider program P = {top, su}:

top = { enter(b) :– isAt(s, b),¬has(s, h).,
isAt(s, b) :– isArmed(s), hearShotsAt(b).,
isAt(s, b) :– su.isAt(s, b) ∈ {u, i, t}.,

¬has(s, h),
has(s, h),
isArmed(s)}

su = { isAt(s, b) :– see(s, b),¬conditions(fog).,
see(s, b),
¬conditions(fog)}

(3)

The program P consists of two modules: top and su (for surveillance). The literals
s, b, h represent suspect, building and hostage, respectively. The program uniquely
determines the following well-supported model for module su:

Msu = {¬conditions(fog), see(s, b), isAt(s, b)} (4)

and the following well-supported model for module top:

Mtop = {enter(b),¬enter(b), isAt(s, b),
isArmed(s), has(s, h),¬has(s, h)}. (5)

Definition 6. Let ` be a ground literal and P a 4QL program. A derivation of ` from P ,
denoted P ` is a finite sequence of ground (multisource) literals γ1, . . . , γn where
γn = ` such that for each i ∈ {1, . . . n}:

– γi is either a fact in P , or
– there is a rule in P with head γi and body δ1, . . . , δk such that every (multisource)

literal in the body is an element of the sequence γ1, . . . , γi−1.

To implement dialogues the functionality of adding a rule to a 4QL program is
required.

Definition 7. We define an operation of adding a rule Mi.` :– b to a 4QL program
P = {M1, ...,Mn} as follows:

P ′ = P ∪ {Mi.` :– b} = {M1, ...,Mi−1,Mi ∪ ` :– b,Mi+1, ...,Mn}
C

58

3 Inquiry

The purpose of inquiry is to collectively solve a theoretical problem [30]. In multi-
agent systems, inquiry ”starts when some agents are ignorant about the solution to
some question or open problem. The main goal is the growth of knowledge, leading
to agreement about the conclusive answer of the question. This goal may be attained
in many different ways, including an incremental process of argument which builds on
established facts in drawing conclusions beyond a reasonable doubt. Both information
retrieval and reasoning may be intensively used in this process” [10]. In its paradig-
matic form, inquiry seeks to prove a statement as true or false. In such setting, inquiry
has the property of cumulativeness: ”once a statement has been accepted as true at
any point in the argumentation stage of the inquiry, that statement must remain true
at every point in the inquiry through the argumentation stage until the closing stage is
reached” [31]. However, in real-world situations such requirement is too strong and un-
realistic. A more relaxed version of cumulativeness can be found in [4], where agent’s
beliefs do not change during the dialogue. We are making the same assumption here.
Although the classical inquiry focuses on proving or disproving a statement s, our para-
consistent and paracomplete framework allows for contemplating other possibilities,
like the following questions and corresponding 4QL formulas:

1. ’prove that suspect is at home’: isAt(suspect, home) = t
2. ’prove that suspect is not at home’: isAt(suspect, home) = f
3. ’is suspect at home?’: isAt(suspect, home) = u2

4. ’where is the suspect?’: isAt(suspect, Loc) ∈ {t, i}

While undoubtedly (1) and (2) are obvious inquiry goals, the interpretation of the last
two is not that straightforward. Until valuation for (3) is established, no classical inquiry
on this subject (finding a proof) can commence. This scenario resembles discovery di-
alogue, where what we want to discover is not previously known, and ”the question
whose truth is to be ascertained may only emerge in the course of the dialogue it-
self” [18]. In our setting, the dialogue aiming at discovering the value of a statement is
just another variation of inquiry, so is structured exactly the same. Thus, two types of
inquiry dialogues are distinguished:

1. Inquiry-WHAT, where initial valuation of s is u and the goal of the dialogue is to
establish the valuation vf of s.

2. Inquiry-THAT, where initial valuation of s is t, f or i, and the goal of the dialogue
is to confirm or refute this by providing the proof for s.

Inquiry-WHAT succeeds if vf 6= u and Inquiry-THAT succeeds if the final valuation vf
is equal to the initial valuation of s. An outcome of a successful inquiry is the valuation
of the goal and the proof of it.

2 Recall that we are dealing with a 4-valued logic, where except for t and f, there are - equally
meaningful - u and i truth values. Please note that identifying formulas which have unknown
or inconsistent valuations e.g., ”isAt(suspect, home) = u” with expressions of the form
”isAt(suspect, home) = u ∈ {t, f}” is not intended.

59

A common approach to modeling inquiry is maintaining two stores (see, e.g. [4, 22]
and references therein): a Commitment Store (CS), reflecting the current accumulated
belief base, and a Query Store (QS), reflecting current open questions. The Commit-
ment Store is usually associated with each individual agent while the Query Store is
associated with the dialogue (CSd, QSd). We maintain both stores associated with the
dialogue and do not make any assumptions about agents keeping their own Commit-
ment Stores. Further, our Commitment Store does not only consist of beliefs but also
of reasoning rules. It is created empty when the dialogue begins (as no locutions have
been uttered yet) and updated with every assertion relevant to dialogue. In short, the
inquiry Commitment Store is just an evolving 4QL program (see also [1]).

We assume that agents assert only relevant information, i.e., rules whose conclu-
sions match the current entries in QS. For a literal l ∈ QS, relevant responses would
include both l :– b and ¬l :– b. Accordingly, two locutions crucial to inquiry are:

– assert(Si, r, d): participant Si asserts a rule r in the dialogue d. If the rule is rele-
vant, it is added to CSd and its premisses are added to QSd.

– requestAll(Si, d): participant Si requests the content of QSd.

Definition 8. Locution mt is relevant to inquiry dialogue d at time t iff
mt = assert(S, ”Mi.` :– b”, d) and (¬)Mi.` ∈ QSt

d, where QSt
d is the Query Store

of d at time t. We will alternate between the notions of locution, message, move and
utterance. C

The assumption about relevance of the locutions can be replaced by a filtering mech-
anism. Then, instead of requiring that agents make specific moves, we allow them to
utter any locutions, filtering out the irrelevant ones3. This makes agents communica-
tion more flexible. However, when abusing this mechanism, agent’s credibility may be
reduced.

Definition 9. Commitment Store of a dialogue d at time t is a 4QL program denoted as
CSt

d = 〈M t
1, . . . ,M

t
k〉:

– CS0
d = ∅

– CSt
d = CSt−1

d ∪ {Mi.` :– b}, such that
mt = assert(S, ”Mi.` :– b”, d) is relevant to d at time t,

– CSt
d = CSt−1

d otherwise. C

Next, the Query Store, is a repository of active, unresolved leads in the inquiry. It
contains literals which compose the derivation of the inquiry goal s. At the beginning
the Query Store contains s as a single entry. The mechanism of updating QS is in
fact a paraconsistent and paracomplete distributed version of backward chaining4, as
discussed in Section 3.2. However, in contrast to the classical backward chaining, here
we have a number of additional options to investigate. Consequently, there may be

3 Such a filter is easy to implement: upon receiving a message, QS is inspected to verify if the
rule head is in the scope of inquiry.

4 Hybrid backward-forward chaining techniques may be used if assert locution contains a set
of rules, e.g., a subset of proof constructed bottom-up. This is a topic for future research.

60

various policies for adding literals to QS (selecting threads to follow) and removing
them fromQS (closing explored threads). Functions open and close (see Definition 10)
correspond to such methods.

Definition 10. Let:

– CSt
d be the Commitment Store of dialogue d at time t,

– mt be the message received at time t,
– close : FIN(C) × FIN(C) → FIN(C) be a method for removing entries from the

Query Store,
– open : FIN(C)×FIN(C)→ FIN(C) be a method for adding entries to Query Store.

Then, Query Store of an inquiry dialogue d on subject s at time t is a finite set of literals
denoted as QSt

d such that:

– QS0
d = {s}

– QSt
d = QSt−1

d ∪ B′ \ B′′, where
mt = assert(S, ”Mi.` :– b”, d),
B′ = open(b, CSt

d)
B′′ = close(QSt−1

d ∪B′, CSt
d),

– QSt
d = QSt−1

d otherwise. C

Note that backward chaining is a common mechanism used in deductive argumen-
tation approaches for driving the argumentation process (see e.g., [3, 4, 20]).

3.1 Dialogue Outcome vs. Distributed Knowledge

Our setting consists of a finite set of n cooperative agents. The assumption that agents
do not withhold information implicitly constraints the number of requestAll locutions
per one assertion. Agents’ belief bases are encoded as finite, ground 4QL programs
P1, . . . , Pn, that share a common ontology and do not change during the course of di-
alogue. The well-supported models MP1 , . . . ,MPn of the programs express agents’
final beliefs. The union of individual agents’ belief bases (i.e., their distributed knowl-
edge [12]) is expressed by the sum of their 4QL programs:

⋃
i∈1..n Pi. In between

joining and leaving a dialogue, an agent has to utter at least one assert locution. Also,
agents cannot repeat assertions. These assumptions allow us to verify quality and com-
pleteness of the obtained results.

Since 4QL programs are finite and agents cannot repeat utterances, there must be
a moment t when no agent has anything more to utter because either it has run out
of relevant moves or because the dialogue goal s has been achieved, whichever comes
first. Thus, dialogue terminates at time t.

In what follows we consider the outcomes of terminated inquiry dialogues. The
knowledge accumulated in the course of such dialogue d is expressed by the Commit-
ment Store of that dialogue at the termination time t:CSt

d. The final conclusion depends
on the dialogue strategy (see below) and is expressed as follows.

61

Definition 11. For an inquiry terminating at time t, with the goal s of initial valuation
vi, the value of the dialogue conclusion is vf = v(s,MCSt

d
), where MCSt

d
is the

well-supported model of CSt
d. Dialogue is:

– successful iff
• vi = u ∧ vf 6= u [Inquiry-WHAT], or
• vi 6= u ∧ vf = vi [Inquiry-THAT],

– unsuccessful otherwise. C

The value of the goal s obtained from the union of agents’ programs is expressed as
v(s,M⋃

i∈1..n Pi
).

Definition 12. Let:
– open : FIN(C)× FIN(C)→ FIN(C),
– close : FIN(C)× FIN(C)→ FIN(C)

be two methods for adding and removing entries to Query Store. Then:
ST = 〈open, close〉 is a strategy for conducting dialogue d. C

Definition 13. A strategy ST is sound iff whenever dialogue d on subject s conducted
under this strategy terminates at t with conclusion k, then if v(s,MCSt

d
) = k then

v(s,M⋃
i∈1..n Pi

) = k.

Definition 14. A strategy ST is complete iff whenever dialogue d on subject s con-
ducted under this strategy terminates at twith conclusion k, then if v(s,M⋃

i∈1..n Pi
) = k

then v(s,MCSt
d
) = k.

3.2 Opening and Closing Inquiry Threads

In classical backward chaining, the inference engine selects rules whose consequents
match the goal to be proved. If the antecedent of the rule is not known to be true, then it
is added to the list of goals. In our paraconsistent and nonmonotonic distributed version
of backward chaining, the conditions under which antecedent can be added to the list of
goals differ depending on the method used. Consequently, there may be various policies
for adding literals to QS (selecting threads to follow via function open). From a variety
of possibilities, here we investigate two such methods. A literal can be added to the
Query Store if:

A1. Its valuation in theCS model is u, meaning that only threads lacking any evidence
whatsoever are explored.

A2. Always, meaning that every premise is investigated further, even one that is tenta-
tively assumed to be t, f or i.

Definition 15. Let CSt
d be the Commitment Store of an inquiry dialogue d at time t

and MCSt
d

be its well-supported model. Let mt = assert(S, ”Mi.` :– b”, d) be the
message received at time t, such that: b = b11, . . . , b1i1 | . . . | bm1, . . . , bmim . Then,

open(b, CSt
d)

def
=

{{bjk : j ∈ 1..m, k ∈ 1, ..., ij andMCSt
d
(bjk) = u} [A1]

{bjk : j ∈ 1..m, k ∈ 1, ..., ij} [A2]

C

62

Notice that in the nonmonotonic paraconsistent backward-chaining, obtaining a truth
value for p does not necessarily close the line of reasoning about p, since the evidence
put forward by other agents may change the value of p in a number of ways. This is
why we conduct inquiry until all relevant information is shared by the agents.

The conditions under which a goal can be abandoned also differ depending on the
policy employed. We distinguish two methods for removing literals from QS (closing
explored threads via function close):

R1. Once its valuation in the CS model is not u, meaning that a thread is terminated
whenever any evidence for it is found. In some cases it may be closed prematurely,
without exposing other evidence relevant to the thread.

R2. Never, meaning the threads are never abandoned, as the information regarding them
may grow. This will not lead to infinite dialogues, since agents cannot repeat utter-
ances and their programs do not change during dialogue.

Definition 16. Let CSt
d be the Commitment Store of an inquiry dialogue d at time t

andMCSt
d

be its well-supported model. Let QSt−1
d be the Query Store of an inquiry

dialogue d at time t− 1 andMQSt−1
d

be its well-supported model. Then,

close(QSt−1
d , CSt

d)
def
=

{{x ∈MQSt−1
d

:MCSt
d
(x) 6= u} [R1]

∅ [R2]

C

3.3 Inquiry Strategies

The immediate question is which combination of methods for updatingQS makes sense
(see Table 3) and how do resulting inquiry strategies differ. Unlike other approaches, we
do not assume that the distributed knowledge of the group is complete. If the statement s
cannot be proved by agents, the conclusion would simply be u. All the results presented
in the current Section are summarized in Table 6.

Table 3: Inquiry strategies defined as pairs of methods for updating QS.

R1 R2
A1 narrow-minded pragmatic
A2 forgetful open-minded

Theorem 1. Narrow-minded strategy is neither sound nor complete. Moreover, it is
type 1 nondeterministic.5

Proof. Due to the non-monotonicity of our inquiry, applying the narrow-minded strategy
may result in overlooking some important information. As the counterexample, assume
three agents A1, A2, A3 are engaged in an inquiry dialogue with the goal enter(b).
Their programs are shown in Table 4 and the dialogue conduct is presented in Table 5.

63

Table 4: Programs of Agents A1, A2, A3.

A1 A2 A3

1 enter(b) :– isAt(s, b), ¬has(s, h) ¬su.isAt(s, b) hearShotsAt(b)
2 isAt(s, b) :– su.isAt(s, b) ∈ {u, i, t} isArmed(s)
3 isAt(s, b) :– isArmed(s), hearShotsAt(b)
4 ¬has(s, h)

Table 5: Example of a Narrow-Minded Inquiry.

t QSt
d mt MCSt

d

0 enter(b) ∅ ∅
1 enter(b), isAt(s, b), has(s, h) A1(1) ∅
2 enter(b), has(s, h), su.isAt(s, b) A1(2) isAt(s, b)

3 enter(b), has(s, h) A2 (1) ¬su.isAt(s, b)
4 enter(b) A1(4) ¬su.isAt(s, b),

¬has(s, h)

For brevity, we denote assertions in Table 5 as Aj(k), standing for the k-th rule of
agent Aj . Dialogue terminates in step 4, since only agent A1 has a rule with conclusion
enter(b) but it has already uttered it. Notice that at t = 2 we had to remove isAt(s, b)
from the Query Store, as it became true in MCS2

d
. Therefore, agent A1 didn’t have

a chance to use rule (3) in the dialogue. Obviously, v(enter(b),MCS4
d
) = u, whereas

the conclusion obtained by merging agents’ programs is v(enter(b),M⋃
i∈1..3 Pi

) = t.
If instead in the step t = 2 agent A1 would have uttered rule (3), then Query Store and
in consequence, the whole dialogue, would look differently, leading to a true conclusion
even if agent A1 didn’t have a chance to utter rule (1). C

Theorem 2. Forgetful and narrow-minded strategies are equal if the update of the
Query Store is an atomic operation.

Proof sketch. In the forgetful strategy, we add all literals from the rule body to QS
only to remove the known ones afterwards. Therefore, what remains are the unknown
literals. In case agents cannot query QS in between adding and removing literals, these
two strategies are indistinguishable. C

Theorem 3. Pragmatic and open-minded strategies are equal in terms of dialogue con-
duct.

Proof. Let’s consider the pragmatic strategy and a goal s. In the first step, the rule s :– b
is considered. All rule premisses (b) are either empty (when s is a fact) or unknown
(since CS0 is empty). Therefore, in the first step all premisses (b) are added toQS0 and
the initial rule s :– b (or fact s) is added to CS0. Obviously for a literal to be t, f or i,
it has to be a rule conclusion or a fact. Since only rules, whose conclusions are in QS
are admitted to CS, there cannot be a t, f or i literal which is in CS but was not in QS
beforehand. C

5 Type 1 nondeterminism in logic programs means freedom to choose the rule to apply [21].

64

Theorem 4. Open-minded strategy is sound and complete.

Proof sketch. Assume that v(s,MCSt
d
) = k and v(s,M⋃

i∈1..n Pi
) 6= k. At the time of

dialogue termination, CS contains all relevant messages. Each of these was uttered by
at most one agent. Therefore, we can assign each message to a set CSi where i was the
sender. Obviously, CSi ⊆ Pi. Therefore we have: CS =

⋃
i∈1..n CSi ⊆

⋃
i∈1..n Pi.

Since v(s,MCSt
d
) = k and v(s,M⋃

i∈1..n Pi
) 6= k, that means that there is a part

of the union of programs S def
=
⋃

i∈1..n Pi \ CS, such that, adding S to CS would
change the valuation of s. However, that would mean that there exists a rule (or a fact)
in S whose conclusion is in premisses of CS. That means, that rule is a part of the
derivation for s but was not uttered by the agent, which contradicts our assumptions.

Proof of completeness is analogous. C

3.4 Complexity

The complexity of the proposed inquiry strategies will be investigated from two angles:

– communication complexity, which concerns only the amount of communication
among the agents (assuming agents have unlimited computational power) [15],

– computational complexity, which considers the amount of computation (assuming
communication is free) required to:
• achieve dialogue termination,
• obtain a conclusion of a terminated dialogue.

In what follows we deal with terminated dialogues and thus we write CS and QS
instead of CSt

d and QSt
d, respectively.

Theorem 5. If the size of the domain of the proof of s is N , then the size |QS| of the
Query Store at the end of the open-minded inquiry is N/2 ≤ |QS| ≤ N .

Proof. Since all literals from rule bodies are added to QS and they are never removed
fromQS, in fact they all take part if proving the goal s. Moreover, negative and positive
literals from the proof are added to QS only once (either l or ¬l). C

Theorem 4 allows us to conclude:

Theorem 6. If the size of the proof of s is M , then the size |CS| of the Commitment
Store at the end of the open-minded inquiry is |CS| = M .

Proof. To consider how much data exchange is needed for termination of the open-
minded inquiry, let’s consider the following. Each agentAi will utter li times a requestAll
locution, receiving each time a bundle of data of size |rj | in response (j ∈ 1..li).
Since QS is monotonic, if we assume that consecutive responses to requestAll for
a single agent Ak are disjunctive (incremental), they altogether form the whole QS:∑li

j=1 |rj | ≤ |QS|. The total amount of information shared in the dialogue by all
requestAll locutions is:

n∑

i=1

li∑

j=1

|rj | ≤ n× |QS| ≤ n×N

65

If the responses rj are cumulative (redundant), total amount of information shared by
all requestAll locutions is:

n∑

i=1

li∑

j=1

j∑

k=1

|rk| = n×O(|QS|2) = n×O(N2)

The total amount of information shared by all assert locutions uttered in the dialogue
is:

n∑

i=1

ai∑

j=1

|1| = |CS| = M

For computing the communication complexity, we assume there is n agents, each
holding a certain amount of (relevant) information, such that the union of all agents
belief bases is of size M (from Theorem 6).

Theorem 7. Communication complexity of inquiry is: O(nM).

Proof. Now let’s consider how many dialogue utterances are needed for termination of
the open-minded inquiry. In the worst case, QS gets updated very slowly, one literal
per one assert locution. In general in such dialogue there can be up to n− 1 requests
per one assert. Thus, there can be at most M asserts, M × (n − 1) requests and at
most 2 join and leave locutions per one assert. Altogether (n + 2) ×M locutions
exchanged before dialogue termination6. Therefore the communication complexity is
O(nM). C

Theorem 7 allows us to conclude that the way information is distributed among
agents does not affect communication complexity of our inquiry.

In order to analyze computational complexity of obtaining termination or conclu-
sion of a terminated dialogue, the following assumptions are made. The size of the
domain of the proof is N , which is the upper limit on the size of Query Store (see The-
orem 5). The computational complexity for obtaining termination or conclusion of a
terminated dialogue is expressed in terms of data complexity [26, 19], i.e., the complex-
ity of evaluating a specific query on a database, assuming that the query is fixed and
database is arbitrary. The data complexity is thus given as a function of the size of the
database.

Theorem 8. Computational complexity of termination of open-minded inquiry is:O(1).

Proof. Handling each assert amounts to adding a rule to CSt, which is in O(1). Han-
dling each request is inO(1) as it amounts to sending the wholeQSt back to the agent.

C
Theorem 8 shows that the major factor in the complexity of the termination problem

of the open-minded inquiry is the communication complexity.

Theorem 9. Computational complexity of a narrow-minded inquiry is:O(nM)×O(Nk).

6 Notice that even for hybrid forward-backward chaining, this is the pessimistic time complexity.

66

Proof. In contrast, for the narrow-minded strategy, the well-supported model of the CS
has to be computed after each assert. Computing the well-supported model of CS is
in O(Nk), where N is the size of domain7, therefore each such step takes O(Nk).
However, at the termination time, the conclusion is known (obtainable in O(1)).

Theorem 10. Obtaining the conclusion of a terminated open-minded inquiry isO(Nk).

Proof. Recall that computing the well-supported model of CS is in O(Nk), where N
is the size of domain. For open-minded strategy the computation of the well-supported
model is only needed after the dialogue terminates, i.e., once per dialogue.

Overall, the characteristics of the open-minded and narrow-minded inquiry dia-
logues that we present in this paper are given in Table 6.

Table 6: Results for open- and narrow-minded inquiries

Characteristics Open-minded Narrow-minded
Open vs. Closed System open (at least one assert per join)
Addressing one-to-all
Coordination asynchronous
Properties sound and not sound and

complete not complete
Communication Complexity O(nM) O(nM)

Computational Complexity
O(1) O(nMNk)(Termination)

Obtaining Conclusion
O(Nk) O(1)

of a Terminated Dialogue
Communicated Data Size M + n O(N (2))

4 Related Work and Conclusions

Exploring paraconsistency and paracompleteness in argumentation is not new (see Chap-
ter 6 in [13] for general nonmonotonic reasoning techniques and e.g., [14, 5, 6] for para-
consistent reasoning techniques). Currenty there is a number of formalisms that do not
trivialize when inconsistent premises (for a survey of approaches see [29, 3]). In [4]
a formal bi-party inquiry dialog system is proposed where DeLP is used to deal with
ignorance and inconsistency. In [24] the logic of multi-valued argumentation (LMA)
is used and agents can argue using multi-valued knowledge base. In [20] ASPIC+,
a framework for structured argumentation with possible inconsistent knowledge bases
and defeasible rules is given. However, none of these formalisms handles inconsistency
or lack of information the way 4QL does. Usually the inconsistent premisses yield con-
clusions (e.g., ’undecided’) which cannot be further dealt with.

7 Here k depends on the arity of relations as in Definition 1.

67

As indicated in [7, 25], several new issues arise when contemplating the plurality of
dialogue participants. Multi-party issues were also studied in [32], where a distributed
argumentation system was given together with a multi-party dialogue game for comput-
ing the defensibility of an argument from consistent knowledge bases. In [28], a simple
multi-party inquiry dialogue assumed communication in turns with no termination cri-
terion.

Leaving behind the realm of classical two-valued logical approaches to bi-party
dialogues, we arrived at a solution for multi-party, paraconsistent and paracomplete
inquiry. We investigated four inquiry strategies, conditional on different policies for
opening and closing threads. The outcomes of dialogues conducted under these strate-
gies were evaluated against the paraconsistent and paracomplete distributed knowledge
of the group.

The outcome of our research calls for reconsidering normative models of dialogues
by introducing two additional logical values: i and u. Specifically, the novelty lies in
understanding the very nature of the dialogue’s goal. Further, the philosophical under-
pinnings of inquiry are enhanced, whereas classically inquiry has been simply con-
cerned with proving the truth of falsity of a given statement. Although we provided
a better understanding of normative models of dialogues by distinguishing between two
fundamentally different types of them, inquiry and discovery, we recognize that more
investigation is needed. Yet, we strongly believe that contemplating dialogues in this
richer modeling paradigm allows for a more precise discernment between them.

In future work, we intend to investigate hybrid forward-backward chaining tech-
niques for a dialogue system, where the locutions can contain a set of rules. Next, we
plan to research methods for handling inconsistencies and uncertainty in the Commit-
ment Store via a challenge locution.

References

1. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In: Proceedings
of JELIA 2002. LNCS, vol. 2424, pp. 50–61. Springer (2002)

2. de Amo, S., Pais, M.: A paraconsistent logic approach for querying inconsistent databases.
International Journal of Approximate Reasoning 46, 366–386 (2007)

3. Besnard, P., Hunter, A.: Elements of Argumentation. The MIT Press (2008)
4. Black, E., Hunter, A.: An inquiry dialogue system. Autonomous Agents and Multi-Agent

Systems 19(2), 173–209 (2009)
5. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theoretical Computer

Science 68(2), 135–154 (1989)
6. Damásio, C.V., Pereira, L.M.: A survey of paraconsistent semantics for logic programs. In:

Handbook of Defeasible Reasoning and Uncertainty Management Systems. pp. 241–320.
Kluwer Academic Publishers (1998)

7. Dignum, F., Vreeswijk, G.: Towards a testbed for multi-party dialogues. In: Workshop on
Agent Communication Languages. LNCS, vol. 2922, pp. 212–230. Springer (2003)

8. Dubois, D.: On ignorance and contradiction considered as truth-values. Logic J. IGPL 16(2),
195–216 (2008)

9. Dunin-Kȩplicz, B., Szałas, A., Verbrugge, R.: Tractable reasoning about group beliefs. In:
2nd international Workshop on Engineering Multi-Agent Systems (EMAS 2014). LNAI,
Springer (2014)

68

10. Dunin-Kȩplicz, B., Verbrugge, R.: Teamwork in Multi-Agent Systems: A Formal Approach.
Wiley (2010)

11. Dunin-Keplicz, B., Strachocka, A., Szalas, A., Verbrugge, R.: Paraconsistent semantics of
speech acts. Neurocomputing 151, 943–952 (2015)

12. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. The MIT
Press (1995)

13. van Harmelen, F., Lifschitz, V., Porter, B.: Handbook of Knowledge Representation. Elsevier
Science, USA (2007)

14. J.-Y. Beziau, W.C., Gabbay, D.: Handbook of Paraconsistency. College Publications (2007)
15. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, New

York, NY, USA (1997)
16. Małuszyński, J., Szałas, A.: Partiality and inconsistency in agents’ belief bases. In: KES-

AMSTA. Frontiers in Artificial Intelligence and Applications, vol. 252, pp. 3–17. IOS Press
(2013)

17. Maluszynski, J., Szalas, A., Vitria, A.: A four-valued logic for rough set-like approximate
reasoning. T. Rough Sets 6, 176–190 (2007)

18. McBurney, P., Parsons, S.: Chance discovery using dialectical argumentation. In: New Fron-
tiers in Artificial Intelligence, LNCS, vol. 2253, pp. 414–424. Springer (2001)

19. Papadimitriou, C.H., Yannakakis., M.: On the complexity of database queries. In: Pro-
ceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems. ACM (1997)

20. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument
and Computation 1(2), 93–124 (2010)

21. Schöning, U.: Logic for Computer Scientists. Modern Birkhäuser Classics, Birkhäuser
Boston (2008)

22. Singh, M.P.: Agent communication languages: Rethinking the principles. Computer 31(12),
40–47 (Dec 1998)

23. Szałas, A.: How an agent might think. Logic Journal of IGPL 21(3), 515–535 (2013)
24. Takahashi, T., Sawamura, H.: A logic of multiple-valued argumentation. In: Proceedings of

the Third International Joint Conference on Autonomous Agents and Multiagent Systems-
Volume 2. pp. 800–807. IEEE Computer Society (2004)

25. Traum, D.: Issues in multiparty dialogues. Advances in Agent Communication pp. 201–211
(2004)

26. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Proceed-
ings of the Fourteenth Annual ACM Symposium on Theory of Computing. pp. 137–146.
STOC ’82, ACM, New York, NY, USA (1982)

27. Vitória, A., Małuszyński, J., Szałas, A.: Modeling and reasoning with paraconsistent rough
sets. Fundamenta Informaticae 97(4), 405–438 (2009)

28. Vreeswijk, G., Hulstijn, J.: A free-format dialogue protocol for multi-party inquiry. In: In
Proc. of the Eighth Int. Workshop on the Semantics and Pragmatics of Dialogue (Catalog
’04). pp. 273–279 (2004)

29. Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University Press
(2008)

30. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning. State University of New York Press, Albany (NY) (1995)

31. Walton, D.: Types of dialogue and burdens of proof. In: Proceedings of COMMA 2010. pp.
13–24. IOS Press (2010)

32. Yuan, J., Yao, L., Hao, Z., Liu, F., Yuan, T.: Multi-party dialogue games for distributed
argumentation system. In: IAT. pp. 329–332. IEEE Computer Society (2011)

69

A Testbed for Agent Oriented Smart Grid
Implementation

Jorge J. Gomez-Sanz1, Nuria Cuartero-Soler1, and Sandra Garcia-Rodriguez2

1 Universidad Complutense de Madrid,
Madrid, Spain

{jjgomez, ncuarter}@ucm.es
2 CEA Saclay, DRT/DM2I/LADIS, 91191 Gif-sur-Yvette Cedex, France

sandra.garciarodriguez@cea.fr

Abstract. The aim of this paper is to present a platform for helping
agent researchers to become familiar with Smart Grids. Agent technology
has been recognised as one of the enablers for Smart Grids. A Smart Grid
intends to make an advanced use of available metering and generation
capabilities in order to use more efficiently the electricity. Contributions
of agent researchers to this domain are still reduced and this may be be-
cause of the highly specialised knowledge that is required to run current
Smart Grid simulators and the cost of commercial ones. This paper aims
to share the experience acquired during a project where distributed con-
trol approaches were devised using open source solutions. An important
result is a simulator for Smart Grids that facilitates the research of how
agents can operate such grids. This paper introduces an example case
study and discusses how agents can be applied in these situations.

1 Introduction

In the last few years, power grids have gone through several changes to make
them work as ”Smart Grids”. For instance, several elements have been added
such as sensors and meters, network nodes with computation capabilities, switches
or actuators, and so on. Together, they allow the grid setup to be highly config-
urable [7].

Traditionally, the term ”electrical grid” is assigned to the interconnected en-
ergy transmission system. However, the concept ”Smart Grid” has been more
oriented to the entire electrical system including generation, transmission and
distribution. Regarding distribution, several efforts target the increase of man-
ageability and efficiency by dividing the smart distribution grid into sub-systems.
Such sub-systems are called ”Microgrids” and consist of energy consumers and
producers at a small scale that are able to manage themselves [18]. Inside Mi-
crogrids, it is usual to find a number of Distributed Energy Resources (DERs),
such as solar power plants or wind generators. Examples for Microgrids may
be, for instance, villages, industry sites, or a university campus. Furthermore, a
Microgrid can either be connected to the backbone grid, to other Microgrids, or
it can run in island mode. Moreover, since the distribution system is considered

70

as the largest and most complex part of the entire electrical system [9], most
literature is focused on Smart Grids located at this level.

Conventional power grid control is usually done in an automated and cen-
tralised manner, with some human-in-the-loop operations, because of the rapid
changes in power consumption that may be met. There are security concerns
that are implemented right at the transformation centres before achieving the
customers location. Power grids processing power is usually located into SCADA
systems, which are centralised ones gathering information from connected sen-
sors and, sometimes, issuing orders. Besides, power grids are not flexible enough
to support future demands from customers. A customer may install one day a
photovoltaic panel to address new needs. Such operation is inexpensive from the
customer’s point of view but adds instability to the power grid. Therefore, all kW
produced needs to be consumed by someone or something. Having a thousand
customers doing something like this means trouble in a conventional power grid.
Power which is not consumed by anyone has to be dissipated by some specialised
and expensive equipment. If the operational parameters of those equipments are
exceeded, surely the safety mechanisms may cut down parts of the grid to protect
them from the extra surge. All this could be avoided if additional measurement
and control elements were added, which is what Smart Grids intend.

Rather creating isolated control artifacts for groups of Microgrids, or DERs
inside them, it is more convenient to consider the Microgrid as a collection of
interested parties that perform control functions to accommodate some higher
level goal. The benefit comes mainly from the scalability of the resulting system
(it can grow to have more control/DER elements) and the fault tolerance (parts
can fall into island/disconnected mode in a controlled way). In order to operate
with a Smart Grid, an advanced metering infrastructure is needed. Metering
is made through devices which are in fact ARM-based computers, and they
may even run Linux distributions. Hence, there is an important amount of new
hosting devices where new information processing capabilities are available.

An agent researcher will recognise this setup as one scenario where agent
technology, inherently distributed and capable of decentralised control, may be
a key one [8]. Among current studies, it is appropriate to cite the two made
by the IEEE Power and Energy Society Multi-Agent Systems Working Group
(MASWG). The MASWG issued two reports [10] [11] using as main informa-
tion sources FIPA standards and frequently cited development tools. They dis-
cuss how this technology could change the way of designing power grid control.
Though helpful, these reports, and other existing ones, are not using the agent
technology to its full extent. As defended in [8], one of the key features of agent
technology is its capability to provide a decentralised control by means of a
peer-to-peer coordination, which is opposite to the client-server paradigm cur-
rently applied through SCADA systems. Therefore, agent researchers have an
opportunity to contribute to this area more intensively.

These researchers will have to overcome the lack of tools for performing actual
research without prior knowledge of how a power grid works. Authors usually
devise their own simulators, most using MatLab or SimuLink, and find ways

71

to feed that data to the agents. Discrete event simulations play an important
role. Nevertheless, an agent researcher may need something else. The hypothesis
of this work is that preliminary research is easier with real time simulators.
With event-driven simulation, weeks can be simulated in just a few minutes. For
someone willing to experiment with agent coordination capabilities, this way of
working is not the most friendly one. Real time simulation is in fact useful when
the situation requires a software-in-the-loop or a hardware-in-the-loop approach.
Those situations have in common that there is an external element interacting
with the simulation, being it hardware or software [3]. In the case of this paper,
such external element are the agents.

The contribution of this paper is a testbed where agent researchers can ex-
periment, run fast or slow experiments, and visually check what is happening.
The testbed was developed during the MIRED-CON project, which aimed to
an intelligent decentralised control of Microgrids. Agents in the experiment can
be disconnected or connected to the simulation cycle, however in this paper will
focus on a disconnected approach because it is easier to integrate with different
agent platforms.

The testbed is developed using plain Java and RMI as technology. Hence, it
ought to be compatible with different agent solutions, such as JADE or Jack,
as long as they allow referring to external Java Objects. The proof of concept
is made with INGENIAS methodology [14] and JADE based agents. It shows
how to define agents and connect them to the simulation platform. The testbed
comes with a few pre-defined Microgris, but the notation is friendly enough to
ensure that new ones can be created. The case of study is a work in progress
where agents are expected to coordinate so that any additional energy is sent to
the main power substation and, at the same time, the least energy is demanded
from utility companies.

The paper is organised as follows. First, section 2 introduces the Smart and
Microgrids and how agents are supposed to operate within it. Section 3 explains
the testbed elements and how agents are expected to interact with them. Section
4 presents the case study with INGENIAS and shows some snapshots of the tool.
The case study uses a simple Microgrid operated by agents that intend to reduce
the billing costs and avoid producing more energy than required. Other similar
frameworks are discussed into section 5.

2 Agents in a Microgrid

Before studying the role of agents in a Microgrid, the basic elements of a Micro-
grid are introduced. In a Microgrid, see figure 1, there are elements producing
energy (DERs from now on), elements consuming this energy (loads from now
on), power lines transporting the energy, transformation centres (TC from now
on) isolating low voltage sections from medium/high voltage sections, and me-
tering infrastructure or Smart Meters (SM from now on). Batteries are another
case because they can act either as loads (while charging) or as DERs (while
discharging). Microgrids can be connected to a main power line through a sub-

72

station. When the energy generated inside the Microgrid is not enough to supply
the consumption, the lack of energy is demanded from the power line through
this substation. Readers should be aware that no one “demands” energy from
the power line. There is no actual request. It just happens.

Substation

DER
SM

Load
SM

TC
SM

TC
SM

Load
SM

Load
SMLoad

SMLoad
SMLoad

SM

Medium/High Voltage
powerline

Medium/High Voltage
powerline

Low Voltage
powerline

Low Voltage
powerline

TC
SM

Battery
SM

DER
SM

DER
SM

DER
SM
DER
SM

Main
powerline

MICROGRID

Fig. 1. Elements in a Microgrid

Communication can be assumed to be widely available, though not always
reliable. When there is no mobile networks, such as GPRS, Power Line Commu-
nication (PLC) can be an option. Hence, TCP/IP may be used just anywhere.

Agents can be hosted in any of the previous elements that is capable of having
processing and has communication capabilities. Both conditions are met more
easily in the SMs and they are intended to be deployed almost anywhere. If
possible, a SM is needed per DER to measure how much power is consumed (a
photovoltaic panel usually comes with a battery, so it consumes too) or produced;
a SM per load (loads tend to be buildings); and one SM per TC. A TC may
act as hub for the SMs underneath so that its SM may be more complex than
others.

It can be assumed that, be it inside SM or be it inside some built-in processing
power of the above mentioned elements, the agents can be hosted anywhere in
the Microgrid and communicate with each other anytime.

What agents can do inside the Microgrid is a subject of further discussion.
Reports from the MASWG [10] [11] point out possible uses. Protection is not one

73

of them. For instance, if it is not safe to operate a DER, the agent would not be in
charge of forbidding its use, but a lower level hardware implemented mechanism.
It seems that a main function of agents would be defining/choosing the strategy
of the Microgrid and delivering orders accordingly. The term “strategy” has
been chosen on purpose since agent actions have to fit into a medium/long term
scenario. The electricity consumed everywhere comes from markets where energy
production quotas are bought and sold. Selling the excess of energy production
can be an alternative which requires scheduling in advance the operation of
DERs. Sometimes, it may be cheaper to buy the energy than producing it, e.g.
because the fuel used by a generator is more expensive. To add more complexity,
energy production is subject of government regulations. For instance, in the
case of Spanish regulations, a producer must be registered within a listing of
producers and must ensure some operational parameters. When a Microgrid
delivers energy when it is not supposed to, or delivers too much energy, a fine is
issued. The reason is to harmonize the production with the consumption.

Agents can also take decisions about which DER ought to produce the re-
quired energy at a given moment. To satisfy the demand of a load, it is more
efficient to increase the production of the closer DERs. The power line and TCs
interconnecting the DER to the load are not one hundred percent efficient. There
is some amount of energy which is lost during its distribution. The longer the
distance, the higher the loss.

3 The Agent Testbed

The testbed is made by starting from a core that delivers the Microgrid simula-
tion service. This service is based on GridLAB-D [5], an agent based Microgrid
simulator that performs a static analysis of the grid. It focuses on the stable
states a power grid achieves. It does not address problems with harmonics or
the intermediate states that arise, for instance, when a new element starts pro-
ducing energy. As a consequence, it is fast. GridLAB-D runs a discrete event
agent based simulation to obtain, in a few minutes, weeks of simulation data.

In this contribution, and through some Java layers, the GridLAB-D was
transformed into a real time simulation platform. This platform allows to run in
real time the system together with the associated agents, deliver orders and get
results. Time can be accelerated, but unless agents are involved in the simulation
cycle, the result may not be meaningful.

The interest of the real time version is the possibility of using the simulator
as a Smart Grid emulator. With this transformation, the agent based simulator
GridLAB-D can be used to experiment with agents working in real time with the
system in a “software-in-the-loop” manner. Agents communicate with GridLAB-
D through some interfaces that allow to send orders or to poll about the current
state. Notification services are possible, but they are not implemented by default.

In an event driven solution, however, agents would have to strictly stick to
the simulation cycle and perform calculations just as the simulator progresses.

74

This new system is called Smart Grid Simulator (SGSimulator from now on)
whose behaviour is briefly described in figure 2. The agent sends orders to the
simulator through a proxy which uses RMI to deliver orders to the simulator.
The reason for this is to allow each agent to be hosted in a different machine
and provide a suitable entry point so that this simulator can be used by other
agent platforms. Integrating the proxy will be enough to start delivering orders
and polling about the current status.

The orders are processed as they arrive in the simulator. There is a possible
delay since the order is delivered until the order is processed, just as in real
systems. GridLAB-D executes the orders as delivered by the SGSimulator and
returns a sufficiently large set of measurements. This set is then used to deliver
measurements in real time to the agent. The set needs to be updated only when
the pre-defined simulation time lapse is exhausted or there is an order that alters
the future states of the Microgrid.

Agent

SGSimulator Proxy

SGSimulator

1: orders

2:sensors

Microgrid
Description

0:read and run
description

1.1: perform
order as
they arrive

2.1: retrieve
sensor data in
current sim time
from the stored
weeks period

2.2: sensor
data retrieved

GridLAB-D

1.2 Ask the GridLAB for
results along week

1.3 Return
 a week's time

Fig. 2. Collaboration diagram showing how agents send orders and receive data from
the simulator

In the MIRED-CON project, it was intended that the conditions met by the
agents were as close as possible to the real Microgrid. From this perspective,

75

it was necessary to simulate: delays in the order processing, missing or ignored
orders, and orders which do not produce the expected results in time.

4 Case study with INGENIAS

Figure 3 introduces the case study Smart Grid. At the bottom left, there is
a depiction of the simulated Smart Grid. It is made of seven buildings which
consume energy. These buildings are connected to transformers which are hosted
into transformation centres. There are three transformation centres and one
substation. Controllable elements in the grid will be the battery, battery 31, a
photovoltaic panel, Solar 11, and a wind generator, Wind 21. If the Smart Grid
Simulation is run without agents, no element will be switched on.

The status of each controllable element is shown in the middle of the screen.
All of them are off in figure 3. The weather is measured at the top right of the
figure. Wind and sun are changing along the day according to a predefined profile.
To simplify the problem, the chart represents which amount of the expected
power is being generated. When the sun is at 25%, it means photovoltaic panels
(PV from now on) produce 25% of their maximum output. The bottom right
part of the figure shows a panel from which different parts of the Smart Grid can
be disconnected. This feature is used to simulate the disconnection of elements.
Finally, the top left of the figure shows a chart with the status of the Smart Grid.
Meaningful data obtained from the system is the amount of consumed power in
the grid (consumption curve), power generated within the grid (grid generation
curve), the amount of power demanded from the main power line (substation
demand), and losses due to the distribution of the energy (losses curve).

The default scenario runs with a simulation cycle at one minute per sec-
ond. Each second in real time is equivalent to one minute in simulated time.
This configuration was chosen to facilitate observing the effect of orders. Agents
can get in and out anytime. As a proof of concept, the agents from figure 4
are launched. The approach consists in defining one agent per controllable de-
vice. From the existing three, the PV and battery are chosen. These are under
transformation centres CT-1 and CT-3, respectively. Agents have access to the
devices by means of a SMClient instance, which is automatically created and con-
nected to the Smart Grid Simulator. The SMClient is translated as set of Java
classes accessible by agents playing the role TCManager. The role TCManager,
or Tranformation Centre Manager, aims to reduce the power grid consumption
and reduce the monthly expenses.

The battery controller agent runs a task to check the status of the battery
and operate it. This task is executed repeatedly. Rather than having a fine grain
decomposition of this task, for this paper it was decided to just put together the
pieces into a single task. This task uses the SMClient to perform status queries
to the simulator and to send orders to the battery. Nothing prevents that this
task sends orders to other elements or that the agent gains global knowledge of
the whole simulator rather than its closest scope. Whether the simulation works
with total or partial information, and total or partial controlling capabilities

76

Fig. 3. Smart Grid Simulator dash control without agents

Fig. 4. Agents and roles in the system

77

is a decision left to the developer. For this particular case, only the current
transformation centre sensors are used.

Fig. 5. Delivering power capability

The deployment of elements is discussed in figure 6. There is only one instance
of the agent types from figure 4 and each one is individually initialised. The
initialisation is not shown here, but it consists in creating specific pieces of
information and connecting them to the intended initial mental state, in this case
represented by BatteryInitialMentalState and PVInitialMentalState entities.

The result is introduced in figure 7. It can be seen that orders are delivered
to the elements and that the PV and the battery are being managed. The coded
behaviour is a naive one. The PV is turned on and, in the meantime, the battery
is charged. After being charged, the battery is told to discharge. Depending
on the battery type, it is necessary to wait until it is fully loaded to start the
discharging cycle. When the battery is charging, it increases the demand from
the substation. It would be better to charge the battery when there is an excess
of energy produced by the PV panel. Future versions of this system will take
into account this and will charge the battery during the night, when energy is
cheaper.

The demonstration is GPL v3 software and can be downloaded from GitHub
in https://github.com/escalope/sgsim-ingenias. The real time simulator
is published at http://sgsimulator.sf.net.

78

Fig. 6. Agents and roles in the system

Fig. 7. Smart Grid Simulator dash control with agents controlling PV panel and Bat-
tery

79

5 Related Work

The need of a testbed for agents in Smart Grids has not been defended in the
literature, yet. Multi-Agent based systems have been produced without such
testbeds.

For instance, Oyarzabal et al. [13] addresses a Microgrid management system
built using a JADE based system. Agents in the experiments took data from
real hardware and measurements were taken each 20 seconds. The contribution
of this paper would have facilitated earlier experimentation in cases like this.
Besides, it is cheaper to run a simulator than creating a real Microgrid. It is less
reliable too. A working solution in the simulator may not work in a real setup.
However, adapting a working solution surely will take less effort than developing
everything from scratch in the real scenario. Other researchers created their own
simulator, for instance, with MatLAB. This is the case of IDAPS [15], where a
similar deployment to the one presented in this paper is discussed.

The alternative for most agent researchers is reusing existing simulators.
There are several works proposing powergrid simulators, such as GridLAB-D [5]
which is the one used in this contribution. The two main open source ones
are GridLAB-D and OpenDSS [6]. The latter considers the transitory analysis,
which may enable the developer to study the effect of switching on elements,
like engines. There is the DSSIM-PC which is an initiative to make OpenDSS a
non-deterministic real time simulator [12].

Literature cites other real time simulators, like eMEGAsim [4] and Grid-
Sim [1]. None of them could be found to deliver open source software and enable
a similar experimentation as the one done in this contribution. The eMEGAsim
uses FPGAS and multiple CPUs to run Simulink instances and provide almost
real time data of systems. Its goal is not to reproduce control elements but to
address hardware-in-the-loop experiments. Simulated elements are run together
with real ones. The control devices are then embedded inside the simulated ele-
ments rather than decoupled as in this contribution. GridSim [1] is a complete
tool made of three parts: a framework for collecting data (GridStat), a frame-
work for simulating the communication network (GridNet), a cloud extension
(GridCloud), and the powergrid itself (GridSim). It considers too the transitory
states of the system through a modified version of an commercial product and
combining the generated output in a similar way as SGSimulator does. It is
not evident from the documentation if distributed control is allowed. The paper
cites explicitly a control center which is where all data from current SCADAS
is stored. On the other hand, the GridSim site suggests that there is a power
control software inside each substation in the simulated system. In any case, it
is not considered control at the DER or transformation centre level, or event at
a lower scale, as shown in the case study of this contribution. This may allow a
higher capability of SGSimulator for a finer grain decentralisation.

Not all works remark what kind of simulation is used, though. The work
[17] shows a project for a decentralized control system where consumer energy
demands aligns with the actual production. The way the grid is simulated is
not explained. The evaluation framework, from [2], points out at issues in Smart

80

Grids and how MAS could deal with them. Several MAS related works in the
literature are cited and evaluated according to this evaluation framework. The
underlying simulation framework is not considered in most cases, focusing on
the features each MAS implements. Only Matlab/Simulink is cited in the case
of IDAPS work. Nevertheless, prospective works like [16], remark the importance
of having simulation systems that can accurately represent both the grid and
the reaction of consumers.

6 Conclusions

The paper has introduced some basic concepts about the role of agents in the
control of Microgrids. In particular, it has discussed where agents can be hosted
and what they are expected to do. In this paper, agents are expected to hosted
by Smart Meters which are essential elements in Smart Grids. The paper has also
introduced the Smart Grid Simulator and how agents can be connected to it. As
a proof of concept, INGENIAS methodology and JADE agents have been used
to model and run the agents used in the simulation. Other agent platforms and
methodologies could be applied provided they integrate with RMI technology.
The case of study is a simple one and will be extended in future works. One of
the intended extensions is a full Smart Grid decentralised control. Nevertheless,
the starting point may allow other researchers to perform similar studies with
different platforms.

7 Acknowledgement

This work has been co-funded by the project MIRED-CON IPT-2012-0611-
120000, supported by Spanish Ministry for Economy and Competitiveness, and
Fondo Europeo de Desarrollo Regional (FEDER). It also has been supported by
the Programa de Creación y Consolidación de Grupos de Investigación UCM-
Banco Santander, call GR3/14, for the group number 921354 (GRASIA group).

References

1. David Anderson, Chuanlin Zhao, Carl H Hauser, Vaithianathan Venkatasubrama-
nian, David E Bakken, and Anjan Bose. Intelligent design” real-time simulation
for smart grid control and communications design. Power and Energy Magazine,
IEEE, 10(1):49–57, 2012.

2. Gillian Basso, Nicolas Gaud, Franck Gechter, Vincent Hilaire, and Fabrice Lauri.
A framework for qualifying and evaluating smart grids approaches: Focus on multi-
agent technologies. Smart Grid and Renewable Energy, 4(04):333, 2013.

3. J Bélanger, P Venne, and JN Paquin. The what, where and why of real-time sim-
ulation. http://www.opal-rt.com/technical-document/what-where-and-why-real-
time-simulation, 2010.

81

4. Jean Bélanger, Vincent Lapointe, Christian Dufour, and Loic Schoen. eMEGAsim:
an open high-performance distributed real-time power grid simulator. architecture
and specification. In Proceedings of the International Conference on Power Systems
(ICPS 2007), pages 12–24, 2007.

5. David P. Chassin, Jason C. Fuller, and Ned Djilali. Gridlab-d: An agent-based
simulation framework for smart grids. J. Applied Mathematics, 2014, 2014.

6. R Dugan. Opendss, introductory training, level 1. Electric Power Research Insti-
tute, Palo Alto, California, 2009.

7. H. Farhangi. The path of the smart grid. Power and Energy Magazine, IEEE,
8(1):18–28, 2010.

8. Jorge J. Gomez-Sanz, Sandra Garcia-Rodriguez, Nuria Cuartero-Soler, and Luis
Hernandez-Callejo. Reviewing microgrids from a multi-agent systems perspective.
Energies, 7(5):3355–3382, 2014.

9. Rabab Hassan and Ghadir Radman. Survey on Smart Grid. In Proceedings of the
IEEE SoutheastCon 2010 (SoutheastCon), pages 210–213. IEEE, March 2010.

10. S.D.J. McArthur, E.M. Davidson, V.M. Catterson, A.L. Dimeas, N.D. Hatziar-
gyriou, F. Ponci, and T. Funabashi. Multi-agent systems for power engineering
applications - part i: Concepts, approaches, and technical challenges. Power Sys-
tems, IEEE Transactions on, 22(4):1743–1752, Nov 2007.

11. S.D.J. McArthur, E.M. Davidson, V.M. Catterson, A.L. Dimeas, N.D. Hatziar-
gyriou, F. Ponci, and T. Funabashi. Multi-agent systems for power engineering
applications - part ii: Technologies, standards, and tools for building multi-agent
systems. Power Systems, IEEE Transactions on, 22(4):1753–1759, Nov 2007.

12. D. Montenegro, M. Hernandez, and G.A. Ramos. Real time opendss framework for
distribution systems simulation and analysis. In Transmission and Distribution:
Latin America Conference and Exposition (T D-LA), 2012 Sixth IEEE/PES, pages
1–5, Sept 2012.

13. J. Oyarzabal, J. Jimeno, J. Ruela, A. Engler, and C. Hardt. Agent based micro grid
management system. In Future Power Systems, 2005 International Conference on,
page 6 pp., Nov 2005.

14. Juan Pavón and Jorge J. Gómez-Sanz. Agent oriented software engineering with
INGENIAS. In Vladimı́r Maŕık, Jörg P. Müller, and Michal Pechoucek, editors,
Multi-Agent Systems and Applications III, 3rd International Central and Eastern
European Conference on Multi-Agent Systems, CEEMAS 2003, Prague, Czech Re-
public, June 16-18, 2003, Proceedings, volume 2691 of Lecture Notes in Computer
Science, pages 394–403. Springer, 2003.

15. M. Pipattanasomporn, H. Feroze, and S. Rahman. Multi-agent systems in a dis-
tributed smart grid: Design and implementation. In Power Systems Conference
and Exposition, 2009. PSCE ’09. IEEE/PES, pages 1–8, 2009.

16. Sarvapali D. Ramchurn, Perukrishnen Vytelingum, Alex Rogers, and Nicholas R.
Jennings. Putting the ’smarts’ into the smart grid: a grand challenge for artificial
intelligence. Commun. ACM, 55(4):86–97, 2012.

17. Sarvapali D. Ramchurn, Perukrishnen Vytelingum, Alex Rogers, and Nick Jen-
nings. Agent-based control for decentralised demand side management in the smart
grid. In The 10th International Conference on Autonomous Agents and Multiagent
Systems - Volume 1, AAMAS ’11, pages 5–12, Richland, SC, 2011. International
Foundation for Autonomous Agents and Multiagent Systems.

18. Anita Sobe and Wilfried Elmenreich. Smart microgrids: Overview and outlook.
CoRR, abs/1304.3944, 2013.

82

Towards quantitative analysis of multiagent systems
through statistical model checking

Benjamin Herd, Simon Miles, Peter McBurney, and Michael Luck

Department of Informatics, King’s College London, United Kingdom

Abstract. Due to their immense complexity, large-scale multiagent systems are
often unamenable to exhaustive formal verification. Statistical approaches that
focus on the verification of individual traces can provide an interesting alterna-
tive. However, due to its focus on finite execution paths, trace-based verification
is inherently limited to certain types of correctness properties. We show how,
by combining sampling with the idea of trace fragmentation, statistical model
checking can be used to answer interesting quantitative correctness properties
about multiagent systems on different observational levels. We illustrate the idea
with a simple case study from the area of swarm robotics.

Keywords: verification, statistical model checking, multiagent systems, quanti-
tative analysis

1 Introduction

Due to their distributed nature and their capability to exhibit emergent behaviour, multi-
agent systems can be hard to engineer and to understand. Similar to other software sys-
tems, however, questions of correctness arise and verification plays an important role.
Formal verification aims to answer correctness questions in a rigorous and unambigu-
ous way. Temporal logic model checking, for example, aims to find an accurate solution
to a given correctness property by exhaustively searching the state space underlying the
system under consideration (the model) and thus exploring all possible execution paths
[1]. This approach is, in general, only feasible if the state space of the model is of man-
ageable size. In the presence of non-determinism which may, for example, arise from
the different possible interleavings of individual agent actions or from uncertainty w.r.t.
the representation of individual agent behaviours, the state space may grow exponen-
tially which renders formal exhaustive verification infeasible for non-trivial systems.
This exponential blow-up in the number of states is a well-known problem and com-
monly referred to as ‘state space explosion’. In order to address this issue, a wide range
of techniques has been developed. For example, if one can assume that agents are homo-
geneous, then the symmetry within the system can be exploited to reduce the complex-
ity of verification significantly [4, 10–12, 18]. It is clear, however, that such simplifying
assumptions are not always possible.

Another interesting alternative way to circumvent combinatorial explosion that works
for probabilistic systems is to use a sampling approach and employ statistical tech-
niques to obtain approximate verification results. In this case, n finite execution paths
or traces are sampled from the underlying state space and a property φ is checked on

83

2 Towards quantitative analysis of multiagent systems through statistical model checking

each of them. By increasing the number of traces that φ is checked on, the probability of
φ can be estimated to the desired level of precision. Techniques for statistical inference,
e.g. hypothesis testing, can then be used to determine the significance of the results. Ap-
proaches of this kind are summarised under the umbrella of statistical model checking
[15]. Due to its approximate nature, statistical model checking allows for the verifica-
tion of large-scale (or even infinite) systems in a timely manner. Traces are typically
obtained through simulation, either by repeatedly executing an existing real-world sys-
tem, or by ‘unrolling’ a formal state transition representation of a system for a certain
number of time steps (as in the case of statistical model checking).

Consider, for example, a robot swarm whose efficiency is defined by its emergent
collective behaviour. Due to the high level of interconnectivity and the global focus, it
is not sufficient to verify individual robots in isolation. On the other hand, aspects such
as a high level of heterogeneity, a complex environment, or simply an interest in the
individual behaviours may also render the application of pure macro-level verification
insufficient or even impossible. In this case, statistical verification represents an inter-
esting alternative. However, because of its focus on finite execution paths, trace-based
verification is inherently limited to linear time properties and lacks some of the quanti-
tative capabilities of its non-statistical counterpart [13]. For example, due to the lack of
branching information, properties about the transition behaviour are not verifiable in a
trace-based context. Furthermore, statistical verification generally ignores the internal
structure of the traces which limits its use for complex multiagent systems.

On the other hand, the statistical approach provides interesting opportunities. In
this paper, we present our research efforts with respect to the aforementioned problems
by showing how trace-based verification in combination with statistical analysis can be
used to answer interesting quantitative correctness properties about multiagent systems.
The contributions of this paper can be summarised as follows.

1. In Section 3, we show that simulation traces of multiagent systems represent sets of
sets of samples obtained from different sample spaces, the choice of which depends
on the question to be answered. We formally introduce the notion of trace fragments
and describe how they correspond with fine-grained correctness properties. We also
introduce the idea of in-trace sampling.

2. In Section 4, we introduce a simple specification language in order to illustrate the
requirements that a specification language needs to satisfy in order to allow for the
formulation of properties about multiagent systems on different observational lev-
els. Making use of in-trace sampling, the language also allows for the formulation
of properties about the average behaviour of individual agents.

3. In Section 5, we show how a combination of trace fragmentation and statistical veri-
fication can be used to estimate residence probabilities and transition probabilities,
and to detect correlations between different types of events.

The usefulness of quantitative analysis is illustrated with a small case study from
the area of swarm robotics in Section 6.

84

Towards quantitative analysis of multiagent systems through statistical model checking 3

2 Related work

Whilst the classical, non-probabilistic approach to model checking produces a clear
yes/no answer to a given correctness property, quantitative analysis aims to use veri-
fication techniques to produce numeric insights into the system under consideration,
e.g. transition probabilities, costs or rewards. It is thus not surprising that quantita-
tive analysis forms an important part of probabilistic approaches to model checking.
PRISM [14], for example, the most widely used probabilistic model checker, allows
for the verification of a wide range of quantitative properties, among them best, worst,
and average-case system characteristics [13]. PRISM uses BDD-based symbolic model
checking and allows for the verification of properties formulated in a variety of dif-
ferent logics — among them probabilistic versions of Computation Tree Logic (CTL)
and Linear Temporal Logic (LTL), as well as Continuous Stochastic Logic (CSL) — on
different types of models, e.g. Discrete-Time (DTMC) and Continuous-Time Markov
Chains (CTMC) and Markov Decision Processes (MDP). It is, for example, possible to
integrate costs and rewards into the verification process which allows for the formula-
tion of properties about expected quantities, e.g. the “expected time”, or the “expected
number of lost messages”. Due to its exhaustive nature, PRISM generally suffers from
the same combinatorial issues as other non-probabilistic model checkers. In order to cir-
cumvent this problem, it also allows for simulation-based (i.e. trace-based) verification
using different statistical model checking approaches [17]. In this context, both con-
ventional probabilistic linear time properties, i.e. P=?(φ), and reward-based properties,
i.e. R=?(φ), can be answered. At the current stage, PRISM views traces as monolithic
entities and does not exploit their internal structure. This limits its usefulness for the
verification of complex multiagent systems.

Apart from the work on simulation-based verification using PRISM, quantitative
analysis in the context of trace-based verification has been largely neglected to date.
An interesting idea has been presented by Sammapun et al. [19]. The authors propose
a trace decomposition based on the idea of repetitive behaviour. The decomposition is
performed by means of conditional probabilities. This is then extended with hypothesis
testing in order to determine the confidence in the estimation. As opposed to our ap-
proach which assumes the presence of a (possibly large) number of individual sample
traces, the work of Sammapun et al. is focussed on a pure runtime verification setting
in which only one consistently growing trace is available. The decomposition is used to
obtain from the runtime trace a number of individual sample traces which are then used
to answer conventional probabilistic linear-time properties such as done by PRISM.

A related approach has been presented by Finkbeiner et al. [5]. They propose an
extension of LTL which allows for the formulation of additional statistics over traces,
e.g. the “average number of X” or “how often does X happen”. Similar to the work of
Sammapun et al., they focus on a single trace obtained by observing a running system.

3 Events, properties, and their probability

In the previous sections, we used the term ‘events’ loosely when speaking about the
formulation of properties. The purpose of this section is to give a formal definition for
the notion of events and their association with formulable correctness properties.

85

4 Towards quantitative analysis of multiagent systems through statistical model checking

3.1 Structure and probability of simulation traces

The purpose of this section is to formally associate the set of traces of a multiagent
system obtained through simulation with a probability space. This allows us to talk
about events and their probability. We show that, by varying the set of outcomes that
one focusses on, events of different granularity become detectable.

Let us start with a formal representation of our multiagent system. We are not
concerned with advanced modalities like knowledge or strategies here, so we assume
that the state of an individual agent is defined as a simple set of attributes and their
values. The state space of the multiagent system can then be described as a simple
state transition system. Let Si = denote the set of states of agent i. For n agents,
S ⊆ S1 × S2 × ...Sn then denotes the set of global states1. We assume that the
multiagent system is probabilistic in nature, i.e. in the presence of multiple succes-
sor states, a probabilistic choice about which state the system transitions into will be
made. Let therefore P : S × S→ [0, 1] be a probabilistic transition function such that
∀ s : S • ∑s′∈S P (s, s

′) = 1. The multiagent system can then be described formally
as a probabilistic transition systemM = (S, P, s0) where s0 ∈ S is the initial state. We
denote each possible finite path ω = 〈s0, s1, ..., sk〉 of length k throughM as a sim-
ulation trace. In the presence of individual agents, simulation traces have an internal
structure. Given n agents, a simulation trace can be subdivided into n agent traces.

In the presence of transition probabilities, it is intuitively clear that each simulation
trace ω occurs with a certain probability, denoted Pr(ω), which is the product of all
individual transition probabilities:

Pr(ω) = P (s0, s1) · P (s1, s2) · ... · P (sn−1, sn) =
∏

0≤i<n
P (si, si+1) (1)

In the presence of long simulation runs, restricting the focus of attention to the
probability of full traces may be too coarse-grained. Traces represent (possibly long)
sequences of system states which themselves also have a complex internal structure; in
the course of a simulation run, numerous events take place which constitute themselves
as changes to the state of the system. A trace represents all the states of the underlying
run and can thus be seen as a rich source of analysis. In addition to the probability of
the trace itself, it is therefore useful to also determine the probability of all individual
events represented by it. However, in order to talk about events and their probability,
we first need to make sets of traces measurable. To this end, we associate a probability
space with the set of simulation traces. A probability space is a triple (Ω,Σ, Pr) where
Ω is the sample space, Σ ⊆ PΩ is a σ-algebra and Pr : Σ → [0, 1] is a probability
measure. The sample space Ω can be seen as the set representing all possible outcomes
of an experiment. Imagine, for example, throwing a die. In this case, the sample space
is Ω = {1, 2, 3, 4, 5, 6}. We can now start to define possible events within the set of
outcomes. A single event represents a set of outcomes which all satisfy a common
criterion. For example, getting an even number when throwing a die is represented by
the set {2, 4, 6}. Formally, the set of events forms a σ-algebra Σ ⊆ PΩ on Ω, where
Σ is a subset of the power set of Ω. A σ-algebra Σ also needs to satisfy the following

1 For simplicity, we omit the environment in our formal description.

86

Towards quantitative analysis of multiagent systems through statistical model checking 5

requirements: (i) Σ contains the empty set ∅, (ii) Σ is closed under complements: if A
is in Σ then so is its complement A = (Ω\A), and (iii) Σ is closed under countable
unions: if A1, A2, ... are in Σ then so is their union A =

⋃
An. Furthermore, in order

to assign a probability with an event, we need a probability measure Pr : Σ → [0, 1]
which is a function that assigns to each event E ∈ Σ a number between 0 and 1. Pr
also needs to satisfy the following requirements: (i) Pr is countably additive: for all
countable collections A = {A1, A2, ..., An} ∈ Σ, Pr(

⋃
Ai) =

∑
(Pr(Ai)), and (ii)

Pr(∅) = 0 and Pr(Ω) = 1. A probability space is then defined as a triple (Ω,Σ, Pr)
comprising the sample spaceΩ, σ-algebraΣ and probability measurePr. In the context
of probability theory, the events ω ∈ Σ are said to be measurable [1].

3.2 Simulation and sampling: trace fragmentation

In order to talk about events in the context of simulation runs, the set Trs of simulation
traces which a simulation can produce needs to be made measurable by associating it
with a probability space. We start with the sample space. A trace obtained through a
single simulation run (if properly randomised, which we assume here) can be seen as
a single sample drawn from the set of finite traces as defined by the logic within the
model. However, at the same time, a single trace of length k also represents a set of k
samples drawn from the set of states defined by the model. Furthermore, it also repre-
sents a set of

(
k
2

)
samples drawn from the set of state tuples, a set of

(
k
3

)
samples drawn

from the set of state triples, and so on. Even more, given n agents, each simulation
trace also represents n samples drawn from the set of agent traces, each of which itself
represents a set of k samples from the set of agent states, etc.

In general, the description of a probabilistic state-based model yields a large range
of different sets of outcomes that one can draw from: a set of agent or group states (one
for each possible group of agents), of agent or group state pairs, of agent or group state
triples, etc. Each individual simulation run represents one or many samples from each of
those sets. As described above, each set of outcomes corresponds with a different prob-
ability space and thus allows for the detection of different events. Just by interpreting
the same outcome in different ways, different types of events become detectable.

It becomes clear that a single simulation trace already represents a rich source of
analysis. Let us now briefly look at the types of outcomes that one is typically inter-
ested in. We can assume that, in a simulation context, we are mostly interested in events
defined over coherent trace fragments, rather than over arbitrary tuples of states. Infor-
mally, a coherent trace fragment is any sequence of states which exists in the underlying
state space. Fragments of length 1 represent individual states, fragments of length 2 rep-
resent states and their direct successors, fragments of length 3 represent states and their
two subsequent states, etc. Formally, the set Fk of coherent trace fragments of length k
is defined as the set of sub-sequences of states, i.e. sub-traces, of length k:

Fk ==
⋃

ω∈Trs
{p in ω | # p = k} (2)

Each fragment size represents a certain level of granularity with respect to the sim-
ulation outcome. Before defining the sample space of a simulation, it is therefore im-
portant to clarify the granularity necessary to answer a given question. For example,

87

6 Towards quantitative analysis of multiagent systems through statistical model checking

some questions are formulated over entire simulation traces, i.e. members of the set
Ft. Typical representatives of this group are temporal questions that involve statements
like, for example, eventually or always. In this case, the set from which samples need to
be drawn is the set of all full traces, i.e. Ω = Trs. The σ-algebra Σ (the set of possible
events defined as a subset of PΩ) thus represents the set of all possible sets of traces.

For other questions, a finer level of granularity is needed. Consider, for example, a
question about the existence of a particular state transition. On a full simulation trace,
the state transition of interest may occur several times. In order to detect all occurrences
(and thus measure the event’s probability), it is not sufficient to look at complete traces.
Instead, we need to look at trace fragments of length 2, i.e. at tuples of immediately
succeeding states drawn from the set F2. This is necessary since any state transition is
described by its start and end state. If questions about the probability of a single agent
attribute valuation are to be answered, i.e. questions about a particular property of an
individual state, then the set that samples need to be drawn from is the set of trace
fragments of length 1, i.e. the set of individual states.

We can generalise that, in order to answer any question, we need trace fragments of
length k where 0 < k ≤ t and t is the maximum number of time steps in the simulation.
The sample space is then defined as the set of all fragments of length k, i.e. we have
Ω = Fk. The σ-algebra Σ is a subset of the power set of Ω and thus represents the set
of all possible sets of trace fragments of length k, i.e. Σ ⊆ PFk.

In order to define a probability measure for any event inΣ, we first need to define the
probability of a certain trace fragment. The probability of fragment f = 〈sj , sj+1, ..., sk〉
of trace t = 〈s0, s1, ..., sn〉 where 0 ≤ j ≤ n and j ≤ k ≤ n is the probability of trace
t divided by the number of coherent fragments of t of size (k − j):

Pr(〈sj , ...sk〉) =
∏

0≤i<n P (si, si+1)

n− (k − j) + 1
(3)

The probability measure for any event σ ∈ Σ (which represents a set of trace frag-
ments) can then be defined as the sum of the probabilities of each trace fragment ω ∈ σ:

Pr(σ) =
∑

ω∈σ
Pr(ω) (4)

The association of a probability space with a simulation transition system makes it
possible to talk about events and their probability. Events are described by properties.
A property refers to a set of possible outcomes of a simulation. Consider, for example,
a property ϕ which states that the system will eventually reach a given state s. This
clearly needs to be answered on full simulation traces, i.e. the set of outcomes is defined
as the set of all trace fragments of length t where t is the maximum trace length. Σ =
{σ ∈ Ft | σ |= ϕ} is then defined as the set of those trace fragments σ that satisfy
this condition (denoted σ |= ϕ) and thus eventually end up in state s. On the other
hand, let ψ denote a property that states that the population transitions from state x to
state y. This represents a statement about the full population, yet, due to its focus on
transitions, it requires trace fragments of length 2 in order to be answered correctly, i.e.
we have Σ = {σ ∈ F2 | σ |= ψ}. As a final example, let ψ denote a property which

88

Towards quantitative analysis of multiagent systems through statistical model checking 7

states that a single agent transitions from state x to state y. Similar to the previous
property, it describes a state transition and thus requires trace fragments of length 2.
However, it is also of individual nature, i.e. the set of outcomes that it refers to is the
set of all fragments of length 2 of individual agent traces. By formulating the properties
in the appropriate way, we can answer quantitative properties about the behaviour of
the full population, about the behaviour of groups within the population or about the
behaviour of individual agents. By evaluating an individual property on independent
and randomly chosen agent traces, we can even answer questions about the average
behaviour of individual agents. We refer to this process as in-trace sampling.

Since, as described above, the traces of a simulation are measurable, the probability
of any property φ is defined as the sum of the probabilities of all trace fragments of
length k in the associated σ-algebra Σ = {σ ∈ Fk | σ |= φ}:

Pr(φ) =
∑

σ∈Σ
Pr(σ) (5)

In order to make clear what fragment size a property is being verified upon (and
thus, which interpretation of the sample space is being chosen), we add the sample size
as a subscript variable to Pr. For example, we refer to the probability of a property φ
that is to be evaluated upon trace fragments of size 2 as Pr2(φ). We omit the subscript
if (i) the formula is to be evaluated upon sets of full traces, or, (ii) if the fragment size
does not matter for the purpose of description.

This concludes the description of events, properties and their probability in an ab-
stract way. Let us briefly summarise the ideas described above. Essentially, a simulation
trace, i.e. the output of a single simulation run, can be seen as a single sample from the
set of finite traces defined by the underlying model. Following this interpretation, the
set of outcomes, i.e. the set that events and thus also properties are being formulated
upon, is fixed as the set of finite traces. However, a single simulation trace can also be
interpreted as a set of sample states drawn from the set of states, as a set of sample state
tuples drawn from the set of state tuples, as a set of sample state triples drawn from the
set of state triples, and so forth. Furthermore, sampling can be performed on the macro,
meso and micro level and thus refer to the behaviour of the population, of groups of
agents or of individual agents. Depending on how the set of possible outcomes is in-
terpreted, different events can be defined which, ultimately, allows for the expression
of richer properties. Given a property φ, its meaning and, of course, also its probabil-
ity may vary depending on which set of outcomes it is interpreted on. It is therefore
important to make the fragment size a central parameter of the verification algorithm.

3.3 Complexity

At this point, it is useful to briefly discuss the implications of trace fragmentation on the
complexity of verification. Any trace of length t contains t− k + 1 coherent fragments
of length k. Let c denote the complexity of checking a temporal property in a given lan-
guage (e.g. LTL) on a trace of length t. Checking the same property on trace fragments
of length k, increases the complexity to (t−k+1) · c. Fragmentation thus adds a factor
that is linear in the length of the trace to the overall complexity of verification.

89

8 Towards quantitative analysis of multiagent systems through statistical model checking

4 Formulating multiagent correctness properties

In order to be able to exploit the ideas described above and formulate properties about
multiagent systems on different observational levels, we need an appropriate specifica-
tion language. For illustration, we define below a simple LTL-based property specifica-
tion language L which allows for the formulation of properties about individual agents
as well as about arbitrary groups of agents. L here is a simplified version of simLTL
[7], the specification language used in the verification tool MC2MABS [6]. The syntax of
L is subdivided into two separate layers, an agent layer and a population layer, which
allows for a distinction between agent properties φa and population properties φp. The
syntax of agent and population formulae is defined as follows.

φa ::= p | true | ¬ φa | φa ∧ φa | φa ∨ φa | Xφa | φa U φa | att ./ val
φp ::= p | true | ¬ φp | φp ∧ φp | φp ∨ φp | Xφp | φp U φp | att ./ val

Here, p denotes a Boolean proposition, att : Name denotes an attribute name and
val : V alue denotes an attribute value (see Section 3), and ./ ∈ {=, 6=, <,≤, >,≥} is
a comparison operator. Other logical connectives such as ‘⇒’ or ‘⇔’ can be derived in
the usual manner: φ1 ⇒ φ2 ≡ ¬ φ1 ∨ φ2 and φ1 ⇔ φ2 ≡ (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1).

φa describes the syntax of an agent property, i.e. a property formulated about the
behaviour of an individual agent; φp describes the syntax of a population property, i.e.
a property formulated about the behaviour of the entire population. The syntax of any
formula φ ∈ L is defined as follows:

φ ::= 〈〈φa〉〉φp | [ag]φa

〈〈φa〉〉φp describes a selective population property which is true if and only if φp
is true for the group of all agents that satisfy property φa. [ag]φa describes an indexed
agent property; ag : Ag denotes an identifier that specifies which agent trace within the
current simulation trace formula φa is to be evaluated upon2.

The semantics of L are defined on traces, i.e. sequences of system states3. For for-
mula φ4 and state s, true always holds, p holds iff it is true in s, φ1 ∧ φ2 holds iff φ1
holds and φ2 holds, φ1 ∨ φ2 holds iff either φ1 or φ2 holds, ¬ φ holds iff φ does not
hold and Xφ holds iff φ holds in the direct successor state of s. For formulae φ1 and
φ2, φ1 U φ2 holds in state s iff φ1 holds in s and φ2 holds at some point in the future.
att ./ val holds if the value of att in s is ./ val.

The ability to formulate properties about groups of agents as well as about individ-
ual agents is important, yet there is more to be done. In a multiagent context, we often
have to deal with large populations of agents. In this case, in addition to the probability
of a property about a particular agent, it is also interesting to obtain the probability of
a property about the average agent. For example, instead of asking for the probability

2 For the sake of simplicity, we assume that agents are numbered from 1 to n and that the number
of agents is fixed.

3 The finiteness of traces has important implications on the semantics. A discussion of this issue
is beyond the scope of this paper; for more information, please refer to the literature [2].

4 We omit the subscript if we do not want to distinguish between agent and group properties.

90

Towards quantitative analysis of multiagent systems through statistical model checking 9

of the income of agent 1 falling below x, we may be interested in the probability of
an agent’s income falling below x on average. This can be achieved through in-trace
sampling, i.e. the repeated evaluation of an agent property on randomly selected agent
traces as described in Section 3. In order to integrate this mechanism into our language,
we simply assume that, if the agent identifier is omitted, then the property is checked
on a uniformly randomly chosen agent trace.

5 Quantitative trace-based analysis

The purpose of this section is to illustrate the usefulness of trace fragmentation in com-
bination with sampling for the purpose of quantitative analysis. In Section 3, the prob-
ability of a property has been defined as the sum of the probabilities of all traces (or,
more precisely, trace fragments) in the associated σ-algebra. Or, in other words, the
probability of φ being true in a set of traces Tr denotes the ratio between those traces
tr ∈ Tr for which φ holds (denoted tr |= φ) and those traces tr′ ∈ Tr for which
φ does not hold (denoted tr′ 6|= φ). It remains to discuss, how this probability can be
computed practically. Clearly, if a complete set of traces is available, then the exact
probability can be obtained in a straightforward way, by simply counting those traces
for which φ holds and dividing their number by the overall number of traces. In general,
however, complete sets of traces cannot be assumed to be available. Given the vast size
of real-world state spaces, the number of possible traces will be too large and we can
only expect to have access to a small subset. In this case, statistical analysis is used to
esimate the actual probability of a property [15]. In the remainder of this paper, when
we refer to a probability Pr(φ), we thus always mean the estimated probability.

5.1 Analysis types

Up until now, we have completely ignored the fact that properties correspond with trace
fragments rather than with full traces, as described in Section 3. In this section, we bring
together the two ideas of (i) probability estimation and (ii) trace fragmentation in order
to describe advanced types of quantitative analysis. In the following paragraphs, we are
mostly interested in the relationship between states of a system. States correspond with
trace fragments of length 1 which, in turn, correspond with atemporal properties (i.e.
properties that do not contain a temporal operator). To that end, we denote with La the
atemporal subset of L. Furthermore, we abbreviate (φ1 ∧ Xφ2) with φ1→ φ2.

State residency: We start with the notion of a state residency probability, i.e. the prob-
ability of being in a certain state. Informally, of all the time spent in any state, the
residency probability of state s describes the fraction of time that is spent in s. Proper-
ties about individual states are inherently atemporal in nature and thus correspond with
trace fragments of length 1. Given an atemporal property φ, the probability of an agent
(or any groups of agents) being in a state that satisfies φ can then be obtained by simply
calculating the probability of φ on trace fragments of length 1, i.e. Pr1(φ). The state
residency probability srp can thus be formally defined as follows:

91

10 Towards quantitative analysis of multiagent systems through statistical model checking

srp : La→ R

∀φ : La • srp(φ) = Pr1(φ)

Transition residency: In addition to the probability of being in a certain state, it is
crucial to ask properties about the transitions between states. Similar to the residency
w.r.t. states defined above, we may, for example, be interested in how much of its time a
given agent spends in a particular transition. This can be calculated by simply obtaining
the probability of a temporal succession property describing on trace fragments of size
2 (because of the ‘next’ operator). For example, if we are interested in the transition
from φ1 to φ2 (where both φ1 and φ2 are atemporal), then the transition residency
probability can be obtained by calculating Pr2(φ1 → φ2). This leads to the following
formal description of the transition residency probability trp:

trp : La × La→ R

∀φ1, φ2 : La • trp(φ1, φ2) = Pr2(φ1→ φ2)

Transition probability: The purpose of the next type of quantitative analysis is to deter-
mine a particular transition probability, i.e. the probability of transitioning into a partic-
ular successor state in which φ2 holds, given that we are currently in state in which φ1
holds. The transition probability is obtained by dividing the probability of transitioning
from φ1 to φ2 by the residency probability of φ1, i.e. trp(φ1, φ2)/Pr2(φ1). It is im-
portant to note that both probabilities need to be obtained on trace fragments of size 2
(even the second, atemporal one!). A formal definition of the transition probability tp
can now be given as follows:

tp : La × La→ R

∀φ1, φ2 : La • tp(φ1, φ2) = trp(φ1, φ2)/Pr2(φ1)

Correlation analysis: Probabilistic analysis can be used conveniently to determine
probabilistic dependence or correlation. Correlation analysis represents an important
building block in the quality assurance process. It can give insights into the system’s
dynamics by revealing behaviours that are coupled, i.e. whose occurrence is (entirely
or to some extent) synchronised. Furthermore, the analysis of correlations may indicate
causal relationships and can thus be used to detect symptoms that can motivate further,
more tailored experiments. For example, if A and B are positively correlated, one can
be sure that one of the following three facts is definitely true: (i) A is a cause of B, (ii)
B is a cause of A or, (iii) there is a common cause for A and B. Positive correlation can
be defined formally as follows5:

posCorr : L × L → {true, false}
∀φ1, φ2 : L • posCorr(φ1, φ2)⇔ Pr(φ1 ∧ φ2) > Pr(φ1) · Pr(φ2)

5 The definition of functions for negative correlation and non-correlation, i.e. statistical inde-
pendence, are omitted; they can be given accordingly.

92

Towards quantitative analysis of multiagent systems through statistical model checking 11

This concludes the description of our analyses. As illustrated in the case study in the
next section, quantitative analysis becomes most powerful if it is performed on different
observational levels.

6 Case study

In order to illustrate the usefulness of quantitative analysis in the context of trace-based
verification, we introduce a small example scenario from the area of swarm robotics.
The choice is motivated by the fact that, albeit often conceptually startlingly simple,
swarm models exhibit a significant level of complexity which typically prevents them
from being amenable to conventional formal verification. On the other hand, they may
require a high level of provable correctness. We show how, through statistical model
checking in combination with quantitative analysis as described above, interesting prop-
erties which reach beyond pure reachability and safety checking can be answered ef-
ficiently and with a good level of precision. We focus here on foraging, a problem
which has been widely discussed in the literature on cooperative robotics [3]. Forag-
ing describes the process of a group of robots searching for food items, each of which
delivers energy. Individual robots strive to minimise their energy consumption whilst
searching in order to maximise the overall energy intake. The study of foraging is im-
portant because it represents a general metaphor to describe a broad range of (often
critical) collaborative tasks such as waste retrieval, harvesting or search-and-rescue. A
good overview of multirobot foraging has been given by Cao et al. [3].

All experiments described below were conducted on a Viglen Genie Desktop PC
with four Intel R© CoreTM i5 CPUs (3.2 GHz each), 3.7 GB of memory and Gentoo
Linux (kernel version 3.10.25) as operating system, using the verification tool MC2MABS
[6]. Results are based on experiments involving 100 replications of the given model.

Model description: The model described in this section is based on the work of Liu
et al. [16]. In the model, a certain number of food items are scattered across a two-
dimensional space. Robots move through the space and search for food items. Once an
item has been detected within the robot’s field of vision, it is brought back to the nest
and deposited which delivers a certain amount of energy to the robot. Each action that
the robot performs also consumes a certain amount of energy. The model is deliberately
kept simple. Each robot can be in one of five states: searching for food in the space,
grabbing a food item that has been found, homing in order to bring a food item back to
the nest, depositing a food item in the nest, and resting in order to save energy. Transi-
tions between states are probabilistic and either fixed or (which is clearly more realistic)
dependent upon the state of the other agents, as described in the following section. The
overall swarm energy is the sum of the individual energy levels. Furthermore, in order
to make things more interesting, we assume that there are initially two different types
or makes of agent which only differ in terms of their field of vision.

Instead of viewing a population of robots as an abstract entity in which agents have
a certain probability of finding food (as, for example, done in [10]), we focus here on
an agent-based representation of the scenario in which the world that robots inhabit is
represented explicitly. As opposed to an idealised representation in which, for example,

93

12 Towards quantitative analysis of multiagent systems through statistical model checking

robots are assumed to be entirely symmetric, this allows us to take into account the
heterogeneity that arises from the agents’ situatedness in a environment in which food
is randomly distributed. It is common to model the environment as a two-dimensional
grid, in our case a grid of 100×100 cells. Each grid cell can be inhabited by an arbitrary
number of agents. Food items are distributed uniformly across the grid. In the current
version of the model, there are 1,000 food items distributed across 10,000 grid cells,
which amounts to a food density of 10%. Agents of make 0 are able to detect all food
items within a radius of 1, agents of make 1 are able to detect all food items within a
radius of 4. The behavioural protocol that each agent follows is shown below.

– If searching: look for food. If food has been found, move to the cell and start
grabbing; otherwise remain searching. If no food can be found within Ts time
steps, start homing.

– If grabbing: if the food is still there after Tg time steps, grab it and start depositing;
otherwise start homing.

– If depositing: start resting after Td time steps.
– If homing: start resting after Th time steps.
– If resting: start searching after Tr time steps.

It is important to stress that our goal is not to construct an overly realistic model
here; the main focus is on illustration and the model is thus kept deliberately simple.
Despite its conceptual simplicity, however, the model already exhibits a significant level
of complexity which prevents it from being amenable to conventional exhaustive verifi-
cation. Due to the use of floating point variables for the agents’ energy levels, the state
space is effectively infinite. Even if limited to a comparatively small value (e.g. 1,000),
the number of possible states would be beyond what is currently verifiable formally.

Verification: Our goal is to determine whether the model is reasonably robust, i.e.
whether agents have enough energy during the simulated timespan. We start with the
following (largely arbitrary) parametrisation:

– 100 agents, 1,000 ticks
– Time spent in each state: Ts = Tg = Tr = Th = Td = 5
– Energy consumed in each state: Es = 12, Eg = 12, Eh = 6, Er = 2, Ed = 62
– Initial level of energy per agent: 40

In order to check if this parametrisation already satisfies the given requirements, we
first define the following population-level property stating that the swarm as a whole
will never run out of energy (note the use of ‘〈〈true〉〉’ to refer to the whole population):

φ1 = G(〈〈true〉〉(swarm energy ≥ 0))

Despite every robot having 40 units of initial energy, the verification of Property φ1
returns a probability of 0 which shows that the parametrisation given above is not suit-
able for this version of the model. In order to gain a deeper understanding of why this
may be the case, it is useful to study how frequently robots switch from one state into
another by determining their average transition probabilities. Following the description
in Section 5, this requires the comparison of different probabilities, each of which has

94

Towards quantitative analysis of multiagent systems through statistical model checking 13

Table 1. Transition probabilities for all agents, agents of make 0 and agents of make 1

All agents Make 0 Make 1
Transition Total time Probability Total time Probability Total time Probability
S → G 1m 52s 0.1701 2m 40s 0.0363 2m 50s 0.6223
G→ D 2m 01s 0.1735 2m 40s 0.1945 2m 40s 0.1678
G→ H 2m 09s 0.0076 2m 46s 0.0034 2m 42s 0.0090
D → R 2m 02s 0.1868 2m 50s 0.1912 2m 42s 0.2111
R→ S 2m 03s 0.1913 2m 55s 0.1950 2m 47s 0.1833

been obtained on trace fragments of length 2. We illustrate the formulation for the tran-
sition probability from searching to grabbing. In order to verify this property, we need
the following two subformulae: φG = grabbing and φS = searching. The overall
transition probability for an individual agent is then calculated as follows:

Pr(S → G) = tp(φS , φG) (6)

The results for 100 replications are shown in the first section of Table 16. We can
see that robots have an equal probability of finding and grabbing food (≈ 17%). We can
also see that agents have a very low probability of transitioning into the homing state,
which is positive since homing is always caused by a timeout and is thus undesirable.

However, when calculating the transition probabilities, we need to take into ac-
count that we have two different makes of agent, each of which can be expected to
have different probabilities. In order assess whether this is really the case, we could,
for example, check whether being of make 0 is positively correlated (or being of make
1 is negative correlated, respectively) with finding food. We will instead ‘zoom in’
and assess robots of different makes separately. This can be achieved by using a se-
lection operator 〈〈〉〉 as described in Section 4. For example, for robots of make 0 (for
which we assume that proposition make0 is always true), the properties necessary for
calculating the transition probability Pr(S → G) from searching to grabbing can be
formulated as follows: ψS = 〈〈make0〉〉grabbing and ψG = 〈〈make0〉〉searching. The
overall transition probability can then be calculated similar to the previous property, i.e.
Pr(S → G) = tp(ψS , ψG). The results for all checks are shown in Table 1. It is obvi-
ous that robots of make 1 have a significantly higher probability of finding food which,
given their larger field of vision, is intuitively correct. What is also interesting, however,
is that a robot’s make seems to have a small but obvious impact on its probability of
grabbing food; this is indicated by the lower probability of transitioning from grabbing
to depositing for robots of make 1. One possible explanation is that, due to their larger
field of vision and their consequently higher probability of finding food, robots of make
1 may block each other by ‘stealing’ food that is already aimed for by a different robot.
This explanation may also be underpinned by the slightly higher probability of robots
of make 1 moving from grabbing to homing than robots of make 0: the only reason for
performing this transition is that a food item aimed for is lost to a different agent. Given
the small sample size, however, care needs to be taken when interpreting the numbers
— especially when differences are very small, as in this case.

6 For clarity, we abbreviate states with their capitalised first letters in all subsequent tables.

95

14 Towards quantitative analysis of multiagent systems through statistical model checking

Table 2. Expected individual transition prob. and prob. of constant positive swarm energy

Vision Pr(S → G) Pr(G→ D) Prt(φ1) trp(depositing, resting)

1 0.3416 0.1889 0.0 0.0108
2 0.1344 0.1853 0.0 0.0300
3 0.3735 0.1711 0.0 0.0438
4 0.6571 0.1631 0.0 0.0460
5 0.8364 0.1630 0.0 0.0470

The numbers seem to suggest that the size of the field of vision has a positive im-
pact on the food finding probability and a slightly negative impact on the food grabbing
probability. This hypothesis can be investigated further by performing a range of exper-
iments in which the vision parameter is constantly increased. The results are shown in
Table 2. The numbers in the second column indicate that, in fact, the size of the field of
vision has a significant positive impact on the probability of finding food (as expected).
This shows that there is a causal dependence between an agent’s field of vision and
its probability of finding food. The numbers in the third column indicate that there is a
slightly negative correlation between the field of vision and the probability of grabbing
food. The fourth column of the table shows the probability of Property φ1 which is 0 in
all cases; varying the field of vision alone is thus not sufficient for sustaining a positive
energy level (at least not in the current scenario).

The numbers suggest that, despite the slight loss in grabbing probability, the swarm
designer is best off by giving all robots a high field of vision. In order to confirm this
assumption, we can formulate another property which denotes the overall probability
of an agent gaining energy. Remember that energy is always gained in the final time
step of the depositing state, i.e. before the agent starts resting. In order to determine the
overall probability of an agent gaining energy, we can formulate the following property:

trp(depositing, resting) = Pr2(depositing→ resting) (7)

Since this is a property whose truth needs to be ascertained on state transitions,
it needs to be checked on trace fragments of size 2. It is also important to note that,
since it is not conditional upon the agent’s being depositing (i.e. it does not use logical
implication), this property does not describe a transition probability in its strict sense.
Instead, it describes the overall probability of performing this particular transition and
can thus be used to determine the overall probability of an agent gaining energy. For
simplicity, we assume that 5 is the maximum level of vision that can be realised techni-
cally. The verification results are shown in the last column of Table 2. They strengthen
the assumption that the scenario with the largest field of vision is the most efficient one
since, in this case, agents are most likely to gain energy.

The numbers so far give a strong indication that the probability of grabbing food
should be increased. In order to choose the right strategy for achieving this goal, it is
essential to explain its current level first, i.e. to understand why it is so low. The intuitive
assumption is that an increased field of vision also increases competition among robots
which itself increases the probability of agents missing out when trying to grab food.
This assumption can be checked by determining the expected state distribution, i.e. the
amount of time a robot is expected to spend in each of the states. The properties are

96

Towards quantitative analysis of multiagent systems through statistical model checking 15

Table 3. Expected individual state distribution

Vision srp(searching) srp(grabbing) srp(homing) srp(resting) srp(depositing)
1 0.2952 0.0563 0.2694 0.3234 0.0555
2 0.2147 0.1553 0.1668 0.3122 0.1505
3 0.1251 0.2486 0.0810 0.3119 0.2337
4 0.0873 0.2896 0.0470 0.3083 0.2647
5 0.0691 0.3087 0.0330 0.3109 0.2763

Table 4. Expected state distribution and energy development for Tr = 1 and Tg = 1

Vision Scenario srp(s) srp(g) srp(h) srp(r) srp(d) Prt(φ1) Prt([](energy > 0))

5 Tr = 1 0.0925 0.4095 0.0466 0.0828 0.3691 0.0 0.0
5 Tg = 1 0.0923 0.0816 0.0262 0.4135 0.3893 1.0 0.78

formulated with the help of the state residency probability srp described in Section 5.1.
The expected state distribution can be obtained by checking all properties above on trace
fragments of size 1, i.e. on individual states. This is important since the properties are
state properties and, in order to determine their probability, we need to sample from the
distribution of states. The verification results are shown in Table 3 (the Roman literals
denote the individual simLTL properties described in this chapter). It becomes apparent
that in case of lower vision, a significantly higher proportion of robots spend their time
searching and homing (due to timeouts) than in case of higher vision. However, it also
becomes apparent, that in case of higher vision, a significantly higher proportion of
agents spend their time grabbing. This suggests that grabbing becomes a bottleneck
which impedes foraging. Apart from grabbing, in all scenarios, a significant number of
agents spend their time resting.

We now have two possible directions to improve the overall efficiency of the swarm:
we can either try to decrease the time individuals spend for resting or we can try to de-
crease the time spent for grabbing food items. In order to compare the effect of both
changes, we determine again the expected state distribution for each of the two cases.
The results are shown in Table 47. Reducing the resting time to 1 has the effect of forcing
more robots into searching, grabbing and depositing. Likewise, reducing the grabbing
time to 1 forces more robots into searching, resting and depositing. Both scenarios only
differ with respect to the number of agents grabbing or resting. Taking into account the
energy consumption of each agent intuitively suggests that scenario 2 (reduced grab-
bing time) must be significantly more effective since, in this case, more agents are
resting which consumes significantly less energy than depositing. This assumption can
be strengthened by looking at the overall probability of Property φ1 (shown in Column
7) of Table 4. In the case of reduced resting time, the probability of the swarm always
having positive energy is 0; in the case of reduced grabbing time, the probability is 1.0.
In terms of individual energy levels, individual robots have an average probability of
always having positive energy of ≈ 78%, as shown by the unindexed individual agent
property in Column 8 of Table 4.

7 For space limitation, the states are abbreviated with lower-case letters, e.g. s for searching.

97

16 Towards quantitative analysis of multiagent systems through statistical model checking

We have now reached a situation in which the overall swarm energy level as well
as the majority of all individual energy levels are always positive. This concludes our
small case study. In fact, there is still a significant number of individual robots (≈ 22%)
running out of energy. Their calibration, however, is not further discussed here.

7 Conclusions and future work

Statistical model checking can provide a powerful alternative for the verification of
systems that are unamenable to conventional formal verification. Because of its focus
on finite traces, statistical verification is typically focussed on comparatively simple
properties. This critically limits the verifiability of large-scale multiagent systems with
their complex, internal structure. In this paper, we showed how, by combining statisti-
cal verification with an advanced type of sampling and trace fragmentation, interesting
quantitative analyses on different observational levels can be performed. Using a sim-
ple case study from the area of swarm robotics, we showed that, albeit approximate in
nature, those types of analyses can be helpful to shed light on the dynamics of complex
systems and uncover some of their internal mechanisms.

In this paper, we restricted our attention to a small number of quantitative analyses.
Combining the expressiveness of temporal logics with statistical verification, a much
wider range of analyses is possible. For example, in statistical time series analysis, cor-
relation can be generalised to the temporal case by measuring the autocorrelation of a
time series. The same idea could be applied in a trace-based verification scenario. Fur-
thermore, probabilistic analysis provides an interesting basis for the analysis of causal
relationships, either in a statistical sense (e.g. Granger causality) or by utilising proba-
bilistic theories of causation [8]. In a verification context, causal analysis is a powerful
tool for the explanation of phenomena. We plan to further investigate this idea, with a
particular focus on the work of Kleinberg and Mishra [9].

References

1. C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.
2. A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL semantics for runtime verification.

Journal of Logic and Computation, 20(3):651–674, June 2010.
3. Y. U. Cao, A. S. Fukunaga, and A. Kahng. Cooperative mobile robotics: Antecedents and

directions. Autonomous Robots, 4(1):7–27, Mar. 1997.
4. E. Clarke, E. Emerson, S. Jha, and A. Sistla. Symmetry reductions in model checking. In

A. Hu and M. Vardi, editors, Computer Aided Verification, volume 1427 of Lecture Notes in
Computer Science, pages 147–158. Springer, 1998.

5. B. Finkbeiner, S. Sankaranarayanan, and H. B. Sipma. Collecting statistics over runtime
executions. Formal Methods in Systems Design, 27(3):253–274, November 2005.

6. B. Herd. Statistical runtime verification of agent-based simulations. PhD thesis, King’s
College London, 2015.

7. B. Herd, S. Miles, P. McBurney, and M. Luck. An LTL-based property specification language
for agent-based simulation traces. TR 14-02, King’s College London, Oct 2014.

8. C. Hitchcock. Probabilistic causation. In E. N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Winter 201 edition, 2012.

98

Towards quantitative analysis of multiagent systems through statistical model checking 17

9. S. Kleinberg and B. Mishra. The temporal logic of causal structures. In Proc. 25th Conf. on
Uncertainty in Artificial Intelligence, pages 303–312. AUAI Press, 2009.

10. S. Konur, C. Dixon, and M. Fisher. Formal verification of probabilistic swarm behaviours.
In Swarm Intelligence, volume 6234 of LNCS, pages 440–447. Springer, 2010.

11. P. Kouvaros and A. Lomuscio. Automatic verification of parameterised multi-agent systems.
In Proceedings of the 12th International Conference on Autonomous Agents and Multi-agent
Systems (AAMAS’13), pages 861–868, Richland, SC, 2013.

12. P. Kouvaros and A. Lomuscio. A cutoff technique for the verification of parameterised inter-
preted systems with parameterised environments. In Proc. 23rd Int. Joint Conf. on Artificial
Intelligence (IJCAI’13), pages 2013–2019. AAAI Press, 2013.

13. M. Kwiatkowska, G. Norman, and D. Parker. Quantitative analysis with the probabilistic
model checker PRISM. Electronic Notes in Theoretical Computer Science, 153(2):5 – 31,
2006. Proc. 3rd Workshop on Quantitative Aspects of Programming Languages.

14. M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic real-
time systems. In Proc. 23rd Int. Conf. on Comp. Aided Verification, pages 585–591. Springer,
2011.

15. A. Legay, B. Delahaye, and S. Bensalem. Statistical model checking: an overview. In Proc.
of the 1st Int. Conf. on Runtime Verification (RV ’10), pages 122–135. Springer, 2010.

16. W. Liu, A. Winfield, and J. Sa. Modelling swarm robotic systems: A case study in collective
foraging. In M. S. Wilson, F. Labrosse, U. Nehmzow, C. Melhuish, and M. Witkowski,
editors, Towards Autonomous Robotic Systems, pages 25–32, 2007.

17. V. Nimal. Statistical approaches for probabilistic model checking. MSc Mini-project Dis-
sertation, Oxford University Computing Laboratory, 2010.

18. T. Pedersen and S. K. Dyrkolbotn. Agents homogeneous: A procedurally anonymous seman-
tics characterizing the homogeneous fragment of atl. In Principles and Practice of Multi-
Agent Systems (PRIMA’13), volume 8291 of LNCS, pages 245–259. Springer, 2013.

19. U. Sammapun, I. Lee, O. Sokolsky, and J. Regehr. Statistical runtime checking of proba-
bilistic properties. In Proc. 7th Int. Conf. on Runtime Verif., pages 164–175. Springer, 2007.

99

Semantic Mutation Testing for Multi-Agent Systems

Zhan Huang and Rob Alexander

Department of Computer Science, University of York, York, United Kingdom
{zhan.huang,robert.alexander}@cs.york.ac.uk

Abstract. This paper introduces semantic mutation testing (SMT) into multi-
agent systems. SMT is a test assessment technique that makes changes to the in-
terpretation of a program and then examines whether a given test set has the
ability to detect each change to the original interpretation. These changes repre-
sent possible misunderstandings of how the program is interpreted. SMT is also
a technique for assessing the robustness of a program to semantic changes. This
paper applies SMT to three rule-based agent programming languages, namely
Jason, GOAL and 2APL, provides several contexts in which SMT for these
languages is useful, and proposes three sets of semantic mutation operators (i.e.,
rules to make semantic changes) for these languages respectively, and a set of
semantic mutation operator classes for rule-based agent languages. This paper
then shows, through preliminary evaluation of our semantic mutation operators
for Jason, that SMT has some potential to assess tests and program robustness.

Keywords: Semantic Mutation Testing, Agent Programming Languages, Cog-
nitive Agents

1 Introduction

Testing multi-agent systems (MASs) is difficult because MASs may have some prop-
erties such as autonomy and non-determinism, and they may be based on models such
as BDI which are quite different to ordinary imperative programming. There are many
test techniques for MASs, most of which attempt to address these difficulties by
adapting existing test techniques to the properties and models of MASs [9, 13]. For
instance, SUnit is a unit-testing framework for MASs that extends JUnit [17].

Some test techniques for MASs introduce traditional mutation testing, which is a
powerful technique for assessing the adequacy of test sets. In a nutshell, traditional
mutation testing makes small changes to a program and then examines whether a
given test set has the ability to detect each change to the original program. These
changes represent potential small slips. Work on traditional mutation testing for
MASs includes [1, 10, 14–16].

In this paper, we apply an alternative approach to mutation testing, namely seman-
tic mutation testing (SMT) [5], to MASs. Rather than changing the program, SMT
changes the semantics of the language in which the program is written. In other
words, it makes changes to the interpretation of the program. These changes represent

100

possible misunderstandings of how the program is interpreted. Therefore, SMT as-
sesses a test set by examining whether it has the ability to detect each change to the
original interpretation of the program.

SMT can be used not only to assess tests, but also to assess the robustness of a pro-
gram to semantic changes: Given a program, if a change to its interpretation cannot be
detected by a trusted test set, the program is considered to be robust to this change.

This paper makes several contributions. First, it applies SMT to three rule-based
agent programming languages, namely Jason, GOAL and 2APL. Second, it provides
several contexts (scenarios) in which SMT for these languages is useful. Third, it
proposes three sets of semantic mutation operators (i.e., rules to make semantic
changes) for these languages respectively, and a broader set of semantic mutation
operator classes (that serve as a guide to derivation of semantic mutation operators)
for rule-based agent languages. Finally, it presents a preliminary evaluation of the
semantic mutation operators for Jason, which shows some potential of SMT to assess
tests and program robustness.

The remainder of this paper is structured as follows: Section 2 describes two types
of mutation testing – traditional mutation testing and semantic mutation testing. Sec-
tion 3 describes SMT for Jason, GOAL and 2APL by showing several contexts in
which it is useful and the source of semantic changes required to apply SMT in each
context. Section 4 proposes sets of semantic mutation operators for these languages
and a set of semantic mutation operator classes for rule-based agent languages. Sec-
tion 5 evaluates the Jason semantic mutation operators. Section 6 summarizes our
work and suggests where this work could go in the future.

2 Mutation Testing

2.1 Traditional Mutation Testing

Traditional mutation testing is a test assessment technique that generates modified
versions of a program and then examines whether a given test set has the ability to
detect the modifications to the original program. Each modified program is called a
mutant, which represents a realistic small fault in the program. Mutant generation is
guided by a set of rules called mutation operators. For instance, Figure 1(a) shows a
piece of a program and Figure 1(b) – 1(f) show five mutants generated as the result of
the application of a single mutation operator called Relational Operator Replacement,
which replaces one of the relational operators (<, ≤, >, ≥, =, ≠) with another operator.

After mutant generation, the original program and each mutant are executed
against all tests in the test set. For a mutant, if its resultant behaviour differs from the
behaviour of the original program on some test, the mutant will be marked as killed,
which indicates that the corresponding modification can be detected by the test set.
Therefore, the fault detection ability of the test set can be assessed by the mutant kill
rate – the ratio of the killed mutants to all generated mutants: the higher the ratio is,
the more adequate the test set is. In the example shown in Figure 1, a test set consist-
ing of a single test in which the input is x=3, y=5 cannot kill the mutants shown in
Figure 1(b) and 1(f) because on that test these two live mutants result in the same

101

behaviour as the original program (i.e., return a). Therefore, the mutant kill rate is
3/5. According to this result we can enhance the test set by adding a test in which the
input is x=4, y=4 and another test in which the input is x=4, y=3 in order to kill these
two live mutants respectively and get a higher mutant kill rate (the highest kill rate is
1, as this example shows).

Fig. 1. An example of traditional mutation testing

Many studies provide evidence that traditional mutation testing is a powerful test
assessment technique, so it is often used to assess other test techniques [2, 12]. How-
ever, the mutation operators used to guide mutant generation may lead to a large
number of mutants because a single mutation operator has to be applied to each rele-
vant point in the program and a single mutant only contains a modification to a single
relevant point (as shown in Figure 1). This makes comparing the behaviour of the
original program and that of each mutant on each test is computationally expensive.

Another problem is that traditional mutation testing unpredictably produces
equivalent mutants – alternatives to the original program that are not representative of
faulty versions, in that their behaviour is no different from the original in any way that
matters for the correctness of the program. Thus, no reasonable test set can detect the
modifications they contain. Equivalent mutants must therefore be excluded from test
assessment (i.e., the calculation of the mutant kill rate). The exclusion of equivalent
mutants requires much extra manual work although this process may be partially au-
tomated.

2.2 Semantic Mutation Testing

Clark et al. [5] propose semantic mutation testing (SMT) and extend the definition of
mutation testing as follows: suppose N represents a program and L represents the
semantics of the language in which the program is written (so L determines how N is
interpreted), the pair (N, L) determines the program’s behaviour. Traditional mutation
testing generates modified versions of the program namely N à (N1, N2, …, Nk)

102

while SMT generates different interpretations of the same program namely L à (L1,
L2, …, Lk). For SMT, L1, L2, …, Lk represent semantic mutants, the generation of
which is guided by a set of semantic mutation operators. For instance, Figure 2 shows
a piece of a program, a semantic mutant (i.e., a different interpretation of this pro-
gram) is generated by the application of a single semantic mutation operator that
causes the if keyword to be used for mutual exclusion (i.e., when an if is directly fol-
lowed by another if, the second if statement is interpreted the same as an else-if state-
ment).

Fig. 2. An example of semantic mutation testing

SMT assesses a test set in a similar way as traditional mutation testing – comparing
the system behaviour each semantic mutant results in with that the original interpreta-
tion results in so as to detect the killed mutants. In the example shown in Figure 2, a
test set consisting of a single test in which the input is x=2 cannot kill the semantic
mutant because on that test the mutant results in the same behavior as the original
interpretation (i.e., only do A). Therefore, the mutant kill rate is 0/1 = 0. We can en-
hance this test set by adding another test in which the input is x=4 in order to kill the
live mutant.

SMT is a useful test assessment technique because it can simulate a different class
of faults than traditional mutation testing – possible misunderstandings of how the
program is interpreted rather than small slips. Although semantic changes can be sim-
ulated by changes to the program, SMT often requires higher order (traditional) muta-
tion1 to simulate a semantic change, and empirical studies (e.g., [11]) show that some
higher order mutants are harder to kill than first-order mutants. In addition, [5] show
that SMT has potential to capture some faults that cannot be captured by traditional
mutation testing.

SMT can be used not only to assess tests, but also to assess the robustness of a pro-
gram to semantic changes. Given a semantic mutant, if it cannot be killed by a trusted

1 Higher order mutation generates a higher order mutant by making more than one change to

the program (these changes may form a subtle fault that is hard to detect). In contrast, most
traditional mutation is first order, which generates a first order mutant by making only a sin-
gle and simple change to the program.

103

test set2, it will be considered as “equivalent”3, which indicates that the program is
robust to the corresponding semantic change, otherwise the program may need to be
improved to resist this change. In the example shown in Figure 2, if the program is
required to be robust to the semantic change, it can be modified to ensure that only
one branch is executed in any case.

SMT has another difference to traditional mutation testing: it generates far fewer
mutants because a single semantic mutation operator only leads to a single semantic
mutant4, namely a different interpretation of the same program (as shown in Figure 2),
while a single traditional mutation operator may lead to many mutants each of which
contains a modification to a single relevant point in the program (as shown in Figure
1). This makes SMT less computationally costly.

We know that SMT makes semantic changes for assessing tests or program robust-
ness. For a particular language, which semantic changes should be made by SMT are
context-dependent. For instance, to assess tests for a program written by a novice
programmer, semantic changes to be made can be derived from common novices’
misunderstandings. To assess the portability of a program between different versions
of the interpreter, semantic changes to be made can be derived from the differences
between these versions.

3 Semantic Mutation Testing for Jason, GOAL and 2APL

We investigate semantic mutation testing for MASs by first applying it to three rule-
based programming languages for cognitive agents, namely Jason, GOAL and 2APL.
These languages have similar semantics – an agent deliberates in a cyclic process in
which it selects and executes rules according to and affecting its mental states. They
also have similar constructs to implement such agents such as beliefs, goals and rules.
The details of these languages can be found in [4, 6, 8] and are not provided here.

From Section 2 we know that for a particular language, the semantic changes that
can most usefully be made by SMT is context-dependent. In the remainder of this
section we provide several contexts in which SMT for the chosen agent languages is
useful – migration between languages, evolution of languages, common misunder-
standings, and ambiguity of informal semantics. We also show the source of semantic
changes required to apply SMT in each context.

2 A trusted test set is the one that is considered as “good enough” for the requirement. It

doesn’t need to be the full test set that is usually impractical; instead it can choose not to
cover some aspects or to tolerate some errors.

3 Here the term “equivalent” is different to the one used in the context of test assessment, in
which a mutant is equivalent only if there exist no tests that can kill this mutant. In the con-
text of robustness assessment, a mutant is equivalent if only the trusted test set cannot kill it.

4 This rule can be relaxed, namely mutating the semantics of only parts of the program instead
of mutating the semantics of the whole program. This is useful e.g., when the program is de-
veloped by several people.

104

3.1 Migration between Languages

When a programmer migrates a program from one language to another, or simply
starts to write a new program in a new (to him or her) language, he or she may have
misunderstandings that come from the semantic differences between the new lan-
guage and the old one(s) he or she ever used. Therefore, in order for SMT to simulate
such misunderstandings, we should first find out their source, namely the semantic
differences, by comparison between Jason, GOAL and 2APL. Since these languages
each have large semantic size and distinctive features, we use the following strategies
to guide the derivation of the semantic differences.

• Dividing the semantics of each of these languages into five aspects, as shown in
Table 1. We do this because first of all, it provides a guide to derivation of seman-
tic differences. Second, we focus on examining four aspects of the semantics,
namely deliberation step order, rule selection, rule execution, and mental state que-
ry and update, which are important and common to rule-based agent languages. We
also roughly examine other aspects of the semantics in order for completeness. Fi-
nally, it is reasonable that common aspects of the semantics are more likely to
cause misunderstandings than distinctive aspects in the context of migration, be-
cause distinctive aspects are usually supported by distinctive constructs that a pro-
grammer would normally take time to learn.

• Focusing on semantic differences between similar constructs. As [5] suggests, such
differences easily cause misunderstandings because when migrating a program a
programmer may just copy the same or similar constructs without careful examina-
tion of their semantics given by the new language.

• Examining both formal and informal semantics of these languages. We start with
examining the formal semantics because they can be directly compared. We also
verify those that are informally defined through programming and examination of
the interpreter source code.

• Focusing on the default options of the interpreter. The interpreters for these lan-
guages are customizable, for instance, the Jason agent architecture can be custom-
ized by inheritance of the Java class that implements the default agent architecture;
the GOAL rule selection order can be customized in the GOAL agent description.
We think default options are more likely to cause misunderstandings in the context
of migration because if a programmer customizes an element it suggests he or she
is familiar with its semantics.

105

Table 1. The aspects of the semantics of Jason, GOAL and 2APL (those marked with an aster-
isk are the ones we focus on)

ID Aspect Description

1 Deliberation step
order*

Each deliberation cycle consists of a sequence of steps, e.g., rule
selection à rule execution is a two-step sub-sequence.

2 Rule selection* Rule selection is an important deliberation step in which one or
several rules are chosen to be new execution candidates.

3 Rule execution* Rule execution is an important deliberation step in which one or
several execution candidates are executed.

4 Mental state query and
update*

Mental states (i.e., beliefs and goals) can be queried in some deliber-
ation steps such as rule selection and updated by execution of rules.

5 Other Other aspects of the semantics not listed above.

We present in Table 2 the semantic differences we found between Jason, GOAL
and 2APL. These form the source of semantic changes required to apply SMT in the
context of migration between these languages.

Difference 1 comes from the order of two important deliberation steps, namely rule
selection and rule execution. A Jason agent first selects a rule to be a new execution
candidate and then executes an execution candidate. A GOAL agent processes its
modules one by one, in each module it first selects and executes event rules and then
selects and executes an action rule (both event and action rules are defined in the
module being processed). A 2APL agent first selects action rules to be new execution
candidates, and then executes all execution candidates, next selects an external event
rule, an internal event rule and a message event rule to be new execution candidates.

Difference 2 comes from the rule selection deliberation step. Jason, GOAL and
2APL differ in two aspects of this step, namely the rule selection condition and the
default rule selection order. For the rule selection condition, a Jason or 2APL rule can
be selected to be a new execution candidate if both its trigger condition and guard
condition get satisfied (“applicable”), while a GOAL rule can be selected if it is appli-
cable and the pre-condition of its first action gets satisfied (“enabled”). For the default
rule selection order, Jason rules are selected in linear order (i.e., rules are examined in
the order they appear in the agent description, and the first applicable rule is selected),
GOAL action rules are selected in linear order while GOAL event rules are selected
in “linearall” order (i.e., rules are examined in the order they appear in the agent de-
scription, and all enabled rules are selected), 2APL action rules are selected in “lin-
earall” order while 2APL event rules of each type (external, internal, message) are
selected in linear order.

Difference 3 comes from the rule execution deliberation step. In this step a Jason
agent executes a single action in a single execution candidate, a GOAL agent executes
all actions in each selected event rule and each selected action rule5, a 2APL agent
executes a single action in each execution candidate.

5 Unlike Jason and 2APL, a GOAL agent has no intention set or similar structure, so a GOAL

rule is immediately attempted to completely execute once selected.

106

Table 2. Semantic differences between Jason, GOAL and 2APL

ID Source Jason GOAL 2APL

1 The order of
rule selection
and rule
execution

select a rule à execute
a rule

(select and execute event
rules à select and
execute an action rule) x
Number_of_Modules

select action rules à
execute rules à select
an external event rule
à select an internal
event rules à select a
message event rule

2 Rule
selection

• applicable

• linear

• enabled

• linear (action
rules) and linearall
(event rules)

• applicable

• linear (event
rules) and linear-
all (action rules)

3 Rule
execution

• one rule/cycle

• one action/rule

• one rule/cycle
(action rules) and
all rules/cycle
(event rules)

• all actions/rule

• all rules/cycle

• one action/rule

4 Belief query linear random linear

5 Belief
addition

start end end

6 Goal query E à I; linear random linear

7 Goal
addition

end of E end start or end

8 Goal
deletion

delete the event or
intention that relates to
the goal φ

delete all super-goals of
the goal φ

delete the goal φ, all
sub-goals of φ or all
super-goals of φ

9 Goal type procedural declarative declarative

10 Goal
commitment
strategy

no blind blind

Difference 4 comes from the belief query. In a Jason or 2APL agent, beliefs are

queried in linear order (i.e., beliefs are examined in the order they are stored in the
belief base, and the first matched belief is returned). In a GOAL agent, beliefs are
queried in random order (i.e., beliefs are randomly accessed, and the first matched
belief is returned).

Difference 5 comes from the belief addition. In a Jason agent, a new belief is added
to the start of the belief base. In a GOAL or 2APL agent a new belief is added to the
end of the belief base.

Difference 6 comes from the goal query. For a Jason agent, since it keeps implicit
goals or desires in goal type events and goal type intentions instead of keeping explic-
it goals, it queries a goal by first examining its event base then its intention set, in

107

each of which it follows linear query order. In a GOAL agent, goals are queried in
random order. In a 2APL agent, goals are queried in linear order.

Difference 7 comes from the goal addition. In a Jason or GOAL agent, a new goal
is added to the end of the event or goal base. In a 2APL agent, a new goal is added to
the start or the end of the goal base according to the relevant agent description (i.e.,
adopta or adoptz).

Difference 8 comes from the goal deletion. Given a goal φ to be deleted, a Jason
agent deletes the event or intention that relates to φ, a GOAL agent deletes all goals
that have φ as a logical sub-goal, a 2APL agent deletes φ, all goals that are a logical
sub-goal of φ, or all goals that have φ as a logical sub-goal according to the relevant
agent description (i.e., dropgoal, dropsubgoal or dropsupergoal).

Difference 9 comes from the goal type. Jason adopts procedural goals – goals that
only serve as triggers of procedures although it supports declarative goal patterns.
GOAL and 2APL adopt declarative goals – goals that also represent states of affairs
to achieve.

Difference 10 comes from the goal commitment strategy. Jason doesn’t adopt any
goal commitment strategy (i.e., a goal is just dropped once its associated intention is
removed as the result of completion or failure) although it supports various commit-
ment strategy patterns. GOAL and 2APL adopt blind goal commitment strategy,
which requires a goal is pursued until it is achieved or declaratively dropped.

3.2 Evolution of Languages

When a programmer moves a program from a language to its successor, he or she
may have misunderstandings that come from the semantic evolution. Another scenar-
io is that a programmer may want to examine whether a program written in a lan-
guage is compatible with a newer version of this language. To derive semantic chang-
es required to apply SMT in these scenarios, we should first find out their source,
namely the semantic differences between these languages/versions. We take 2APL
and 3APL [7] as an example. 2APL is a successor of 3APL that modifies and extends
3APL. Table 3 shows some semantic differences between them. We explain these
differences as follows.

Table 3. Semantics differences between 2APL and 3APL

ID Source 2APL 3APL
1 PR-rules plan repair plan revision

2 The order of rule selection
and rule execution see Table 2 select an action rule à select a

PR-rule à execute a rule
3 Action rule selection linearall linear
4 Rule execution all rules/cycle one rule/cycle

Difference 1 comes from the PR-rules. In 2APL, the abbreviation “PR” means

“plan repair”, a PR-rule (i.e. an internal event rule) is selected only when a relevant
plan fails. In 3APL, “PR” means “plan revision”, a PR-rule is selected when matching
some plan.

108

Difference 2 comes from the order of rule selection and rule execution deliberation
steps. The order adopted by a 2APL agent has been described in Sub-section 3.1. In
contrast, a 3APL agent selects an action rule then a PR-rule to be new execution can-
didates then executes an execution candidate.

Difference 3 comes from the action rule selection order. As described in Sub-
section 3.1, 2APL action rules are selected in “linearall” order. In contrast, 3APL
action rules are selected in linear order.

Difference 4 comes from the rule execution deliberation step. As described in Sub-
section 3.1, a 2APL agent executes all execution candidates in a deliberation cycle. In
contrast, a 3APL agent executes a single execution candidate.

3.3 Common Misunderstandings

A programmer may have misunderstandings that are common to a particular group of
people he or she belongs to. Such misunderstandings can be identified by analysis of
these people’s common mistakes or faults. We take GOAL as an example: Table 4
shows some possible misunderstandings of the GOAL’s semantics that are derived
from some common faults made by GOAL novice programmers [18]. We explain
these misunderstandings as follows.

Table 4. Possible novice programmers' misunderstandings of GOAL

ID Fault Possible Misunderstanding
1 Wrong rule order By default rules are selected in another available order.

2 A single rule including two
user-defined actions A rule can have more than one user-defined action.

3 Using “if then” instead of
“forall do”

Existential quantification can be used for universal quantifica-
tion.

Possible misunderstanding 1 comes from the fault of the wrong rule order. If a

programmer makes this fault in the GOAL agent description, he or she may have the
misunderstanding that rules are selected in another available order6 by default, e.g.,
action rules are selected in “linearall” order rather than linear order.

Possible misunderstanding 2 comes from the fault of a single rule including two
user-defined actions. If a programmer makes this fault, he or she may have the mis-
understanding that this is allowed like other agent languages.

Possible misunderstanding 3 comes from the fault of using “if then” instead of
“forall do”. If a programmer makes this fault, he or she may have the misunderstand-
ing that existential quantification can be used for universal quantification.

6 GOAL supports four available rule evaluation orders: linear, linearall, random and ran-

domall.

109

3.4 Ambiguity of Informal Semantics

A programmer may have misunderstandings of the semantics that are not precisely or
formally defined. For instance, [3] gives two examples of such misunderstandings of
Jason as shown in Table 5. We explain these misunderstandings as follows.

Table 5. Possible misunderstandings due to Jason’s informal semantics

ID Source Possible Misunderstanding

1 Goal deletion event “when an intention fails” à “when an intention is re-
moved”

2 Test goal addition event “when a test goal action fails” à “when a test goal action
is executed”

Possible misunderstanding 1 comes from the goal deletion event (-!e or -?e). A

goal deletion event is generated when an intention with the corresponding goal
achievement event (+!e or +?e) fails. A programmer may have the misunderstanding
that this event is generated when this intention is removed as the result of completion
or failure.

Possible misunderstanding 2 comes from the test goal addition event (+?e). A test
goal addition event is generated when the corresponding test goal action (?e) fails. A
programmer may have the misunderstanding that this event is generated when this
action is executed, which is similar to the achievement goal addition event (+!e).

3.5 Discussion

SMT for Jason, GOAL and 2APL is of particular interest in the contexts discussed
above considering:

• These languages are similar. As mentioned above they have similar semantics and
constructs. Subtle semantic differences between similar constructs easily cause
misunderstandings.

• These languages have elements that are allowed to customize. By mutating the
semantics to represent different customizations it is possible to explore the robust-
ness of a program.

4 Semantic Mutation Operators for Jason, GOAL and 2APL

According to our derived sources of semantic changes required to apply SMT in dif-
ferent contexts, we derive three respective sets of semantic mutation operators for
Jason, GOAL and 2APL as shown in Table 6 – 8. Due to space limitations we don’t
explain each semantic mutation operator in details.

We observe that most of these operators act on the four aspects of the semantics we
focus on, namely deliberation step order, rule selection, rule execution and mental
state query and update (see Table 1). By further analysis we derive a set of semantic
mutation operator classes for rule-based agent languages as shown in Table 9. These

110

classes provide a guide to derivation of semantic mutation operators for these lan-
guages.

Table 6. Semantic mutation operators for Jason

ID Semantic Mutation Operator Description
1 Rule selection order change (RSO) linear à linearall
2 Rule execution strategy change (RES) one rule/cycle à all rules/cycle

3 Rule execution strategy change 2 (RES2) interleaved execution of rules à non-interleaved
execution of rules

4 Belief query order change (BQO) linear à random
5 Belief addition position change (BAP) start à end
6 Goal query order change (GQO) linear à random
7 Goal addition position change (GAP) end à start

8 Goal deletion event semantics change
(GDES)

“when a plan fails” à “when a plan is removed”

9 Test goal achievement event semantics
change (TGAES)

“when a test goal action fails” à “when a test goal
action is executed”

Table 7. Semantic mutation operators for GOAL

ID Semantic Mutation Operator Description

1 Rule selection and execution order
change (RSEO)

select and execute event rules then an action rule à
select and execute an action rule then event rules

2 Rule selection condition change (RSC) enabled à applicable

3 Rule selection order change (RSO) change between linear, linearall, random and ran-
domall

4 Belief query order change (BQO) random à linear
5 Belief addition position change (BAP) end à start
6 Goal query order change (GQO) random à linear
7 Goal addition position change (GAP) end à start

8 Goal deletion strategy change (GDS) delete all super-goals of φ à delete only φ or delete
all sub-goals of φ

9 The maximum number of user-defined
actions change (MNUA)

1 à more than 1

10 Quantification type change (QT) make existential quantification (“if then”) used for
universal quantification (“forall do”)

111

Table 8. Semantic mutation operators for 2APL

ID Semantic Mutation Operator Description

1 Rule selection and execution order
change (RSEO)

change the original order “select action rules à
execute rules à select event rules” to “select action
rules à select event rules à execute rules” or “se-
lect event rules à select action rules à execute
rules”

2 Rule selection condition change (RSC) applicable à enabled
3 Rule selection order change (RSO) change between linear and linearall
4 Rule execution strategy change (RES) all rules/cycle à one rule/cycle
5 Belief query order change (BQO) linear à random
6 Belief addition position change (BAP) end à start
7 Goal query order change (GQO) linear à random
8 PR-rule semantics change (PRRS) plan repair à plan revision

Table 9. Semantic mutation operator classes for rule-based agent languages

ID Semantic Mutation Operator Class
1 Rule selection and execution order change
2 Rule selection condition change
3 Rule selection order change
4 Rule execution strategy change
5 Mental state query order change
6 Mental state addition position change
7 Mental state deletion strategy change
8 Other change

5 Evaluation of Semantic Mutation Operators for Jason

We have implemented our derived semantic mutation operators for Jason (as shown
in Table 6) by modifying the source code of the Jason interpreter. Here we use two
Jason projects in a preliminary evaluation of these operators, in order to assess the
potential of SMT to assess tests and program robustness.

The Jason projects we chose are two of the examples released with the Jason inter-
preter. The first project is a simple one called Domestic Robot (DR), in which a do-
mestic robot gets beer from the fridge and then serves its owner the beer until the
owner reaches a certain limit of drinking. The robot will ask a supermarket to deliver
beer when the fridge is empty. The second project is a relatively complex one called
Gold Miners (the 2nd version, “GM II”), in which two teams of gold-mining agents
compete against each other to retrieve as many pieces of gold scatters as possible in a
grid-like territory, finding suitable paths to then take the retrieved gold to a depot.

We use two sets of randomly generated tests to test these Jason projects respective-
ly (40 tests for DR and 102 tests for GM II). Each test is a starting configuration of
the Jason project, which is represented by a set of parameters extracted from the agent
description and the environment description such as the limit of drinking and the map
size.

112

We run each Jason project under the original interpreter and each modified version
of the interpreter (that implements a semantic mutation operator) against the corre-
sponding test set, after which we collect and analyze the SMT results. We present the
final results in Table 10.

Table 10. Results of semantic mutation testing

Semantic Mutation Operator Resultant Mutant of DR Resultant Mutant of GM II
RSO NE K
RES E E

RES2 NE K
BQO E E
BAP E NE
GQO N/A E
GAP E E

GDES K K
TGAES K N/A

As is normal for SMT, a semantic mutation operator here leads to a single semantic

mutant if the interpretation of the Jason project involves the relevant semantics; oth-
erwise the operator is not applicable to the Jason project (N/A). The resultant mutants
are either equivalent to the original interpretation (E), non-equivalent and killed by
the test set (K), or non-equivalent and not killed by the test set (NE).

Test Assessment
The non-equivalent and unkilled mutants indicate the weaknesses in the test sets.

In order to kill such a mutant that the RSO operator leads to, we need a test that can
capture the differences in the resultant agent behaviour between selecting all applica-
ble plans and selecting only the first applicable plan. These plans must have the same
triggering event, the contexts that are not mutually exclusive and the ability to affect
the agent behaviour. In the DR project, the only two such plans are the plan to get
beer when the fridge is empty (p1) and the plan to get beer when the owner reaches
the limit of drinking (p2). Therefore, we can design a test on which the limit of drink-
ing is just reached when there is no beer in the fridge by e.g., modifying the initial
amount of beer in the fridge. This test will cause p2 to be executed twice under the
mutated interpreter so that the owner will be advised about drinking twice.

In order to kill the non-equivalent mutant that the RES2 operator leads to, we need
a test that can capture the differences in the resultant agent behaviour between inter-
leaved execution of plans and non-interleaved execution of plans. These plans must
have a chance to compete for execution and the ability to affect the agent behaviour.
In the DR project, the only two such plans are the plan to move to the fridge and the
plan to notify the current time (as requested by the owner on occasion). Therefore, we
can design a test that can detect the difference in the agent behaviour – the robot un-
der the original interpreter has a chance to notify the current time while moving to the
fridge, while it always notifies the time after arriving at the fridge under the mutated
interpreter. It is worth noting that since the robot takes much longer to stay at the

113

fridge (a few seconds) than to move to the fridge (less than one second) on the origi-
nal test set, the agent has a much bigger chance to notify the time at the fridge than on
the move although under the original interpreter. Therefore, we can increase the
chance to notify the time on the move by e.g., largely increasing the map size (so that
the robot will take longer to move), to make it more likely we will kill the mutant.

In order to kill the non-equivalent mutant that the BAP operator leads to, we need a
test that can capture the differences in the resultant agent behaviour between different
orderings of beliefs. In the GM II project, there is only one description that causes the
order of beliefs to matter – the actions to announce to other teammates all gold depos-
its that the gold miner agent perceived and that have not been handled or announced
yet. Under the original interpreter, the gold miner agent will first announce the gold it
perceived most recently; under the mutated interpreter, it will first announce the gold
it perceived initially. The different orders of gold announcements may cause other
teammates to bid for and be allocated different gold. Therefore, we can add a test that
can detect this difference. It is worth noting that this difference to the original behav-
iour may not be a violation of the correctness requirements; instead it may be just a
tiny variation that reflects the non-determinism of multi-agent systems, in which case
the mutant is considered as equivalent.

Robustness Assessment
Where our operators produced equivalent mutants, it indicates that the Jason pro-

ject is robust to the corresponding semantic changes. From these equivalent mutants
we can come up with some ideas of how to resist these changes. For instance, in order
to resist the semantic changes caused by the BQO and GQO operators while not af-
fecting the agent behaviour under the original interpreter, the agent description has to
be improved so that there can be only one matched belief or goal at most for each
query. To resist the semantic change caused by the GAP operator, the agent descrip-
tion can be improved so that the agent behaviour is independent of the order of the
goal type events and intentions.

Those mutants that are or can be killed indicate that the Jason project is not robust
to the corresponding semantic changes. For instance, the DR project does not behave
correctly under the semantic change caused by the RSO operator. In order to be robust
to this change the agent description can be improved so that there can be only one
applicable plan at most in any case. As another example, the DR project does not
behave correctly under the semantic change caused by the RES2 operator. In order to
be robust to this change the agent description can be improved so that there can be
only one non-empty competitive intention at most in any case. Another example is
that the GM II project cannot resist the semantic change caused by the BAP operator.
In order to be robust to this change the agent description can be improved so that the
agent behaviour is independent of the order of the beliefs.

114

6 Conclusions

Semantic mutation testing (SMT) is a useful technique for assessing tests and the
robustness of a program to semantic changes. In this paper we applied SMT to three
agent languages, namely Jason, GOAL and 2APL. We showed that SMT for these
languages is useful in several contexts – migration between languages, evolution of
languages, common misunderstandings, and ambiguity of informal semantics. We
derived sets of semantic mutation operators for these languages, and a broader set of
semantic mutation operator classes that are applicable to rule-based agent languages.
Finally, we used two Jason projects in a preliminary evaluation of the semantic muta-
tion operators for Jason. The results suggest that SMT can indicate some weaknesses
in test sets and programs.

Our future work will focus on further evaluation of the semantic mutation opera-
tors for Jason. To further evaluate the ability of these operators to assess tests, we will
examine their representativeness in comparison to realistic misunderstandings and
their power by looking for more hard-to-kill mutants (as we have done in this paper),
as suggested by [8]. To further evaluate the ability of these operators to assess pro-
gram robustness, we will apply them to more Jason projects and provide specific rules
to change the agent description in order to improve robustness.

References

1. Adra, S.F., McMinn, P.: Mutation operators for agent-based models. In: Proceedings of 5th
International Workshop on Mutation Analysis. IEEE Computer Society (2010)

2. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press
(2008)

3. Bordini, R.H., Hübner, J.F.: Semantics for the Jason variant of AgentSpeak (plan failure
and some internal actions). In: Proceedings of ECAI’10, pp. 635–640 (2010)

4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak using Jason. John Wiley & Sons (2007)

5. Clark, J.A., Dan, H., Hierons, R.M.: Semantic Mutation Testing. Science of Computer
Programming (2011)

6. Dastani M.: 2APL: A practical agent programming language. Autonomous Agents and
Multi-Agent Systems 16(3), 214–248 (2008)

7. Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Programming multi-agent systems in
3APL. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-
Agent Programming: Languages, Platforms and Applications, pp. 39–67. Springer, Hei-
delberg (2005)

8. Hindriks, K.V.: Programming rational agents in GOAL. In: Bordini R.H., Dastani M., Dix
J., El Fallah Seghrouchni A. (eds.), Multi-agent programming: Languages, platforms and
applications, vol. 2, pp. 3–37. Springer, Heidelberg (2009)

9. Houhamdi, Z.: Multi-agent system testing: A survey. International Journal of Advanced
Computer Science and Applications (IJACSA) 2(6), 135–141 (2011)

10. Huang Z., Alexander R., Clark J.A.: Mutation Testing for Jason Agents. In: Dalpiaz F.,
Dix J., van Riemsdijk, M.B. (eds.) EMAS 2014. LNCS (LNAI), vol. 8758, pp. 309–327.
Springer, Heidelberg (2014)

115

11. Jia Y., Harman M.: Higher order mutation testing. J Informat Softw Technol 51(10), pp.
1379–1393 (2009)

12. Mathur, A.P.: Foundations of Software Testing. Pearson (2008)
13. Nguyen, C.D., Perini, A., Bernon, C., Pavón, J., Thangarajah, J.: Testing in multi-agent

systems. In: Gleizes, M.-P., Gomez-Sanz, J.J. (eds.) AOSE 2009. LNCS, vol. 6038, pp.
180–190. Springer, Heidelberg (2011)

14. Saifan, A.A., Wahsheh, H.A.: Mutation operators for JADE mobile agent systems. In: Pro-
ceedings of the 3rd International Conference on Information and Communication Systems,
ICICS (2012)

15. Savarimuthu, S., Winikoff, M.: Mutation operators for cognitive agent programs. In: Pro-
ceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2013), pp. 1137–1138 (2013)

16. Savarimuthu, S., Winikoff, M.: Mutation Operators for the GOAL Agent Language. In:
Cossentino M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS
(LNAI), vol. 8245, pp. 255–273. Springer, Heidelberg (2013)

17. Tiryaki A.M., Oztuna S., Dikenelli O., Erdur R.C.: Sunit: A unit testing framework for test
driven development of multi-agent systems. In: Agent-Oriented Software Engineering VII.
LNCS, vol. 4405, pp. 156–173. Springer, Heidelberg (2006)

18. Winikoff M.: Novice programmers' faults & failures in GOAL programs. In: Proceedings
of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2014), pp. 301–308 (2014)

116

A Formal Description of a Mapping from
Business Processes to Agents

Tobias Küster, Marco Lützenberger, and Sahin Albayrak

DAI-Labor, Technische Universität Berlin, Germany
tobias.kuester@dai-labor.de

Abstract. Having many notions in common with multi-agent systems,
business processes are well suited for modelling agents and their interre-
lations. However, often vague semantics and structural differences make
a mapping from business processes to multi-agent systems difficult. In
this paper, we formally describe a mapping from business process models
to multi-agent systems that can be applied to different agent frameworks
and languages. Using the same mapping, we created three semantically
equivalent and interoperable implementations suiting different areas of
application.

Keywords: Technological, Methodological

1 Introduction

Business process modelling has many notions in common with agents-oriented
programming: It serves as a high-level abstraction for distributed systems com-
posed of many cooperative or competing actors, communicating via messages
and services, and reacting to events. Thus, it is not surprising that process mod-
elling has been adopted for the modelling of multi-agent systems in a number of
works (cf. [4], [5], [6], and others).

One common problem with translating processes to agents (or, in fact, most
other programming systems) is the mapping of free-form process graphs to block
structured programming languages. Also, the mapping is often informal and am-
biguous, or it covers just a part of the notation, particularly for more expressive
(and thus interesting) notations like BPMN [18].

In this paper, we describe a mapping from BPMN processes to multi-agent
systems. The mapping covers diverse aspects of processes and agents, such as
actors/roles, reaction rules, behaviours, events, services, and message-based com-
munication [13], and can be applied to different agent programming languages
and frameworks. It also includes a formal description of how individual process
structures can be mapped to equivalent structures in block-oriented languages.

The mapping has been implemented in three different fashions for the JIAC V
agent framework [16]. While each implementation has individual strength and
weaknesses, making it suited for different applications, they behave the same

117

Fig. 1. Class diagram of Agent meta model, slightly simplified

and are all interoperable with each other, such that different parts of the same
process can be mapped to different implementation styles.

The remainder of this paper is structured as follows: In Section 2 we describe
the models used for agents and processes. In Section 3, we use those models to
define a mapping between them. Then, in Section 4, we present three different
implementations of the mapping. Finally, we present related work in Section 5
and conclude in Section 6.

2 Agent and Process Model

In this section, we describe the meta models used for modelling the agent systems
and processes. While some models can be found in the literature [3], we decided
to provide our own definitions in order to have a uniform representation and to
focus on those parts most relevant to the mapping.

2.1 Agent Meta Model

A common problem when dealing with agent systems is that the notion of an
agent is not very clearly defined (see [8] for a number of possible definitions).
Thus, in the following we provide a semi-formal definition of what constitutes an
agent, and what those agents have to provide for the mapping to be applicable.
Note that we are not pursuing to provide a general and exhaustive definition
for agents, but to have a meta model streamlined for the task at hand: as a
foundation for the mapping from processes to agents (Figure 1).

The field of agents is immensely broad, and not only is it near impossible
to define an agent meta model that suits all the different aspects of agents, but
neither could a process modelling notation like BPMN be used to model all of
those aspects. Thus, our goal is to keep this model as simple and as abstract as
possible, so that the mapping is applicable to many different agent frameworks,
even though it may not cover all of their specialities.

118

Agent Architecture A multi-agent system mas = (id, Agents, Roles) con-
sists of several defined roles, and a number of concrete agents implementing
those roles. Each agent agent = (id, Rol, Bel) is primarily defined by the roles
Rol ⊆ Roles it implements. It may also have a number of beliefs Bel, both
initial and those added at runtime. How those beliefs are represented is not of
importance for this mapping. Roles define the behaviour of the agent. Each role
role = (id, P lans, Rules, Goals) consists of a number of plans, rules, and
optionally goals. While the plans hold the actual actions to be taken, rules and
goals specify when those actions should be executed.

Each plan plan = (id, In, Out, pre, eff, script) describes one behaviour,
which is detailed in an agent script. Plans have inputs and output lists, hold-
ing the names and types of the parameters and return values, as well as a
semantic description in the form of preconditions and effects (IOPE). Rules
rule = (cond, plan, map) link an execution condition, matched against the
agent’s current beliefs, to a plan, and provide a mapping of values and variables
from the condition to input parameters of the plan. Goals goal = (cond, P ′)
are defined by a condition, or world state to be achieved, and a number of plans
from the agent’s set of plans P ′ ⊆ Plans available for fulfilling that goal. 1

Agent Behaviour The agent’s plans are made up of script elements. How
these scripts are implemented in an actual agent framework is irrelevant for the
mapping, as long as the following atomic behaviours are supported:

– send(m): Send message m = (snd, rec, cnt) with given content cnt from
sender snd to recipient rec.

– receive(m): Receive message matching template m = (snd, rec, cnt).
– invoke(p, i, o): Call plan p with input i and store output in o.
– ass(x, y): Evaluate expression y and assign result to variable x.
– achieve(g): Add goal condition g to agent’s goals and wait for completion.
– nop: No Operation.

Further, the following control-flow structures are required, including simple
conditions and loops, but also basic threading for parallel execution:

– seq(s1, . . . , sn): Execute scripts s1, . . . , sn sequentially.
– par(s1, . . . , sn): Execute scripts s1, . . . , sn in parallel.
– cond(c, x, y): Execute x, if condition c is true, else y.
– while(c, s): Execute script s, while condition c is true.
– fork(id, x): Execute script x in thread with ID id.
– join(id): Wait for thread with ID id to finish.
– stop(id): Interrupt Thread with ID id.
– wait(t): Suspend execution for time t.

1 We are only regarding achieve goals here. While there are several types of goals [21],
achieve goals and maintain goals are clearly the most interesting of those. Further,
maintain goals can easily be emulated with achieve goals and rules, by having a rule
set a new achieve goal whenever the condition to be maintained is violated.

119

Fig. 2. Class diagram of Process meta model, slightly simplified

While statements such as as fork and join, may not be present in some
high-level agent languages, they could be emulated with different language ele-
ments, e.g., additional reaction rules. Otherwise, some features of the mapping,
particularly the mapping of event handlers, can not be applied.

2.2 Process Meta Model

We decided to use BPMN (Business Process Model and Notation) [18] for mod-
elling multi-agent systems. BPMN is a standardised notation that is widely used
in practice [20]. It allows for modelling with a high level of abstraction while being
detailed enough to generate readily executable systems. Also, it exhibits several
language features that make it particularly useful for modelling distributed and
autonomous systems, such as communication, interaction, and event handling.

While the BPMN specification focuses on the notational aspects of the lan-
guage, there are several other works detailing its formal semantics (see e.g., [7]).
Still, we will define our own BPMN-based process meta model (see Figure 2),
being streamlined for describing the mapping proposed in this paper.

Process, Pool, Participant At the top level, each business process system
bps = (id, BPD, Pt) consists of business process diagrams BPD and a set of
participant names Pt. Process diagrams correspond to use cases and participants
to actors having a role in those use cases. Each business process diagram bpd =
(id, P l, MF, Art) (a BPMN diagram), with bpd ∈ BPD, contains one or

120

more pools Pl, message flows MF , and optionally artefacts Art, such as text
annotations. 2

Each pool pool = (id, wf, pt) is defined by a workflow wf = (O, SF, Prop)
and the name of the participant pt ∈ Pt that is responsible for carrying out
this workflow. A possible subdivision of pools into lanes is not regarded. The
workflow consists of a set of flow objects O that are connected by (conditional)
sequence flows SF ⊂ O×O× (expressions∪ {ε}). It can also declare a number
of properties Prop ⊂ name× type, i.e. variables.

Workflow Elements The pool’s workflows are made up of activities (task
or subprocess), events, and gateways. Tasks, events and gateways are subdivided
into different types, each with type-specific attributes At ⊂ key×value. Further,
tasks and events can have an arbitrary number of assignments As ⊂ property×
expression× {before, after} that can be executed either before or after the
element itself.

A task task = (id, typet, As, Att) is an atomic’ activity. The most im-
portant types of tasks (typet ∈ {service, send, receive, script, . . . }) for
this mapping are for sending or receiving messages, invoking other services, or
carrying out a given script.

Events event = (id, typee, As, Ate) of different types (typee ∈ {message,
timer, rule, . . . }) can be used for ‘passive’ behaviours like waiting for a mes-
sage to arrive, for a specific time, or until some condition is satisfied. Events
can be used in the normal flow of control, or in special situations like as event
handlers to a subprocess or after an event-based gateway.

Gateways gateway = (id, typeg, Atg) mark the boundaries of loops and
conditional blocks. Their type (typeg ∈ {xor, or, and, event, complex})
can be exclusive- or inclusive-or, parallel, event-based, or complex. However, we
are not considering the complex type, as its semantics are very vague.

Finally, subprocesses subp = (id, swf, EH, succEH , At) can be used
to aggregate several other activities and events into a sub-workflow swf =
(O′, SF ′, P rop′), i.e. a nested set of flow objects, sequence flows and prop-
erties defined in that subprocess.3 Besides providing structure to the process,
subprocesses also define an individual variable scope and can be endowed with
event handlers EH that will interrupt the entire sub-workflow in case one of the
events is triggered. The successor-relation of those event handlers is given by
succEH ⊂ EH ×O.

2.3 Expressions, Data, Communication

In both models we are making use of expressions, e.g., for assignments and
conditions. We are not specifying any particular language to be used for those

2 Both artefacts and message flows are purely documentary; the actual messages are
defined in the respective tasks and events sending and receiving those messages.

3 Subprocesses could also be defined recursively, containing a Call activity invoking
the parent (sub-)process, but this is not discussed here.

121

Fig. 3. Overview [14]: Participants to roles, processes to plans, events to rules.

expressions; it should provide the usual mathematical and logical operations and
grant access to the agent’s beliefs and the properties of the process.

Another important aspect of both, multi-agent systems and business pro-
cesses, are messages, which are defined by their sender, receiver, and content:
message = (sender, receiver, content) Those attributes can also be used
in expressions, e.g., for memorizing the sender of a message and later send-
ing a reply to that same receiver. Here, sender and receiver can be individual
agents/participants or multicast-addresses. The content is not restricted: It could
be a FIPA message or any kind of serializable object.

Complementary to messages, services describe a particular action to be in-
voked: service = (id, provider, Input, Output). They are defined by a service
ID, their respective provider, and input and output lists. In a multi-agent sys-
tem, each plan could be considered as a service, although in practice only a
subset of them will be, as some might be private. In BPMN, each pool that has
a service start event will be exposed as a service.

3 Mapping Processes to Agents

In this section, we describe and formalize the mapping from BPMN processes
to multi-agent systems according to the meta models defined in the previous
section. In a nutshell, participants in the process are mapped to agent roles,
their pools to plans, and the pools’ start events to various mechanisms and rules
for executing those plans (see Figure 3). For a more in-depth discussion of the
mapping, please refer to [14].

We are using the notation x =⇒ z to denote that the process-element x is
mapped to agent-element z. Analogously, we are using (x, y) =⇒ z to indicate

122

that the region of the process graph between x and y (i.e. a self-contained sub-
graph with source x and sink y) is mapped to the (possibly complex) element z.
We use ε for the empty, or null element.

3.1 Mapping of Agent Architecture

The business process system bps = (id, BPD, Pt) is mapped to a multi-agent
system, whereas only roles can be created; agents have to be specified later.

bps =⇒ mas = (id, Agents, Roles), with

Agents = ∅
Roles = {role | ∃p ∈ Pt : p =⇒ role}

A participant name pt ∈ Pt is mapped to a role, defined by plans and rules, with
that name as its ID. The initial configuration knows neither goals nor beliefs,
but both can be added at runtime. For each pool, one plan is created, as well as
one rule for each start event in those pools.

pt =⇒ role = (pt, P, R, G), with

P = {plan | ∃p = (id′, wf ′, pt) : p =⇒ plan}
R = {rule | ∃es ∈ Owf ′ : es =⇒ rule}
G = ∅

Let bpd = (id1, P l, Art) be a BPD, and pool = (id2, wf, pt) a Pool, such
that pool ∈ Pl and wf = (O, SF, Prop). For each pair of start- and end-events
es, ee ∈ O, with Z being an agent script element, such that (es, ee) =⇒ Z, a
plan is created. The plan’s IOPE remain undefined at first.

pool =⇒ plan = (id1id2, In, Out, pre, eff, Z), with

In = Out = ∅
pre = eff = ε

The start event es = (id, typee, As, Ate) is mapped to a reaction rule, trigger-
ing the same plan. The condition is a rule expression depending on typee, and
variables from that condition that are used in assignments are mapped to inputs
of the plan of the same name.

es =⇒ rule = (cond, plan, map), with

cond = [rule expression, depending on type]

plan = p , such that pool =⇒ p

map = {(x, x) | ass(x, y) ∈ As}
Inplan ← Inplan ∪ {y | (x, y) ∈ map}

123

Fig. 4. Mapping of Structures. a) Sequence, b) Condition, c) Parallel, d) Parallel-
Conditional, e) Event-based Condition, f) While-Loop, g) Subprocess with Event-
Handler. Shaded regions correspond to previously matched structures.

3.2 Mapping of Agent Behaviours

In the following, we describe the mapping of the actual processes to different
agent behaviours, i.e. plans. At first, we will take a look at different process
structures, before considering individual elements.

Mapping of Structures The transformation of process graphs to structured
programs is a complicated task [10]. We are following a bottom-up “structure
identification” approach [17], using different rules to match different structures
(see Figure 4). Those rules are applied to the elements of a pool p = (id, wf, pt)
or subprocess sp = (id, wf, EH, succEH , At) with wf = (O, SF, Prop).

The simplest and yet most important structure is the sequence, connecting a
number of flow objects xi, yi ∈ O (i ≤ n), such that ∀i < n : (yi, xi+1, ε) ∈ SF
and ∀i ≤ n : ∃zi : (xi, yi) =⇒ zi.

(x1, yn) =⇒ seq(z1, . . . , zn)

Different structures, such as conditions and loops, are delimited by pairs of
gateways, g1 = (id1, type1, At1) and g2 = (id2, type2, At2).

If type1 = type2 = xor, they correspond to an if/else-style condition. Given
x1, y1, x2, y2 ∈ O, and (g1, x1, c), (g1, x2, ε), (y1 , g2, ε), (y2, g2, ε) ∈ SF ,

124

with z1, z2 script elements, such that (x1, y1) =⇒ z1 and (x2, y2) =⇒ z2.

(g1, g2) =⇒ cond(c, z1, z2)

If type1 = type2 = and, they are mapped to parallel execution. In this case,
all sequence flows are unconditional, i.e. c = ε. Also, instead of just two, an
arbitrary number of branches (and corresponding script elements z1, . . . , zn)
is allowed in between the gateways.

(g1, g2) =⇒ par(z1, . . . , zn)

An inclusive-or gateway, i.e. type1 = or, is mapped to a combination of parallel
and conditional execution. In this case, each of the sequence flows going out of
g1 requires a condition ci 6= ε.

(g1, g2) =⇒ par(cond(c1, z1, ε), . . . , cond(cn, zn, ε))

For an event-based gateway (type1 = event), the first element of each branch
has to be an event, i.e. for the ith branch, ei, xi, yi ∈ O, ei being an event, with
(g1, ei, ε), (ei, xi, ε), (yi, g2, ε) ∈ SF , such that ei =⇒ Xi and (xi, yi) =⇒ zi.
The events are checked in separate threads, and the course of the process depends
on the event triggered first.

(g1, g2) =⇒ seq(A, [B1..n], join(idg1), [stop(ideh1..n
)], [C1..n])

A = fork(idg1 , while(>, nop))
Bi = fork(idehi

, seq(Xi, ass(ti, >), stop(idg1)))

Ci = cond(ti, zi, ε)

If type1 = type2 = xor, and if the second branch is reversed, i.e. (g1, x1, ε),
(y1, g2, ε), (g2, x2, c), (y2, g1, ε) ∈ SF , the structure is mapped to a loop.

(g1, g2) =⇒ seq(z1, while(c, seq(z2, z1)))

The mapping of a subprocess sp = (ids, swf, ∅, ∅, ∅) without event handlers
corresponds to the mapping of its workflow.4 Let swf = (Osp, SFsp, P ropsp),
and es, ee ∈ Osp unique start- and end events, such that (es, ee) =⇒ Z.

sp =⇒ Z

An ad-hoc subprocess sp = (ids, swf, ∅, ∅, At) with completion condition
cc, i.e. (‘comp-cond’, cc) ∈ At, corresponds to the creation of a goal with the
same condition. For this, the sub-workflow has to contain only service tasks,
their respective plans being available for execution towards the goal, i.e. swf =
({t1, . . . , tn}, ∅, ∅), with ti = (idi, service, ∅, {(‘impl’, (Pi, ε, ε))}).

sp =⇒ achieve((cc, {P1, . . . , Pn}))
4 Depending on the implementation, the workflow might be wrapped into a separate

method, service, or class.

125

A subprocess sp = (ids, swf, EH, succEH , ∅) with event handlers behaves
similar to an event-based gateway, even though instead of just waiting for the
first event to occur, the subprocess is executed. If one of the events is trig-
gered, the execution of the subprocess together with any remaining event han-
dlers is aborted and the process continues after that event. Also, this adds an-
other branch in case none of the events is triggered. Be x0, y0, g ∈ O, with
(sp, x0, ε), (yi, g, ε) ∈ SF , (i ≤ n) and ei ∈ EH with (ei, xi) ∈ succEH

(1 ≤ i ≤ n). Let Z be a script-element such that sp =⇒ Z.

(sp, g) =⇒ seq(A, [B1..n], join(idsp), [stop(ideh1..n)], C)

A = fork(idsp, Z)

Bi = fork(ehi, seq(Xi, ass(ti, >), stop(idsp)))

C = seq(ass(n, >), [D1..n], cond(n, z0, ε))

Di = cond(ti, seq(ass(n, ⊥), zi), ε)

With those rules, the most important process structures can be mapped to
equivalent agent script elements. Still, there are types of process graphs that
can not be structured in any way [15]. However, this does not pose a significant
limitation, as those graphs tend to contain structural errors leading to deadlocks
and similar undesirable behaviour.

Mapping of Elements At the bottom level, the above structures are made up
of individual flow objects, i.e. tasks and events (subprocesses and gateways are
part of the structures).

Both tasks and events can contain assignments, that, depending on their
assign time, are to be executed either before or after the actual task or event,
e.g., for handling the input and output of services. Thus, each flow object of the
form fo = (id, type, Ass, At) is mapped to a sequence of assignments together
with the mapping of the task or event itself, Z, which depends only on its type
and attributes, i.e. (type, At) =⇒ Z.

fo =⇒ seq(ab1, . . . , a
b
n, Z, a

a
1 , . . . , a

a
n), with

abi ∈ {ass(prop, expr) | (prop, expr, before) ∈ As}
aai ∈ {ass(prop, expr) | (prop, expr, after) ∈ As}

Depending on their respective type and attributes, a task task = (id, typet,
As, Att) is mapped to different script elements, e.g., sending a message, invoking
a service, or executing some given script.

(typet, Att) =⇒





send(m) if type = send, (‘msg’, m) ∈ Att
receive(m) if type = rec, (‘msg’, m) ∈ Att
invoke(p, i, o) if type = service, (‘impl’, (p, i, o)) ∈ Att
script if type = script, (‘script’, script) ∈ Att
nop otherwise

126

Similarly, an event event = (id, typee, As, Ate) can be mapped to, e.g.,
receiving a message, or waiting for a certain time or condition. The same mapping
is used whether the event occurs in normal flow or as a subprocess event handler.

(typee, Ate) =⇒





wait(t) if type = timer, (‘time’, t) ∈ Ate
receive(m) if type = message, (‘msg’, m) ∈ Ate
while(¬c, nop) if type = rule, (‘rule’, c) ∈ Ate
nop otherwise

These are the most important types of tasks and events for creating a usable
system. Other types, such as error events or user tasks, are not regarded in this
mapping, but can still be used in some of its implementations.

4 Implementation

Currently, the mapping has been implemented in three different ways for the
JIAC V multi-agent framework [16]: For creating services in the high-level agent-
scripting language JADL++ [14], for generating Java-based agent beans imple-
menting the respective behaviours [12], and in the form of a JIAC-based process
interpreter [22]. These implementations are integrated into the BPMN modelling
tool VSDT (Visual Service Design Tool) [11].

JIAC V (Java Intelligent Agent Componentware, version 5) is a multi-agent
framework that heavily lends from the service-oriented architecture (SOA) para-
digm to create transparently distributed multi-agent systems communicating via
messages and services, with a particular focus on industrial applications [16].
Consequently, the business process metaphor lends itself well to it.

4.1 Generation of JADL Services

At first, the mapping was realised as a transformation to JADL services. Being a
high-level, service-oriented scripting language [9], the adoption of the BPMN no-
tation was natural. JADL scripts can be passed to an agent at runtime, allowing
for dynamically changing or extending its behaviour.

Each process is mapped to one JADL service, with its input and output de-
termined by the start events. Most structures, including event-based conditions,
can be mapped directly onto corresponding control flow elements. Simple sub-
processes are embedded into a nested variable scope within the service, but sub-
processes with event-handlers are not supported in this implementation. Tasks
and events for sending and receiving messages and for invoking other services
are mapped directly onto according high-level language elements, thus making
the resulting code particularly easy to understand and to maintain.

The reaction rules derived from the start events are mapped onto a set of
Drools5 rules. JIAC agents can be equipped with a Drools rule engine, syncing

5 JBoss Drools: http://www.jboss.org/drools/

127

with the agent’s memory and triggering the respective services in case the start
condition – e.g., a message being received, or a timer – is fulfilled, by inserting
an according intention into the agent’s memory. The mapping of participants
to agent roles is reflected in the creation of according JIAC configuration files,
holding the different agent roles, each equipped with a JADL interpreter and a
rule engine and the respective services and rules.

4.2 Creation of JIAC Agent Beans

Complementary to this implementation, BPMN diagrams can also be mapped to
JIAC agent beans [12]. Those are more versatile and provide better extensibility,
making them the best choice for implementing the agent’s core components.
Here, each pool is mapped to one agent bean (i.e. a Java class), encapsulating
the behaviour for that role in that use case. All of the activities are mapped to
activity methods that are orchestrated in a workflow method, representing the
workflow as a whole.

The workflow method is made up of standard Java constructs, such as con-
ditions and loops, calling the activity methods accordingly. Subprocesses are
mapped to similarly structured nested classes. Parallel execution is implemented
via threads, as are event handlers, where the event is monitored in a thread,
eventually interrupting the main workflow thread and re-routing the execution
accordingly. The activity methods encapsulate both that activities assignments
and the actual activity, e.g. sending a message, making the workflow code much
more compact and easy to understand by humans Properties are mapped to Java
variables in the appropriate scope.

Start events are implemented making use of different mechanisms of the
agent beans. For an unspecified, or none start event, the workflow method is
triggered once when the agent starts; a message start event with a service
implementation will expose the workflow method as an action; a message start
event with a message channel will create an according message observer; and a
timer start event will regularly check the time (or time since last execution)
and start the workflow method accordingly.

4.3 JIAC Process Interpreter Bean

Finally, the mapping has been implemented as a JIAC-based process interpreter
agent bean [22]. This one fundamentally differs form the other two, as no source
code is generated, but the BPMN diagram file itself is passed to the bean and
interpreted. Thus, no structuring of the process is necessary.

The process interpreter agent provides an action, accepting a BPMN diagram
and the name of the participant to play, creating a new interpreter runtime for
that process diagram and participant, i.e. role. It also acts as the “link” between
the interpreted process and the outside world.

The processes are not started immediately; instead, those interpreter run-
times are responsible for monitoring the start events of that role’s processes,
and will create new interpreter instances each time a start event is triggered,

128

e.g., when some message arrives. They also determine what processes should be
exposed as actions of the interpreter agent (for service start events).

At the lowest level, the interpreter instances keep track of the internal state
of each process. In each iteration of the interpreter agent’s execution cycle, each
process instance performs one ‘step’ in its respective process, keeping track of
the current state of the process, evaluating branching conditions and routing the
flow of control accordingly, until the last active flow object has been executed.

4.4 Comparison and Application

Each implementation has its strengths and weaknesses.

– While providing for compact and readable code, the mapping to JADL suffers
from the language’s lack of expressiveness in some points. Still, it is useful
for high-level behaviours and services, and has the additional advantage that
JADL scripts can be deployed and undeployed at runtime, thus dynamically
changing the agent’s behaviour.

– The generated JIAC agent beans have the highest expressiveness: Not only
can nearly the entire BPMN be mapped to an according Java code, but if
needed the generated beans can also easily be extended with additional code,
e.g., for interaction with a GUI or data base. Those changes are preserved
even when the code is generated anew. On the negative side, the agent beans
are relatively static and not as easy to add to an agent at runtime.

– Not depending on generated code, the interpreter is not limited to processes
following a block-structure but can run arbitrarily structured processes. This
comes at the cost that the business process has to strictly contain everything
that is needed in order to run, as there is no generated code that could be
extended or edited before execution. As with JADL, processes can be dy-
namically added to and removed from the interpreter agent at runtime. Both
arguments make the interpreter best suited for very high-level behaviour and
composite services. Finally, the interpreter could be linked with the process
modelling tool, showing the current state of the execution (future work).

The three implementations differ in both, their exact coverage of the mapping
(see Table 1, including the mapping from BPMN to BPEL [18] for comparison)
and their strengths and weaknesses, but they are all compatible with each other,
e.g., a message sent by a generated agent bean can be received by the interpreter
or a JADL service and vice versa. Thus, is is possible to export one business
process diagram to a heterogeneous system, mapping one pool to, e.g., a JADL
service and another to an agent bean.

Business process modelling can best be applied either at an early system
design stage, to visually model the interaction protocols in the core system [14],
or at a later stage, for modelling individual high-level services. Both is supported
by the mapping and its implementations.

129

Table 1. Comparison of mappings: BPMN to X. -/o/x means no/partial/full support.

Element BPEL JADL Ag.Beans Interpr.
W

o
rk

fl
ow

XOR, AND, OR Gtw. x x x x
Event-bsd. XOR Gtw. x x x x
Complex Gateway - - - -
Event Handler, Error x x x x
Event Handler, Other x - x x

A
ct

iv
it

ie
s

Send, Receive Task o x x x
Service Task x x x x
User Task o - o o
Manual Task - - - -
Script Task - x x o
Subprocess o o x x
Transaction - - - -
Call Activity o o o o
Ad-Hoc-Subprocess - - o o

E
v
en

ts

Message o x x x
Timer x x x x
Rule - o x o
Signal - - - o
Escalate - - - -
Error x - x x
Compensate x - - -
Cancel - - - -
Terminate x - x x

M
is

c.

Properties, Assignmt. x x x x
Multiple Lanes - - - -
Data Objects - - - -
Roles - x x x
Service Starter o x x x

5 Related Work

In part, BPMN was developed as a graphical notation for the web service orches-
tration language BPEL, and the resulting mapping from BPMN to BPEL [18]
can be considered a point of reference for all other mappings. Here, each pool
is mapped to a BPEL process, consisting mostly of assignments, calls to other
services, and some event handling. Messages are always service calls or their
respective results; other kinds of communication are not supported, and there
is no direct mapping from start events to service starting behaviour. Thus, the
mapping to BPEL does not use the full potential of BPMN.

The similarities between business processes and agents have already led to
different approaches for combining process modelling and agents.

130

One of those approaches is WADE (Workflows and Agents Development
Environment), allowing to model the behaviours of JADE agents as process
graphs [6] and generating working Java code from those diagrams. However, the
workflow is not mapped to Java control flow statements, but encoded in a spe-
cial data structure, making the generated code more difficult to follow. Also,
the initially used process notation is much simpler than BPMN, limiting the ex-
pressiveness of the approach. Later, WADE has been extended to provide better
support for long-running business processes, event handling, user-interaction,
and Web-service integration [2] and as of today appears to be a very mature
product used in many projects.

Another approach is GO-BPMN (Goal-oriented BPMN), using BPMN pro-
cesses to model the plans that are the leafs in a goal hierarchy [5]. However,
only a subset of the BPMN notation is used, describing individual plans and
thus only a single agent. Interactions between agents – for which BPMN would
be very well suited – are not modelled at all. While the combination of BPMN
with agent goals is promising, we believe that BPMN is used at the wrong level
of abstraction, abandoning many of its benefits. Similarly, Go4Flex [4] combines
BPMN with goal hierarchies for Jadex Agents.

In another work, the authors also present a mapping from AUML interaction
diagrams to BPMN [19]. AUML interaction diagrams themselves [1] are well
suited for describing the interactions between agents, but following the principle
of UML, they show only this one aspect, while leaving the behaviour in between
the interactions to be modelled with other means. In contrast, BPMN can be
seen as a combination of AUML interaction- and activity -diagrams, conveying
the bigger picture of the agents’ actions and interactions.

Finally, there are numerous agent development methods, many of which also
use business processes and similar graphical notations. One of those is i∗, which
is used, among others, in the TROPOS methodology [23]. Here, the focus lies
particularly on the social relationships between the agents, their goals, intentions
and resulting ‘strategic dependencies’. While i∗ itself is not used for modelling
processes, it could well be used complementary to, e.g., BPMN to model the
rationale behind the agents’ behaviours and interactions.

6 Conclusion

In this paper, we described a mapping form BPMN processes to multi-agent sys-
tems and exemplarily showed how this mapping has been implemented in three
different fashions for the JIAC V multi-agent framework: By generating high-
level JADL scripts, creating versatile agent beans, or having an agent directly
interpret the processes.

Each approach has its strengths and weaknesses: Agent beans are fast and
versatile, making them the best choice for the core processes of the multi-agent
application, while scripts and interpreted processes are more flexible and thus
best suited for dynamic and adaptable behaviours. At the same time, using the
same mapping, all implementations are semantically equivalent and interopera-

131

ble, such that, e.g., one part of a process system can be mapped to agent beans,
while another part is interpreted.

The mapping covers most important aspects of processes and agents, such
as roles and rules, activities and events, messages and services. It also supports
many different process control flow structures, translating them to equivalent
block-structures.

While already included in the meta-models and the mapping, the imple-
mentation does not yet support goals and semantics. For future work, we are
planning to extend the mapping in this direction. The BPMN ad-hoc subprocess
is a good candidate for this, providing a completion condition that closely resem-
bles an achieve goal in agent systems, but more work is needed for the mapping
to handle ad-hoc subprocesses with more diverse content. Also, this will require
the extension of BPMN with service semantics. Both are goals of our ongoing
research projects.

References

1. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A formalism for specifying multi-
agent software systems. In: Ciancarini, P., Wooldridge, M. (eds.) Agent-Oriented
Software Engineering, First International Workshop, AOSE 2000, Revised Papers.
LNCS, vol. 1957, pp. 91–104. Springer (2001)

2. Bergenti, F., Caire, G., Gotta, D.: Interactive workflows with WADE. 2012 IEEE
21st International Workshop on Enabling Technologies: Infrastructure for Collab-
orative Enterprises 0, 10–15 (2012)

3. Bernon, C., Cossentino, M., Gleizes, M.P., Turci, P., Zambonelli, F.: A study of
some multi-agent meta-models. In: Proceedings of the 5th International Conference
on Agent-Oriented Software Engineering. pp. 62–77. Springer (2004)

4. Braubach, L., Pokahr, A., Jander, K., Lamersdorf, W., Burmeister, B.: Go4Flex:
Goal-oriented process modelling. In: 4th International Symposium on Intelligent
Distributed Computing (IDC’2010) (2010)

5. Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: BDI-agents for agile goal-
oriented business processes. In: Proc. of 7th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2008). pp. 37–44. International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC (2008)

6. Caire, G., Gotta, D., Banzi, M.: WADE: A software platform to develop mission
critical applications exploiting agents and workflows. In: Berger, M., Burg, B.,
Nishiyama, S. (eds.) Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2008) – Industry and Applications Track. pp. 29–36 (May 2008)

7. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Information & Software Technology 50(12), 1281–1294 (2008)

8. Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for
autonomous agents. In: ECAI ’96: Proc. of Workshop on Intelligent Agents III,
Agent Theories, Architectures, and Languages. pp. 21–35. Springer, London, UK
(1997)

9. Hirsch, B., Konnerth, T., Burkhardt, M., Albayrak, S.: Programming service ori-
ented agents. In: Calisti, M., Dignum, F.P., Kowalczyk, R., Leymann, F., Unland,
R. (eds.) Service-Oriented Architecture and (Multi-)Agent Systems Technology.
No. 10021 in Dagstuhl Seminar Proceedings, Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Germany, Dagstuhl, Germany (2010)

132

10. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On structured workflow mod-
elling. In: CAiSE ’00: Proc. of 12th Int. Conf. on Advanced Information Systems
Engineering. pp. 431–445. Springer, London, UK (2000)

11. Küster, T., Heßler, A.: Towards transformations from BPMN to heterogeneous sys-
tems. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process Management
Workshops. LNBIP, vol. 17. Springer, Milano, Italy (September 2008)

12. Küster, T., Heßler, A., Albayrak, S.: Towards process-oriented modelling and cre-
ation of multi-agent systems. In: Dalpaiz, F., Dix, J., van Riemsdijk, B. (eds.)
LNAI post-proceedings of 2nd Int. Workshop on Engineering Multi-Agent Sys-
tems. LNAI, vol. 8758, pp. 163–180. Springer (2014)

13. Küster, T., Lützenberger, M.: An overview of a mapping from BPMN to agents
(extended abstract). In: Bordini, Elkind, Weiss, Yolum (eds.) Proc. of 14th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2015). Istanbul,
Turkey (May 4–8 2015)

14. Küster, T., Lützenberger, M., Heßler, A., Hirsch, B.: Integrating process modelling
into multi-agent system engineering. Multiagent and Grid Systems 8(1), 105–124
(January 2012)

15. Liu, R., Kumar, A.: An analysis and taxonomy of unstructured workflows. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) Business
Process Management. vol. 3649, pp. 268–284 (2005)

16. Lützenberger, M., Küster, T., Konnerth, T., Thiele, A., Masuch, N., Heßler, A.,
Keiser, J., Burkhardt, M., Kaiser, S., Tonn, J., Kaisers, M., Albayrak, S.: A
multi-agent approach to professional software engineering. In: Cossentino, M.,
Seghrouchni, A.E.F., Winikoff, M. (eds.) Engineering Multi-Agent Systems – 1st
Int. Workshop, EMAS 2013, Revised Selected Papers, LNAI, vol. 8245, pp. 158–
177. Springer, St. Paul, MN, USA (May 6–7 2013)

17. Mendling, J., Lassen, K.B., Zdun, U.: Transformation strategies between blockori-
ented and graph-oriented process modelling languages (2005)

18. OMG: Business process model and notation (BPMN) version 2.0. Specification
formal/2011-01-03, Object Management Group (August 2011)

19. Pokahr, A., Braubach, L.: Reusable interaction protocols for workflows. In: Work-
shop on Protocol based modelling of business interactions (2010)

20. Recker, J.C.: BPMN modeling – who, where, how and why. BPTrends 5(3), 1–8
(March 2008)

21. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent systems: A unifying
framework. In: Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2008). pp. 713–720. International Foundation for Autonomous
Agents and Multiagent Systems, Estoril, Portugal (May 2008)

22. Voß, M.: Orchestrating Multi-Agent Systems with BPMN by Implementing a Pro-
cess Executing JIAC Agent Using the Visual Service Design Tool. Master thesis,
Humboldt Universität Berlin (May 2014)

23. Yu, E.S.: Social modeling and i*. In: Borgida, A., Chaudhri, V., Giorgini, P., Yu,
E. (eds.) Conceptual Modeling: Foundations and Applications, LNCS, vol. 5600,
pp. 99–121. Springer (2009)

133

Validating Requirements Using Gaia Roles Models

Nektarios Mitakidis, Pavlos Delias, Nikolaos Spanoudakis

Technical University of Crete, Chania, Greece

{nmitakidis, nispanoudakis}@isc.tuc.gr

Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece

pdelias@teikav.edu.gr

Abstract. This paper presents a method aimed to assist an engineer in

transforming agent roles models to a process model. Thus, the software

engineer can employ available tools to validate specific properties of the

modeled system even before its final implementation. The method includes a

tool for aiding the engineer in the transformation process. This tool uses a

recursive algorithm for automating the transformation process and guides the

user to dynamically integrate two or more agent roles in a process model with

multiple pools. The tool usage is demonstrated through a running example,

based on a real world project. Simulations of the defined agent roles can be

used to a) validate the system requirements and b) determine how it could scale.

This way, developers and managers can configure processes’ parameters and

identify and resolve risks early in their project.

Keywords. model checking agents and multi-agent systems·business process

models·agent simulation·Gaia methodology

1 Introduction

This paper aims to show how a Gaia Multi-Agent System (MAS) analysis (or

architectural design) role model can be represented as a business process model. This

allows employing available tools to validate specific properties of the modeled system

even before its final implementation, and a business partner has greater potential to

comprehend the system being modeled through intuitive process visualization.

Rana and Stout [1] highlighted the importance of combining performance

engineering with agent oriented design methodologies in order to develop large agent

based applications. To derive process performance measures, we need a quantitative

process analysis technique. Process simulation appears to be a prominent technique

that allows us to derive such measures (e.g. cycle time) given data about the activities

(e.g. processing times) and data about the resources involved in the process. Through

process simulation an engineer can forecast the process execution time, identify

possible bottlenecks and perform tests regarding the response of the process to

increasing demand. Process simulation is a versatile technique supported by a range

of process modeling and analysis tools [2]. However, to run a process simulation, the

engineer needs a process model.

134

In this paper we will see how liveness formulas, an important property of agent

role models, introduced by the Gaia methodology [3], and later employed by

ROADMAP [4], the Gaia2JADE process [5], Gaia4E [6] and ASEME [7], can be

transformed to process models. Moreover, we will present a tool that allows these

models to be integrated to produce a process model of a multi-agent system using the

XML Process Definition Language (XPDL) [8] portable standard. Having

transformed the MAS role model to a process model we can use simulation to verify

several properties of the modeled system, and also determine its ability to scale, as

early as the analysis [3] or architectural design phases [9]. This is demonstrated

through a case study based on real world system’s requirements for smart-phone

services.

Therefore, this work is expected to have a high impact on a) Agent Oriented

Software Engineering (AOSE) practitioners using the Gaia methodology and its

successors, who can immediately take advantage of this work to evaluate their

models, b) AOSE researchers, and practitioners of other methodologies who can use

this transformation combined with method engineering to compile new

methodologies, and, c) those who use business process models for agent-based

simulations [10, 11] or for communicating them to business people [12], who can now

use an AOSE methodology to aid them in their modeling tasks.

In the following section we will briefly discuss the background of this work. Then,

in section three, we will present the algorithm for the automatic transformation

process and, in section four, the tool that allows integrating many individual agent

processes to build a common process that will resemble how the different agents

collaborate. In section five we will present the results of a number of simulations.

Section six discusses our findings and the tool’s limitations, and, finally, section

seven concludes and provides an insight to future work.

2 Background

2.1 The Gaia Liveness formulas and AOSE

The liveness property of an agent role was introduced by the Gaia methodology [3, 9].

Gaia is an attempt to define a general methodology for the analysis and design of

MAS. MAS, according to Gaia, are viewed as being composed of a number of

autonomous interactive agents forming an organized society in which each agent

plays one or more specific roles. The latest version of Gaia defines a three phase

process and at each phase the modeling of the MAS is further refined. These phases

are the analysis phase, the architectural design phase, and, finally, the detailed design

phase. In the analysis phase, Gaia defines the structure of the MAS using the role

model. This model identifies the roles that agents have to play within the MAS and

the interaction protocols between the different roles. The role model is further refined

in the architectural analysis phase [9].

The objective of the Gaia analysis phase is the identification of the roles and the

modeling of interactions between the roles found. Roles consist of four attributes:

responsibilities, permissions, activities and protocols. Responsibilities are the key

135

attribute related to a role since they determine the functionality. Responsibilities are

of two types: liveness properties – the role has to add something good to the system,

and safety properties – the role must prevent something bad from happening to the

system. Liveness describes the tasks that an agent must fulfill given certain

environmental conditions and safety ensures that an acceptable state of affairs is

maintained during the execution cycle. In order to realize responsibilities, a role has a

set of permissions. Permissions represent what the role is allowed to do and, in

particular, which information resources it is allowed to access. The activities are tasks

that an agent performs without interacting with other agents. Finally, protocols are

specific patterns of interaction with other roles.

Gaia originally proposed some schemas that could be used for the representation of

interactions between the various roles in a system. However, this approach was too

abstract to support complex protocols [5]. ROADMAP [4] proposed that protocols

and activities are social actions or tasks and ASEME [13] moved one step further by

allowing protocols to define the involved roles processes as liveness formulas that

would later be included in the liveness of the system role model (a model inspired by

the Gaia roles model). This is one assumption of this work, i.e. that the protocols are a

send message action, a receive message action or a combination of message send and

receive actions and, possibly, other activities for each participating role.

Although the Gaia methodology does not explicitly deal with the requirements

capture phase, it supposes that they exist in some kind of form before the analysis

phase. ASEME supports the systematic gathering of requirements in free text form

and associating them with the goals of specific actors in the System Actor Model [7].

As ASEME has adopted a model-driven engineering approach these requirements

influence the role model definition, which emerges in the end of the analysis phase. In

both cases, it makes sense to seek to validate or forecast specific properties of the

system to be, based on its requirements. This is the actual research question of this

work.

The liveness model has a formula at the first line (root formula) where activities

can be connected with Gaia operators. Abstract activities must be decomposed to

activities again connected with Gaia operators in a following formula. The operators

used in the liveness formulas are:

A+ (activity A is executed one or more times)

A* (activity A is executed zero or more times)

[A] (activity A is optionally executed)

Α.B (activity B executes after activity A)

A|B (activity A or B exclusively is executed)

A||B (activities A and B are executed in parallel)

A~ (activity A is executed forever, the original Gaia operator was the greek

character omega “ω”, however for keyboard compatibility we chose to use

the tilde)

Figure 1 shows a Gaia roles model for a role named ComplexProvider. This role

employs two protocols, one for servicing a complex service request and one for

requesting a simple routing service (activities are underlined in the Protocols and

136

Activities field). In its liveness formula it describes the order that these protocols and

activities will be executed by this role using three liveness formulas.

Role: ComplexProvider

Description: This role provides an added value service in routing requests. It receives a routing

request containing needed information but also the user’s preferences. Firstly it decides the route

type to request (public transport, car and/or pedestrian), then it composes a simple routing

request and after it gets the results it sorts them according to the user’s preferences.

Protocols and Activities: ComplexService, ReceiveComplexServiceRequest,

DecideRouteType, SimpleService, SortRoutes, SendComplexServiceResponse,

SendSimpleServiceRequest, ReceiveSimpleServiceResponse.

Responsibilities - Liveness:

CP = ComplexService+

ComplexService = ReceiveComplexServiceRequest. DecideRouteType. SimpleService.

 SortRoutes. SendComplexServiceResponse

SimpleService = SendSimpleServiceRequest. ReceiveSimpleServiceResponse.

Fig. 1. Part of the Gaia role model for a role.

The liveness property is defined as a string which adheres to a grammar. The latter

is defined using the Extended Backus–Naur Form (EBNF), which is a metasyntax

notation used to express context-free grammars [14]. In Listing 1 we define the

liveness property grammar (char is any lower or upper case alphabetic character).

Listing 1. The liveness property grammar

Liveness → {Formula}
Formula → LeftHandSide, "=", Expression
LeftHandSide → string
Expression → Term | ParallelExpr | OrExpr | SequentialExpr
ParallelExpr → Term, "||", Term { "||", Term }
OrExpr → Term, "|", Term { "|", Term }
SequentialExpr→ Term, ".", Term { ".", Term}
Term → BasicTerm | "(", Expression, ")" |

"[", Expression, "]" | Term, "*" | Term, "+" |

 Term, "~"
BasicTerm → string

String → char, {char | digit | "_"}

2.2 Metamodels and Model Transformations

Model transformation is an essential process in Model Driven Engineering (MDE). It

is the process of transforming a model to another model. To define a transformation

an engineer needs the metamodels of the source and target models. A model is

137

defined as an abstraction of a software system (or a part of it) and a metamodel is an

abstraction defining the properties of the model. A metamodel is itself a model. For

example, the metamodel of a text model can be the EBNF grammar.

A model’s metamodel defines the elements that define the model properties,

usually in a format defined by a metametamodel which is the language for defining

metamodels. The Eclipse Modeling Framework (EMF) defines such a language,

namely ecore, that is much like a UML Class definition. Ecore defines that a model is

composed of instances of the EClass type, which can have attributes (instances of the

EAttribute type) or reference other EClass instances (using the EReference type).

EAttributes can be instances of terminal data types such as string, integer, real, etc).

EMF allows to extend existing models via inheritance, using the ESuperType

relationship for extending an existing EClass.

Thus, using EMF technology, in order to define the text to model transformation

that is the liveness to XPDL transformation we need the XPDL metamodel.

2.3 Business Process Modeling

Software Engineering (SE) and Business Process Management (BPM) are two

disciplines with clear associations. A visible influence of SE to BPM concerns quality

assessment, while SE aims its attention to BPM mainly to take advantage of its

advanced monitoring and controlling functions [15] and its experiment design

principles. For example, following the BPM paradigm, one can find solutions about

how business people and software engineers are facilitated in communicating system

requirements. Stakeholders are able to get involved in the system’s design, and hence

to assure the alignment of the produced software with the business objectives.

Simulation is employed to quantify the impact that a process design is likely to

have on its performance, and to numerically indicate the best design alternatives.

Regarding business process simulation, various tools exist [16], which facilitate the

adoption of BPM as a practical way for designing systems. However, a critical factor

in selecting which tool is more appropriate is the modeling language used.

Popular modeling languages in designing software systems, such as the object-

oriented ones (e.g. UML), lack process views, an issue that has been early identified

by [15]. On the other hand, process models do not usually map clearly to a

programming environment. Both approaches have their relative advantages, so it is a

hard decision to spare one. This is why there have been efforts to bridge object-

oriented models and process models through model transformations [15, 17].

In this work we chose the XML Process Definition Language (XPDL version 2.1)

as the target language. XPDL, a standard supported by the Workflow Management

Coalition (WfMC, www.wfmc.org), has a good potential for process interchange and

heterogeneous system integration since it is used today by more than 80 different

products to exchange process definitions and keeps up to date with BPMN 2.0.

The XPDL metamodel that we used for our project [8] is shown in Figure 2. The

Package concept represents a set of processes and contains:

138

 pools, which represent major participant roles in a process, typically separating

different organizations. A pool can contain:

o lanes, which are used to organize and categorize activities within a pool

according to function or role.

 workflowProcesses, which aggregate sets of activities and transitions

o activities are represented by rounded rectangles and correspond to the

execution of a task or to the functionality of a gateway, which can be:

 XOR gateway (one of the outgoing transitions will be followed), which

is represented by a diamond shape with the “X” character in the middle

 parallel gateway (all the outgoing transitions lead to activities that will

be executed in parallel), which is represented by a diamond shape with

the “+” character in the middle

o events are represented by circles and are specific kinds of activities that

correspond to something that happens. Common events are the start of a

process lane and its ending

o transitions, are represented with a solid line and arrowhead and have source

and target (at the arrowhead) activities and define the control flow in the

workflow process

 associations, are represented with a dotted line and arrowhead and have source

and target (at the arrowhead) activities and define the message flow between

different pools. Therefore, they also have source and target pools.

Fig. 2. The XPDL meta-model

139

3 The Transformation Algorithm

The transformation algorithm uses elements from the liveness formulas grammar

(Listing 1) and the XPDL metamodel (Figure 2). It is a recursive algorithm that takes

the liveness formula expression elements from left to right and applies the templates

shown in Figure 3, gradually building the XPDL process. For all templates, the

control flows from left to right, i.e. if a template follows another, then it is connected

to its rightmost element. The algorithm is provided in pseudocode at the appendix.

A

A A

A1 A2 An...

A1

A2

An

...

Α1

Α2

Αn

...

Op. Template

A~

[A]

A*

A
1
.A

2
..
..

.A
n

A
1
|A

2
|…

|A
n

A
1
||

A
2
||

…
||

A
n

Op. Template

A+

Fig. 3. Templates of liveness formula (Gaia) operators (Op.) for XPDL model generation.

To implement the algorithm we used the org.enhydra Java package defining the

metamodel for XPDL 2.1, which is distributed under the GNU Free License by

Together Teamsolutions Co., Ltd (www.together.at).

Regarding the theoretical properties of the algorithm we believe that it can be

easily proved that it is correct using induction and the assumption that if we have a

correct XPDL model and replace an XPDL activity with a correct XPDL fragment (or

a well-structured fragment, as in [18]) the resulting model is correct. The templates

are all correct XPDL diagrams (well structured fragments) if they have a start event

on their left and a transition to an end event on their right. Then, for each of these

valid models we can easily assert that if we take a random template and replace an

activity of the model with it then, again, the model is correct. Then, we hypothesize

that after n insertions the model is correct and we insert a new random template. Then

we show again that the resulting model is correct.

140

The reader should note the common templates for the ~ and + operators.

Considering the semantics of the ~ operator the exclusive gateway should not be used

(the activity should just loop back to itself). In this way, the resulting process model

would not be easily ported to existing analysis techniques as it would not pass the

Proper Completion test (each workflow ends with an end event) [19]. Given the fact

that in a later stage the situation could be remedied by adjusting the gateway to

always return the flow to the activity, and that in the second version of Gaia there is a

case where the authors allow the indefinite operator to be followed by a sequential

activity [9], we believe that our approach is the best compromise for this case.

As far as the algorithm’s complexity is concerned, since we have a recursive

function call inside a for loop, the complexity of our algorithm is O(n2), where n is the

number of activities and protocols present in the liveness formulas. The algorithm

would run forever should there be circular references to LeftHandSide from a

formula’s Expression (or from subsequent formulas), however, we have a pre-

processing step guarding against this possibility and preventing the algorithm from

executing.

4 The Liveness2XPDL Tool

The tool allows defining one or more agent roles. For each role, the user can edit a

liveness formula or import a role model. We researched for the Gaia methodology and

its derivatives’ metamodels to create the relevant import functionality. We found

documented metamodels for the Gaia [20], ROADMAP [21] and the ASEME [7]

methodologies. However, Gaia’s metamodel abstractly defines the LivenessProperty

class and ROADMAP’s metamodel file is not available on-line. Thus, we created an

importer for the ASEME System Roles Model (SRM) metamodel to demonstrate the

capability of our approach in importing meta-models. We consider that since our tool

is open source interested developers can create an importer for the metamodel they

want or can type their formulas in the text editor.

The tool allows integrating multiple roles in the same XPDL model. We create one

Pool instance for each role in a common Package (the transformation algorithm

executes as many times as the participating roles with the same Package instance) and

then the user defines the associations for message sending and receiving activities.

Then, the tool creates the needed references of the associations to the pools and

outputs the Package in XPDL XML format.

In this section we demonstrate the usage of the developed tool. We consider a real

world system developed in the context of the ASK-IT Integrated Project1 where a

personal assistant agent on a lightweight device (e.g. a smart phone) requests services

from a mediator agent (or broker). This broker has the capability to service simple

requests but can also access a complex service provider agent who can offer high

level services. The complex provider also needs simple services from the broker in

order to compose a high level service. In our case, we consider a route calculation

1 co-funded by the European Union 6th Framework Programme (no IST-2003-511298)

141

service which can be simple (I want to get from point A to B with a car using the

quickest route) or complex (I want to get from point A to B with the best transport

means according to my user’s impairment needs and habits). In the second case the

complex provider will reason on the type of simple request based on the user’s

profile, make a simple route calculation service request to the broker and then sort the

results according to the user’s habits before replying to the user through the broker.

The agent roles models for the personal assistant and the broker are presented in

Figure 4 (just the role name and liveness property). The complex provider is the same

with the one presented in Figure 1.

Role: PersonalAssistant

Liveness:

PA = SendServiceRequest. ReceiveServiceResponse

Role: Broker

Liveness:

Broker = (ServicePAs || ServiceCP)+

ServicePAs = ReceiveServiceRequest. ProcessRequest. (InvokeDataManagement |

 SendComplexServiceRequest. ReceiveComplexServiceResponse). SendServiceResponse

ServiceCP = ReceiveSimpleServiceRequest.

 InvokeDataManagement. SendSimpleServiceResponse

Fig. 4. The Personal Assistant and Broker role models.

The user starts the Liveness2XPDL tool and imports through the File menu the

three role models, as presented in Figure 5. Then, the user can select one role and the

Single role transformation option from the Transform menu, or more than one

(holding down the control key) and the Multiple role transformation option from the

Transform menu. In Figure 6 the reader can see the single role file for the Complex

Provider role after it has been imported to the free Together Workflow Editor

(www.together.at).

Fig. 5. The main screen of the Liveness2XPDL tool.

142

Fig. 6. The Complex Provider displayed in Together Workflow Editor.

In the case of multiple roles transformation, the tool then prompts the user to select

where to save and how to name the output XPDL file. If there are activities that send

or receive messages the graphical interface presented in Figure 7 helps the user to

create associations.

Fig. 7. The Inter-role Messages Definition screen.

Finally, in Figure 8 the reader can see the combined roles process model for all the

roles used in our project. The modeler has used the graphical tool to define the

message flows between the agents. The messages flow between pools (there is one

pool for each agent role). The screenshot (shown in Figure 8) has been taken from the

Signavio tool, which is freely available to academics (www.signavio.com). To import

the model into the Signavio tool we first used the online XPDL to BPMN service

provided free by Trisotech (www.businessprocessincubator.com).

143

Fig. 8. The three agent roles displayed together in Signavio BPM Academic Initiative.

5 Simulating The Roles Interactions

In this section, we demonstrate how simulation can aid the system modeler and

project manager alike to make important decisions, mainly concerning non-functional

requirements.

Initially, there were two reasons for simulating the ASK-IT system. The first was

that the ASK-IT service providers needed to know if the system can satisfy non-

functional user requirements, one of which was the delivery of the service within ten

seconds. The frequency of service requests was calculated to be one request per 30

seconds. The second was to find out how would the system scale when service

demand increased for use in preparing the project’s exploitation plan.

The Signavio tool allows simulating a process model involving several roles. For

each simulation scenario, it allows to define:

 available resources for each role (how many instances of this role are available)

144

 the frequency in which a role can appear and start executing

 the percentage of times that a XOR gateway selects one or the other execution path

 activity duration (distribution type, mean and standard deviation values)

 number of simulations for each scenario

For our simulations we used several executions of function prototypes to define the

activities durations. Moreover, we added the network latency in the message receiving

activities. All the distributions that we used are normal, since it is the most commonly

used distribution and there must be specific circumstances to use others. Then, we

defined different scenarios by varying the frequency of PAs appearing in the network

and asking for services, the number of brokers serving the requests and the number of

complex providers.

Our experiments are presented in Figure 9. We have validated the system to

respond within 10 seconds in the worst case when we have an incoming request every

30 seconds with one broker and one complex provider. Moreover, we can see what

the expected quality of service will be, as the requests frequency rises. As far as

system scaling is concerned we see that by adding more broker instances, the system

performance has a better gain than by adding complex providers. Finally, we can

claim that with three broker instances the system can offer the required quality of

service (respond within ten seconds) even if we have a request every two seconds.

6 Discussion

It is not the first time that the AOSE community studies and uses business process

models. There are a number of works, e.g., one for improving a process model

representing the behavior of agents [11], another for proposing a method for

transforming BPMN models to agent-oriented models in the Prometheus methodology

[22], and another that provides a mapping of BPMN diagrams to a normalized form

checking for certain structural properties, which normalized form can itself be

transformed to a petri-net that allows for further semantic analysis [23].

All these works can be aligned with ours using method engineering and provide a

number of new paths or possibilities for a system modeler that has come up with the

Gaia analysis models. Method fragments [24] are reusable methodological parts that

can be used by engineers in order to produce a new design process for a specific

situation. This allows a development team to come up with a hybrid methodology that

will support the needs of specific programming and modeling competencies. Thus, an

AOSE practitioner can transform the process model outputted from our work to a

system specification using the Prometheus methodology notation [22] and continue

using that methodology. Another might be interested in checking certain structural

properties of the process model [23].

Some preliminary results of this work have appeared in EUMAS 2010 (with

informal proceedings) [25]. In that work, we provided transformation templates

targeting the BPMN v1 metamodel. This work extends that one by targeting the

XPDL metamodel, which offers a wide range of possibilities when available tools are

145

concerned. Moreover, this work caters for integrating multiple roles in a single

process model.

Although we have achieved our goals, the Liveness2XPDL tool has specific

limitations. Firstly, when the user decides to create multiple associations that define

message flows from an activity that will be received by different activities in other

pools the method cannot automatically tell whether one of the possible paths will be

followed, or all of them. The inter-agent messages definition interface allows defining

such associations; however, it is not clear how these can be exploited with simulation.

0

50

100

150

200

250

012345678910

personal assistant requests frequency (seconds)

One broker, one complex
provider

Average Cycle Time Max Cycle Time

0

10

20

30

40

50

60

70

00.511.522.53

personal assistant requests frequency (seconds)

Three brokers, one complex
provider

Average Cycle Time Max Cycle Time

0

50

100

150

200

250

012345678910

personal assistant requests frequency (seconds)

One broker, two complex
providers

Average Cycle Time Max Cycle Time

0

20

40

60

80

100

120

00.511.522.533.544.55

personal assistant requests frequency (seconds)

Two brokers, two complex
providers

Average Cycle Time Max Cycle Time

0

10

20

30

40

50

60

70

80

00.511.522.53

personal assistant requests frequency (seconds)

Three brokers, two complex
providers

Average Cycle Time Max Cycle Time

0

20

40

60

80

100

120

00.511.522.533.544.55

personal assistant requests frequency (seconds)

Two brokers, one complex
provider

Average Cycle Time Max Cycle Time

Fig. 9. Average and maximum response times in seconds (vertical axis). The horizontal axis

represents the time interval between two requests (in a normal distribution).

146

An important note to the transformation approach concerns the templates’

definitions. Undoubtedly, there is not a single way to express a concept with XPDL

(or the BPMN notation). For example, the A~ formula can be represented either with

the template illustrated in Figure 3, or by adding the loop symbol in the rectangle.

Although some good styles and practices are in use today, in practice there are no

rules that guarantee an optimal design. The appropriateness of the model must every

time get validated by the end user. In our case, the templates were defined considering

the BPMN simulation tools features. For example, for the A~ formula, we chose that

particular definition because the loop symbol would introduce sub-processes to the

model, and available simulation tools have limited support for such a feature.

Moreover, in XPDL it is acceptable to create more than one transition from an

activity to other activities. This option reduces the complexity of the model as it is not

mandatory to use XOR gateways. However, a large number of process management

tools do not accept this option and most of the times they suggest that a gateway

should be placed to avoid errors. This is why we used the XOR gateway in our

templates.

Finally, after the process model is produced, the user still has to provide some

additional elements concerning the send/receive activities’ configuration. We are

currently working towards automating this step based on the following guidelines

(which are now manually configured):

 All activities that stand for sending or receiving messages are labeled as message

type activities.

 When a receive activity immediately follows a start event, then the start event and

the activity are merged into a start event triggered by a message.

 When a receive activity immediately precedes an end event, then the two are

merged into an end event triggered by a message.

 When a message is intended to be sent to one or more out of many recipients and

this decision has to be evaluated during runtime, then before the “send message”

activity a data-based exclusive gateway is added.

7 Conclusion

In this paper we showed how a development team that employs the Gaia

methodology, or its derivatives, i.e. ROADMAP [4], the Gaia2JADE process [5],

Gaia4E [6] and ASEME [7] can transform the output of the analysis phase model

(Role Model) to a process model. Actually, the role’s liveness property is used for the

transformation.

Process models are useful paradigms as they, on one hand, allow the usage of a

wide range of tools (free or proprietary) for simulation, thus providing the means to

explore non-functional properties of the system under construction, even before its

implementation. Therefore, project managers and engineers can evaluate the use of

methods and technologies in their project, but also information about the deployment

and scaling of their application. On the other hand, process models are commonly

used by business stakeholders, who can now understand and appreciate a MAS

147

analysis model. Finally, such models can be used to define agent and humans

interactions based on the associations of the process model.

Herein, we presented the transformation algorithm, demonstrated the developed

tool and showed how it can be used to validate a system analysis for a real world

application, which was created in the context of ASK-IT project. The open Java

sources and executable java jar file for the Liveness2XPDL tool can be browsed by

the interested reader at github2.

The approach that we followed has some limitations, but also opens interesting

paths for future work. A very promising path lies in developing a code generation tool

based on the process model and targeting the WADE3 toolkit of the popular JADE

platform. Another path is that of accommodating the definition of human-agent

interactions in the modern field of Human-Agent Collectives [26], based on process

models.

Appendix: The recursive transformation algorithm.

The pseudocode of the tranformation algorithm is presented below. The different

model elements are represented as classes and their properties as class properties,

accessible using the dot operator, i.e. <classname>.<property>. For representing a

list we use a List class that supports the operations add (to add an element to the list)

and size (to return the number of its elements). The program takes as input an XPDL

Package instance and the String liveness property of an SRM Role instance.

Program transform(Liveness liveness, Package package)

 WorkflowProcess workflowProcess = new WorkflowProcess

 package.workflowProcesses.add(workflowProcess)

 Event startEvent = new Event

 startEvent.type = start

 workflowProcess.add(startEvent)

 Activity lastActivity = createProcess(liveness.formula1.expression,

workflowProcess, startEvent)

 Event endEvent = new Event

 endEvent.type = end

 workflowProcess.add(endEvent)

 Transition transition = new Transition

 transition.from = lastActivity

 transition.to = endEvent

 workflowProcess.add(transition)

End Program

Function Activity createProcess(Expression expression, WorkflowProcess

workflowProcess, Activity activity)

2 https://github.com/ASEMEtransformation/Liveness2XPDL
3 WADE is a software platform based on JADE that provides support for the execution of

tasks defined according to the workflow metaphor (jade.tilab.com).

148

 List terms = new List

 For Each termi In expression

 terms.add(termi)

 End For

 If terms.size() > 1 Then

 If expression Is SequentialExpr Then

 For Each termi In expression

 Activity newActivity = createProcess(termi, workflowprocess,

activity)

 activity = newActivity

 End for

 Else If expression Is OrExpr

 Activity xorEntryGateway = new Activity

 xorEntryGateway.gatewayType = XOR

 workflowProcess.add(xorEntryGateway)

 Transition transition = new Transition

 transition.from = activity

 transition.to = xorEntryGateway

 workflowProcess.add(transition)

 Activity xorExitGateway = new Activity

 xorExitGateway.gatewayType = XOR

 workflowProcess.add(xorExitGateway)

 For Each termi In expression

 Activity newActivity = createProcess(termi, workflowprocess,

xorEntryGateway)

 transition = new Transition

 transition.from = newActivity

 transition.to = xorExitGateway

 workflowProcess.add(transition)

 End for

 activity = xorExitGateway

 Else If expression is ParallelExpr

 //similar with orExpr, parallel gateway type instead of XOR

 End If

 For Each termi In expression

 If termi Is BasicTerm

 boolean foundLeftHandSideEqualsBasicTerm = false

 For Each formulai In liveness

 If formulai.leftHandside = termi Then

 Activity newActivity = createProcess(formulai.expression,

workflowprocess, activity)

 activity = newActivity

 foundLeftHandSideEqualsBasicTerm = true

 End If

 If foundLeftHandSideEqualsBasicTerm = false

 Activity newActivity = new Activity

 workflowProcess.add(newActivity)

Transition transition = new Transition

transition.from = activity

149

transition.to = newActivity

workflowProcess.add(transition)

activity = newActivity

 End If

 Else If (termi is of type ‘(’ term ‘)’) Then

 Activity newActivity = createProcess(term, workflowprocess,

activity)

 activity = newActivity

 Else If (termi is of type ‘[’ term ‘]’)Then

 //definition of the [A] template

 Else If (termi is of type ‘*’) Then

 //definition of the A* template

 Else If (termi is of type ‘~’) Then

 //definition of the A~ template

 Else If (termi is of type ‘+’) Then

 //definition of the A+ template

 End If

 End If

 End For

 return activity

End Function

References

1. Rana, O.F., Stout, K.: What is scalability in multi-agent systems? International Conference

on Autonomous Agents. pp. 56–63. ACM, Barcelona, Spain (2000).

2. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process

Management. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).

3. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented

Analysis and Design. Auton. Agent. Multi. Agent. Syst. 3, 285–312 (2000).

4. Juan, T., Pearce, A., Sterling, L.: ROADMAP: extending the gaia methodology for

complex open systems. Proceedings of the first international joint conference on

Autonomous agents and multiagent systems part 1 - AAMAS ’02. pp. 3–10. ACM Press,

New York, New York, USA (2002).

5. Moraitis, P., Spanoudakis, N.: The GAIA2JADE Process for Multi-Agent Systems

Development. Appl. Artif. Intell. 20, 251–273 (2006).

6. Cernuzzi, L., Zambonelli, F.: Gaia4E: A Tool Supporting the Design of MAS using Gaia.

Proceedings of the 11th International Conference on Enterprise Information Systems

(ICEIS 2009), Volume SAIC, Milan, Italy, May 6-10. pp. 82–88 (2009).

7. Spanoudakis, N., Moraitis, P.: Using ASEME Methodology for Model-Driven Agent

Systems Development. In: Weyns, D. and Gleizes, M.-P. (eds.) Agent-Oriented Software

Engineering XI. pp. 106–127. Springer-Verlag, Berlin, Heidelberg (2011).

8. Workflow Management Coalition: Workflow Standard Process Definition Interface - XML

Process Definition Language, WFMC-TC-1025. (2008).

9. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The Gaia

methodology. ACM Trans. Softw. Eng. Methodol. 12, 317–370 (2003).

150

10. Pascalau, E., Giurca, A., Wagner, G.: Validating Auction Business Processes using Agent-

based Simulations. Proceedings of 2nd International Conference on Business Process and

Services Computing (BPSC2009), March 23-24, Leipzig, Germany (2009).

11. Szimanski, F., Ralha, C.G., Wagner, G., Ferreira, D.R.: Improving Business Process

Models with Agent-Based Simulation and Process Mining. In: Nurcan, S., Proper, H.A.,

Soffer, P., Krogstie, J., Schmidt, R., Halpin, T., and Bider, I. (eds.) Enterprise, Business-

Process and Information Systems Modeling. pp. 124–138. Springer Berlin Heidelberg,

Berlin, Heidelberg (2013).

12. Onggo, B.S.S.: BPMN pattern for agent-based simulation model representation.

Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC). pp. 1–

10. IEEE (2012).

13. Spanoudakis, N., Moraitis, P.: An Agent Modeling Language Implementing Protocols

through Capabilities. 2008 IEEE/WIC/ACM International Conference on Web Intelligence

and Intelligent Agent Technology. pp. 578–582. IEEE (2008).

14. Wirth, N.: Extended Backus-Naur Form (EBNF), ISO/IEC 14977:1996(E). (1996).

15. Redding, G., Dumas, M., Hofstede, A.H.M. ter, Iordachescu, A.: Generating Business

Process Models from Object Behavior Models. Inf. Syst. Manag. 25, 319–331 (2008).

16. Jahangirian, M., Eldabi, T., Naseer, A., Stergioulas, L.K., Young, T.: Simulation in

manufacturing and business: A review. Eur. J. Oper. Res. 203, 1–13 (2010).

17. Cibrán, M.A.: Translating BPMN Models into UML Activities. In: Ardagna, D., Mecella,

M., and Yang, J. (eds.) BPM 2008 International Workshops, Milano, Italy, September 1-4,

2008. Revised Papers. pp. 236–247. Springer Berlin Heidelberg, Berlin, Heidelberg (2009).

18. González-Ferrer, A., Fernández-Olivares, J., Castillo, L.: From business process models to

hierarchical task network planning domains. Knowl. Eng. Rev. 28, 175–193 (2013).

19. Van der Aalst, W.M.P.: The application of petri nets to workflow management. J. Circuits,

Syst. Comput. 8, 21–66 (1998).

20. Bernon, C., Cossentino, M., Gleizes, M.-P., Turci, P., Zambonelli, F.: A Study of Some

Multi-agent Meta-models. In: Odell, J., Giorgini, P., and Müller, J.P. (eds.) Agent-Oriented

Software Engineering V. pp. 62–77. Springer Berlin Heidelberg, Berlin, Heidelberg (2005).

21. Juan, T., Sterling, L.: The ROADMAP Meta-model for Intelligent Adaptive Multi-agent

Systems in Open Environments. In: Giorgini, P., Müller, J.P., and Odell, J. (eds.) Agent-

Oriented Software Engineering IV. pp. 53–68. Springer Berlin Heidelberg, Berlin,

Heidelberg (2004).

22. Dam, H.K., Ghose, A.: Agent-Based Development for Business Processes. In: Desai, N.,

Liu, A., and Winikoff, M. (eds.) Principles and Practice of Multi-Agent Systems. pp. 387–

393. Springer Berlin Heidelberg, Berlin, Heidelberg (2012).

23. Endert, H., Hirsch, B., Küster, T., Albayrak, S.: Towards a Mapping from BPMN to

Agents. In: Huang, J., Kowalczyk, R., Maamar, Z., Martin, D., Müller, I., Stoutenburg, S.,

and Sycara, K.P. (eds.) Service-Oriented Computing: Agents, Semantics, and Engineering.

Springer Berlin Heidelberg, Berlin, Heidelberg (2007).

24. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent design

methodologies: from standardisation to research. Int. J. Agent-Oriented Softw. Eng. 1, 91

(2007).

25. Delias, P., Spanoudakis, N.: Simulating Multi-agent System Designs Using Business

Process Modeling. 8th European Workshop on Multi-Agent Systems (EUMAS 2010). ,

Paris, France (2010).

26. Jennings, N.R., Moreau, L., Nicholson, D., Ramchurn, S.D., Roberts, S., Rodden, T.,

Rogers, A.: Human-Agent Collectives. Commun. ACM. 57, 80–88 (2014).

151

Programming Mirror-Worlds:
an Agent-Oriented Programming Perspective

Alessandro Ricci, Angelo Croatti, Pietro Brunetti, and Mirko Viroli

DISI, University of Bologna, Via Sacchi 3 – Cesena, Italy
emails: {a.ricci|a.croatti|p.brunetti|mirko.viroli}@unibo.it

Abstract. The impressive development of technologies is reducing the
gulf between the physical and the digital matter, reality and virtuality.
Mirror worlds (MW) are agent-based systems that live on this edge.
They are meant to be a conceptual blueprint for designing future smart
environment systems, providing an innovative conceptual framework for
investigating inter-disciplinary aspects – from cognition to interaction,
cooperation, governance – concerning human-agent mixed-reality and
augmented systems. In this paper we focus on the problem of how to
concretely design and program mirror worlds, in particular adopting
high-level programming abstractions that are provided by state-of-the-
art agent-oriented programming models and technologies.

1 Introduction

Mixed reality refers to the merging of real and virtual worlds to produce new
environments and visualisations where physical and digital objects co-exist and
interact in real time [6]. As defined by P. Milgram and F. Kishino, it is “anywhere
between the extrema of the virtuality continuum” [14], that extends from the
completely real through to the completely virtual environment with augmented
reality (AR) and augmented virtuality ranging between.

The fruitful integration of augmented/mixed-reality technologies and agents
and multi-agent systems has been remarked along different perspectives in lit-
erature [11]. The most recent works have emphasized the value of (serious)
mixed-reality games as a platform to explore scenarios in the real world that
are typically hard to study in realistic settings, such as disaster response, to
study the joint activities of human-agent collectives [9]. Similarly, mixed-reality
testbeds have been deployed for the incremental development of human-agent
robot applications [4].

A deeper integration of the research on agents and mixed reality is envisioned
in [20, 23, 5] with the concept of mirror world (MW)1, fostering a new generation
of multi-agent applications based on a bidirectional augmentation of the physical
and digital matter, the physical and virtual reality. MWs bring together research

1 the name mirror world has been used in honour of Gelernter’s book [10] that origi-
nally inspired the first glimpses of this idea.

152

contributions from different fields apart agents and MAS, from Ambient Intel-
ligence and smart environments, Internet-of-Things down to mixed/augmented
reality. A MW can be abstractly conceived as a digital world shaped in terms of
a multi-agent system, situated into some virtual environment which is coupled
to some physical one, augmenting its functionalities and the capabilities of the
people that live or work inside it. Besides smart environment applications, they
aim at being laboratories where to explore together inter-disciplinary aspects:
how human/agent action, perception, cognition is enhanced and supported by
MW; how to think about the co-design of physical objects and environments and
related digital counterpart; what models for interaction, coordination, organiza-
tion, and governance are promoted by and can be adopted in these agent-based
mixed-reality systems.

In this paper we focus on the problem of how to concretely design and pro-
gram mirror worlds, in particular adopting high-level programming abstractions
that are provided by state-of-the-art agent-oriented programming models and
technologies. The contribution is the definition of a first programming model
based on the A&A (Agents and Artifacts) meta-model [17], which provides first-
class abstractions to model the environment where agents are situated. We de-
velop a first implementation of the model upon the JaCaMo platform [1], where
the A&A meta-model is integrated with BDI agents, implemented using the Jason
programming language [2]. The result is a first platform that allows for proto-
typing simple mirror worlds, and investigate the value (and current limits) of
the idea in different application domains.

The main motivation and contribution of the work is then to devise a proper
(agent-oriented) programming approach which would allow to effectively develop
mirror worlds and, more generally, distributed open smart environments that
seamlessly integrate different forms of augmentations. Such an approach should
be – on the one hand – general enough to be used for developing systems besides
ad hoc cases, and – on the other hand – effective and specific enough to capture
essential aspects that characterize these kinds of applications.

The remainder of the paper is organized as follows: In Section 2 we provide
a background about the main concepts concerning MWs. Then, in Section 3 we
describe an agent-oriented programming model, based on A&A, and in Section 4
we describe a first implementation based on the JaCaMo platform. In Section 5
we discuss real-world applications as well as the challenges to be tackled in the
mirror-world research agenda.

2 Background: The Mirror World Idea

On the background of MWs there is the broad idea of using agent-oriented
abstractions to shape the continuous real-time distributed flows of situated in-
formation generated by the physical and social layers (as devised by Smart en-
vironments, Internet of Things, Big Data contexts), as well as of the distributed
intelligent software processes that work on that information in order to provide
some smart service or functionality. A mirror world can be conceived as an open

153

GHOST
AGENT

GHOST
BODY STREET

LAMPPLAYER
BODY

PLAYER
ASSISTANT

AGENT

MIRROR WORLD

PHYSICAL WORLD

8

Fig. 1. An abstract representation of a mirror world, using the Ghost in the City game
example.

society of software agents situated into a virtual environment augmenting some
physical reality (room, building, city..), to which the environment is coupled.
Mirroring is given by the fact that – to some extent – physical things, which can
be perceived and acted upon by humans in the physical world, have a digital
counterpart (or augmentation, extension) in the mirror, so that they can be ob-
served and acted upon by agents. Viceversa, an entity in the MW that can be
perceived and acted upon by software agents may have a physical appearance
(or extension) in the physical world – e.g. augmenting it, in terms of augmented
or mixed-reality – so that it can be observed and acted upon by humans—for
instance, by means of wearable devices like smart glasses.

This implies a form of coupling, such that an action on an object in the phys-
ical world causes some kind of changes in one or more entities in the mirror,
perceivable then by software agents. Viceversa an action by agents on an entity
in the MW can have an effect on things in the physical world, perceivable by
people. As MW citizens, agents are responsible of autonomously fulfilling tasks
inside a MW, by properly observing/using MW things which are part of their
environment and (directly/indirectly) observing and interacting with human in-
habitants that act in that environment.

A simple but effective example of MW described in [20] is an extension of
the mobile AR game Ghosts in the city(see Fig. 1). The MW is composed by a
collection of treasures and ghosts distributed in some part of a city. There are
two teams of human players. Their objective is to collect as much treasures as
possible – walking around – without being caught by the ghosts. Players have

154

smart glasses and a smart-phone, used as a magic wand. Ghosts are agents au-
tonomously moving in the MW – and in the city. Players perceive ghosts by
means of their smart glasses – as soon as they are in the same location. Ghosts
as well can perceive the players, as soon as they are within some distance. Ghosts
aim to catch human players; so they follow them as soon as they can perceive
them. A ghost catches a human player by grabbing her body in the MW—this
can be physically perceived by humans by means of the magic wand (trembling).
Different kinds of ghosts may prefer different (physical) spots, according to some
physical parameter of the spot—e.g., humidity, light, temperature. Besides per-
ceiving the world, ghosts with enough energy could also act on it, for instance
turning off a physical light (by acting on the counter-part in the MW).

In spite of being a game, the example sumarizes the basic kinds of coupling
that are possible between the digital layer and the physical one. A deeper dis-
cussion about the usefulness of the MW idea can be found in [20].

3 An Agent-Oriented Programming Model

As mentioned in the introduction, the conceptual meta-model adopted for mod-
elling and designing MW, underlying the programming framework, is A&A
(Agents and Artifacts) [17]. A&A introduces artifacts as first-class abstractions
to model and design the application environments where agents are logically situ-
ated. An artifact can be used to model and design any kind of (non-autonomous)
resources and tools used and possibly shared by agents to do their job [21]. Ar-
tifacts are collected in workspaces, which represent logical containers possibly
distributed over the network.

In A&A artifacts are then the basic blocks to modularize in a uniform way the
agent environment, which can be distributed across multiple network nodes and
that eventually function also as the interface to the physical environment. As
described in the literature about environments for MAS [25], such environments
can be useful at different levels in engineering MAS, not only for interfacing with
the external environment but also as an abstraction layer for shaping mediated
interaction and coordination among agents.

From the agent viewpoint, an artifact is characterised by two main aspects: an
observable state, represented by a set of observable properties, whose changes can
be perceived by agents as observable events; a set of operations, which represent
the actions that an agent can do upon that piece of environment. When used by
BDI agents, like in the case of the JaCaMo framework (discussed in Section 4),
artifacts observable properties are mapped into beliefs that agents have about
the environment that they are perceiving, while operations become the external
actions that agents can perform.

Originally, such an artifact meta-model has been conceived by taking inspira-
tion from Activity Theory [19] and human environments, mimicking the artifacts
that are designed, shared and used by humans (as cognitive agents) to work, to
live. So it is not surprising that we found such an abstraction quite natural to

155

JVM

JaCaMo runtime

MW extension

Java Runtime (Dalvik/ART)

JaCaMo runtime

MW lib

Android Any OS

JVM

JaCaMo runtime

MW extension

Any OS

mirror workpace

User Smart Device
(smartphone + glasses/helmet)

AR tech libs

JaCaMo Node JaCaMo Node

mirror
artifact

mirror
agent

MIRROR
WORLD

Fig. 2. Abstract view of organization of a mirror world and of the layers that charac-
terise the MW infrastructure.

model mirror worlds, where the coupling with human physical artifacts is an
essential aspect.

3.1 Modelling MWs with A&A: Mirror artifacts and workspaces

A MW is modelled in term of a set of mirror workspaces. A mirror workspace
extends the concept of workspace defined in A&A with an explicit coupling with
the physical world. In particular, for each mirror workspace a map is defined,
specifying which part of the physical world is coupled by the MW. It could
be a part a city, a building, a room. Each point belonging to the map has a
geolocation, which can defined in terms of latitude and longitude, or using local
reference systems.

Fig. 2 shows an abstract representation of the elements composing a MW,
including the infrastructure levels based on JaCaMo platform, which will be
discussed in Section 4. A mirror workspace contains a dynamic set of mirror
artifacts — besides the normal artifacts. Mirror artifacts are artifacts anchored
to some specific location inside the physical world, as defined by the map. Such

156

location could be either a geo-location, or some trackable physical marker/object.
Such a physical location/position is reified into an observable property. The
position can change dynamically and can be perceived then by agents observing
the artifact.

As depicted in Fig. 2, a MW can include multiple mirror workspaces spread
over different computational nodes, used to run the infrastructure.

Mirror Agents An agent can perceive/continuously observe a mirror artifact
in two basic ways. One is exactly the same as for normal artifacts, that is ex-
plicitly focusing on the artifact, given its identifier [21]. The second one instead
is peculiar to mirror workspace and is the core feature of agents living in mirror
workspaces, that is: perceiving an artifact depending on its position inside the
situated workspace. To that purpose, an agent joining a mirror workspace can
create a body artifact, which is a builtin mirror artifact useful to situate the
agent in a specific location of the workspace. We call mirror agent an agent
with a body in a mirror workspace. A body artifact enables an agent in a mirror
workspace to observe all the mirror artifacts that satisfy some observability cri-
teria – such as being at a physical distance less than some radius. These criteria
can be controlled by the agent by acting on its body. An agent can have multiple
bodies, one for each joined mirror workspace.

Coupling Mirror artifacts can be of two different kinds: either completely vir-
tual, i.e. situated in some physical location but uncoupled from any physical
device or coupled to some physical artifact. In the first case, the geo-position
inside the mirror (and the physical environment) is specified when instantiating
the artifact, and it can be updated then by operations provided by the artifact.
In the second case, at the infrastructure level, the artifact is meant to be peri-
odically synched by some device which is responsible to establish the coupling
between the two levels, the mirror and the physical. It can be e.g. a smartphone
device with a GPS sensor, or some other localization device. So, for instance,
the body of a mirror agent can be bound to the position of the smartphone of a
user, and then change as soon as the user moves.

The location of a mirror artifact in the physical world is not necessarily
expressed as an absolute geo-position, but could be a relative position with
respect to some physical object, such as a marker or an existing physical object.
In that case AR technologies – hardware (cameras and other sensors mounted on
the smartglasses) and software (computer vision algorithms, pattern recognition)
– are essential to realize the coupling between the two layers.

Coupling is not limited to the physical location: it could concern any property
of the physical world, of some physical entity, that we want to make it observable
to agents living in the MW. An examples could be the temperature of a room
or the luminosity of a lamp or the force on some object.

Humans in the Loop A main ingredient of mirror worlds is the capability of
human situated in such environments to perceive the augment layer, by adopting

157

devices such as smart glasses or AR helmets. This can be modelled by adopting
user assistant mirror agents with a body coupled to the physical location of the
human user, by means of a smart device—glass, phone, whatever. Such agents
can exploit the device to communicate with the user, in terms of messages, cues,
etc. In more sophisticated scenario, the user assistant agent can superimpose to
the image of the physical reality perceived by the user information or objects that
represent some kind of extension of the reality, given the set of mirror artifacts
perceived. Existing (mobile) AR frameworks – e.g. Metaio2 – can be exploited
inside the mirror world middleware to implement these functionalities.

Distribution In section Section 2 we said that a MW can span from a single
room or a even a smaller physical world that includes very few physical objects,
to large physical environments, such as a building, a street, a city. In the latter
case, the MW can be designed in terms of multiple mirror workspaces, even-
tually running on different nodes (hosts) of the underlying distributed agent
infrastructure. Some workspaces coud be run on the same node, other could be
spread over different nodes, depending on the strategy adopted to distributed
the computational load. In principle, there is no direct link between the phys-
ical distributed world on which the MW is mapped and the physical location
of the nodes used to run the infrastructure. For that reason, cloud technologies
and services could be used at the base layer, in order to deal with scalability
and availability issues. Indeed, this could have an impact on the performance
and reactivity of the system, raising important issues since MW are meant to be
real-time systems, not necessarily hard-real-time but indeed time is an important
dimension to consider. These are important aspects that we need to consider in
future works.

4 Programming Mirror Worlds in JaCaMo: A First API

A main objective and contribution of this paper is the definition of a first agent-
oriented API and platform to explore the development of mirror worlds, based
on the meta-model described before. To that purpose, we devised such a frame-
work on JaCaMo [1], which natively supports the development of multi-agent
systems based on BDI agents living in artifact-based environments. In particu-
lar, JaCaMo is based on the synergistic integration of three different dimensions
(and technologies):

– the agent dimension — agents are programmed using the Jason agent pro-
gramming language [2], which is an practical extension and implementation
of AgentSpeak(L) [18];

– the environment dimension – artifact-based environments are programmed
using the CArtAgO framework [22], which provides a Java API for that pur-
pose;

2 http://www.metaio.com/

158

human
user

MIRROR
WORLD hellomsg

pospos

helloPHYSICAL
WORLD

user ass.
agent

mirror-example
workspace

Situated
Message
artifact

Agent
Body

Fig. 3. (Left) In the hello mirror world example, each mobile user walking along the
streets has user assistant agent, with a body located at the position detected by the
GPS. As soon as the user is near to a situated message, this becomes observable by
the user assistant agent. (Right) The map visualised by the control room, showing the
position of mirror agents (red circles) – that is, the body of mirror agents – and the
position of mirror artifacts, i.e. situated messages in the example.

– the organization dimension – organizations can be specified using the MOISE
organization model and language.

JaCaMo – and in particular CArtAgO – has been recently extended so as to
support situated workspaces and situated artifacts as an extension of normal
workspaces and artifacts, as described in previous section. Mirror worlds are re-
alized by situated workspaces equipped by specific maps, establishing a coupling
with physical environments such as city zones, buildings, rooms.

In the remainder of the section we show the main features of the API used
to develop mirror worlds in JaCaMo, using simple examples. Such an API has
been conceived with a main objective in mind, that is: to make the development
of such mixed-reality worlds as “natural” as possible for MAS developers. The
full code of the examples is available in [8], along with the experimental JaCaMo
distribution supporting mirror worlds.

4.1 Hello, Mirror World!

This first example mimics classic mobile augment reality applications. It is a
mirror world mapped onto a city zone in the center of a city (Cesena, in this
case). Such a MW is dynamically populated of mirror artifacts representing
simple messages situated in some specific point of the city. Mobile human users
walk around the streets along with their user assistant agents, running on their
smartphone. As soon as user agents perceive a situated message, they display it
on the smart glasses worn by the users (see Fig. 3). The implementation of the
MW in JaCaMo includes:

159

– a majordomo agent, who is responsible of creating and setting up the MW,
composed in this case by a single mirror workspace called mirror-example.
The agent creates also some SituatedMessage mirror artifacts, located at
some specific geo-coordinates;

– user-assistant agents, running on the smartphone of each mobile user;
– a control-room agent, which is responsible of showing the real-time state

of the MW, represented by a map with the current location of the situated
message artifacts and of the user-assistant agents (see Fig. 3, right). The
agent is responsible also of dynamically creating new situated messages, in
the positions specified by human users observing the map, by means of the
GUI.

The example is useful to give a taste of the API to create mirror artifacts
and agents.. Fig. 4 (left) shows the source code of the majordomo agent: The
createSituatedWorkspace action is used to create a mirror workspace, speci-
fying a CityMap class representing the type of map to be adopted for this mirror
world. The action is provided by a built-in artifact (called workspace), available
by default in each workspace. The mirror workspace is created specifying its
center, in terms of latitude and longitude. SituatedMessage artifacts are cre-
ated by using the makeSituatedArtifact action, specifying the logical name of
the artifact, its template, its geographical position and an observability radius,
in meters. The code of SituatedMessage artifacts is shown in Fig. 5 (left): it
has a single observable property called msg, storing a message specified when
the artifact is created. Besides mirror artifacts, the agent create also a normal
GeoTool artifact called geotool, providing basic functionalities for manipulating
geo-positions (such as the toCityPoint action).

Fig. 4 (right) shows the source code of the user assistant mirror agent.
The agent, after joining the workspace and locating the available tools (the
geo-tool), creates a body, specifying an observability radius – being it a situated
artifact – and an observing radius, limiting the range of mirror artifacts that can
be automatically detected. A mirror artifact X located in Xc, with observability
radius Xr is observable by a mirror agent with a body B , located in Bc, with
observing radius BR iff, being d the distance between Xc and Bc, then d <= Xr

and d <= BR. In the example, the observing radius of the user assistant agent
is 10 meters. When the user approaches a point in the physical world where
a situated message is located, the user assistant agent perceives the message
and reacts by simply displaying it on the glasses (lines 24-26). When (if) the
human user moves away from the mirror artifact, the belief about the message
is removed and the use assistant agent reacts by displaying a further message
(lines 28-30).

In order to situate the agent body to the position of the human user, the
agent binds the body to a GPSDeviceDriver device artifact (lines 18-19), which
realizes the coupling to the position detected by the GPS sensor, available on the
smartphone of the user. Finally, a SmartGlassDevice artifact is created (line 7)
and used (lines 26,30) as an output device to display messages, by means of the
displayMsg operation.

160

1 /* Majordomo agent */
2 /* initial beliefs about some POIs */
3 poi("sacchi_pasolini",44.13952, 12.24340).
4 poi("sacchi_uberti",44.14119, 12.24344).
5 poi("isi_cortile", 44.13983, 12.24289).
6 poi("pasolini_chiaramonti",44.13964, 12.24250).
7 poi("pasolini_montalti",44.13948, 12.24384).
8 /* initial goal*/
9 !setupMW.

10

11 +!setupMW
12 <- ?poi("isi_cortile",Lat,Long);
13 createSituatedWorkspace("mirror-example",
14 "CityMap",Lat,Long);
15 joinWorkspace("mirror-example");
16 makeArtifact("geotool","GeoTool",[Lat,Long]);
17 !create_messages;
18 println("MW ready.").
19

20

21 +!create_messages
22 <- ?poi("pasolini_montalti",Lat,Lon);
23 toCityPoint(Lat,Lon,Loc);
24 makeSituatedArtifactAtPos("a1","SituatedMessage",
25 ["hello #1"],Loc,1000);
26 //
27 ?poi("sacchi_pasolini",Lat2,Lon2);
28 toCityPoint(Lat2,Lon2,Loc2);
29 makeSituatedArtifactAtPos("a2","SituatedMessage",
30 ["hello #2"],Loc2,1000).

1 /* User assistant agent */
2

3 !go.
4

5 +!go
6 <- /* setup the smart glass device */
7 makeArtifact("viewer","SmartGlassDevice",[],Viewer);
8 +viewer(Viewer);
9

10 /* join the mirror workspace and discover tools */
11 joinWorkspace("mirror-example",Mirror);
12 lookupArtifact("geotool",Tool);
13 focus(Tool);
14

15 /* create the agent body bound to GPS */
16 createAgentBody(1000,10,Body);
17 ?map_center(Lat,Long);
18 makeArtifact("driver","GPSDeviceDriver",[Lat,Long],Dev);
19 bindTo(Body)[artifact_id(Dev)];
20 println("ready.").
21

22 /* react to events in the mirror worlds */
23

24 +msg(M) : viewer(Dev)
25 <- .concat("new message perceived: ",M,Msg);
26 displayMsg(100,50,Msg)[artifact_id(Dev)].
27

28 -msg(M) : viewer(Dev)
29 <- .concat("message ",M," no more perceived. ",Msg);
30 displayMsg(100,50,Msg)[artifact_id(Dev)].

Fig. 4. Hello world example. (Left) Code of the majordomo agent. (Right) Code of the
user-assistant agent.

4.2 Ghosts and Traces

The second example is an extension of the previous one, where some ghost

mirror agents are moving around autonomously along some streets of the city,
perceiving and interacting with the situated messages as well. The source code
of ghost agents is shown in Fig. 6. They have a walk around goal (line 5), and
the plan for that goal (lines 7-24) consists in repeatedly doing the same path,
whose list of cities is stored in the path belief (line 3). They move by changing the
position of their body, through a moveTowards action (line 23), which is available
in any situated artifact, specifying the target point (to define the direction) and
the distance to be covered (in meters). Other actions are available, such as a
setPosition, directly specifying the new position.

User assistant agents perceive the ghosts as soon as their distance falls inside
the observing radius, and show them on the glasses according to the orientation
of the user. Viceversa, ghosts perceive the presence of the humans by perceiving
the body of the user-assistant agents, as soon as users falls inside the observing
radius of their body, which is 10 meters. When a ghost perceives a human (lines
17-20), it reacts by making a trembling on the smartphone owned by the human
user, by executing a tremble action on a UserDevice artifact (created by the
user assistant agent). In the code, body is an observable property available in
every agent body artifact, specifying the name of the agent owning the body.

161

1 /* Mirror artifact representing a situated message */
2

3 public class SituatedMessage extends SituatedArtifact {
4

5 public void init(String msg){
6 defineObsProperty("msg",msg);
7 }
8 }

1 /* An extension, adding a simple counting functionality */
2 public class SituatedMessageExt extends SituatedMessage {
3 public void init(String msg){
4 super.init(msg);
5 defineObsProperty("n_touches",0);
6 }
7 @OPERATION void touch(){
8 updateObsProperty("n_touches",
9 getObsProperty("n_touches").intValue()+1);

10 }}

Fig. 5. Code of the mirror artifacts used in the examples: SituatedMessage (left) and
its extension SituatedMessageExt (right).

1 /* ghost agent initial beliefs */
2 start_pos("pasolini_chiaramonti").
3 path(["sacchi_pasolini","pasolini_montalti"]).
4 /* initial goal */
5 !walk_around.
6

7 +!walk_around <- !setup; !moving.
8

9 +!moving <- ?path(P); !make_a_trip(P); !moving.
10

11 +!make_a_trip([POI|Rest])
12 <- ?poi(POI,Lat,Lon); !reach_dest(Lat,Lon);
13 !make_a_trip(Rest).
14

15 +!make_a_trip([])
16 <- ?start_pos(Start); ?poi(Start,Lat,Lon);
17 !reach_dest(Lat,Lon).
18

19 +!reach_dest(Lat,Lon) : myBody(B)
20 <- toCityPoint(Lat,Lon,Target);
21 computeDistanceFrom(Target,Dist)[artifact_id(B)];
22 if (Dist > 1){
23 moveTowards(Target,0.5)[artifact_id(B)];
24 .wait(50); !reach_dest(Lat,Lon)}.

1 +!setup
2 <- joinWorkspace("mirror-example",Mirror);
3 lookupArtifact("geotool",Tool);
4 focus(Tool);
5 ?start_pos(Point);
6 ?poi(Point,Lat,Lon);
7 toCityPoint(Lat,Lon,P);
8 createAgentBodyAtPos(P,1000,10,Body);
9 +myBody(Body); .my_name(Me); +me(Me).

10

11 +msg(M) [artifact_id(Id)]
12 <- touch [artifact_id(Id)];
13 ?n_touches(C)[artifact_id(Id)];
14 println("new message perceived: ",M,
15 " - touch count: ",C).
16

17 +body(Who) : me(Me) & Who \== Me
18 <- .concat("user-dev-",Who,Dev);
19 lookupArtifact(Dev,DevId);
20 tremble [artifact_id(DevId)].

Fig. 6. Code of ghost agents.

The SituatedMessageExt artifact (Fig. 5, right) is an extension of the pre-
vious one, providing a touch operation which increments an internal counter,
whose current value is stored in a n touches observable property. The action
touch is performed by user assistant agents and ghosts each time they start
perceiving the situated message.

This example is useful to show a couple of things. The first is the development
of situated artifacts that are not simply information augmenting the physical
world, but computational entities with a behaviour and a state, which can change
dynamically. The second is the development of autonomous agents living in the
mirror, able to perceive and being perceived by humans, and act on the mirror
world so as to have effect in the physical reality.

162

4.3 Coupling with the Physical World

In this last example, some StreetLight mirror artifacts are placed along the
streets, representing (and coupled to) physical street lights. Their state (on,
off) as well as their luminosity level is made observable by means of a couple
of observable properties, light status and light level; instead, a couple of
operations are provided to switch on and off the light (switchOn, switchOff).
When approaching a light, ghosts perceive the level of luminosity and, if it is
higher than a certain threshold, they invert their direction. Other mirror agents
could instead act upon StreetLight artifacts so as to have an effect on the
physical world, by switching on or off the lights.

This case is useful to show mirror artifacts that have both a physical and a
mirror part in sync, so that by observing these artifacts, mirror agents (ghosts
in the example) can perceive the physical reality and by acting on them they
can have an effect on it. This coupling is implemented by means of embedded
devices, connected to the infrastructure.

An important point for artifacts coupled to the physical reality is that the
MW infrastructure is responsible to keep track of the synchronization state be-
tween the digital and physical part, making it observable (to agents) if the mirror
artifact is either synchronized or not, depending on the amount of time elapsed
since the last synchronization done by devices. This is important in particular
for agents that aim at reasoning on the state of the physical world by considering
the actual value of artifact observable state.

5 Discussion

5.1 Real-World Applications

As mentioned in the introduction and in [23], mirror worlds have been conceived
in general as a conceptual blueprint to explore the integration of different kind
of models and technologies (multi-agent systems, augmented reality, Internet-of-
Things,...) for the design and development of forth-coming open smart environ-
ments, scaling from rooms to cities. Besides such a broad and general target, we
aim at exploring their application in specific case studies that concern the real-
time/situated computer supported cooperative work of teams of human agents
performing missions across some physical environment. A main example that we
are investigating is given by rescue scenarios, in cooperation with an industrial
partner3 and domain experts. The objective is to devise novel information tech-
nology supports to improve the action and coordination of rescuers engaged in
civil or military missions. To that purpose, we devised the notion of augmented
rescue field, as a mirror world layered on top of the physical rescue field, where
rescuers move, act and interact. Rescuers participate to such augmented rescue
field by means of smart glasses/helmets and a smartphone, connected through
a network (local or global, depending on the context). The objective is to sup-
port as much as possible their action in a free-hands mode, minimizing the need

3 INMM, http://www.inmm.it

163

of hands for using devices. Besides the rescuers situated in the field, the team
includes also remote operators – both human agents (such as doctors) and soft-
ware agents – that follow missions using proper control rooms, where they can
both observe the augmented rescue field and act on it. The overall objective of
the augmented rescue field is to make both the action of the individual rescuer
and the coordination of the team more effective, by augmenting their perception,
cognitive and social capabilities through the mirror.

5.2 Challenges

The concrete realization of full-fledged mirror worlds put forth many impor-
tant challenges, to be explored in the MW research agenda. The challenges con-
cern both the practical/implementation level and the conceptual/theoretical one.
Some main ones are sketched in the following.

Coupling – The coupling between the physical and digital layer is a challenging
and critical point. Such a coupling includes, among the other, issues concerned
to localization—every MW application implies the capability to deal with the
static/dynamic physical location of people and physical/digital artifact, both
outdoor and indoor. This is a well-known challenging problem in literature, and
different kinds of technics, algorithms and HW have been proposed for that pur-
pose. More generally, depending on the applications, the coupling could require
also forms of physical-world recognition and modeling, and, more general, the
real-time recognition and modelling of the context where human users are im-
mersed. The research literature on context-aware computing and applications is
a main reference in that case [7].

Distribution and Scale – MW are inherently distributed systems—even the
simplest one includes some part running on the mobile user devices and some
infrastructure part running on some other node on the network. So typical is-
sues/problems of distributed systems such as intermittent connectivity, failures,
latencies, lack of global clocks cannot be abstracted. Also the scale of a MW
can vary depending on the specific applications. In the simple examples shown
in this paper only one mirror workspace is used. Of course, complex MW may
call for modelling them in terms of multiple workspaces, each one mapping some
portion of the physical environment coupled by the MW. Large-scale MW will
require the adoption of cloud services in the design of some levels of the MW
infrastructure.

Time in MW – time, like space, is a main ingredient and aspect of MWs. Time
in MW is necessarily distributed, in fact there is not a single global clock at the
MW level. A clock exists at the individual mirror artifact level, so observable
events produced by actions on mirror artifacts can be ordered in chains. So, in
spite of the distribution, some level of causal consistency must be guarantee,

164

related to chains of events that span from the physical to the digital layers and
viceversa. That is, if a mirror artifact produces a sequence of two events con-
cerning the change of its observable state, the same sequence must be observed
by any mirror agent observing the artifact (of the same workspace) and then
indirectly every human user assisted by such agents.

As a further must-have feature, MW must support agent/human observations
and actions changing the physical/digital level with some degree of real-time (not
necessarily hard real-time). Latencies introduced by network communications
and failures can make this aspect quite hard to deal with.

Degrees of Mixed/Augmented-Realities – the support in MW for aug-
mented/mixed reality does not necessarily require the capability of creating
views on smart-glasses/helmets that merge the appearance of the physical reality
with the rendering of 3D virtual objects or holograms. For many applications,
the augmented reality perceived by a user could be limited to either messages
that appear on the eyewear devices (Google-glass like), or simple symbols ap-
pearing on the FOV (Field-of-View) of the user, possibly associated to some
specific element of physical reality part of the view. These functionalities are
nowadays supported with a more and more level of sophistication by modern
AR technologies, which witnessed an impressive progress in recent years, both
at the consumer/business level – e.g. Epson Moverio BT-200, Sony SmartEye-
glass, Microsoft Hololens – and at the military level – e.g. DARPA ULTRA-Vis
program and prototype [24].

Organisational models and normative systems for MW — The definition
of proper organizational models appears an important aspect of MW, in order
to deal with aspects such as the openness, the autonomy of the agents living in
the MW, the size in terms of number of entities composing the MW, and so on.
So natural questions are: are current organization (meta-)models proposed by
open Multi-Agent System effective for modelling MW organization? Is it useful
to support some explicit coupling between organization models adopted in the
physical/social layer and the ones to be adopted in the digital one, in the MW?
Can we exploit the coupling between the two levels for effectively defining a
notion of institutional actions and institutional facts inside MW?

From a modelling and programming point of view, a good starting point for
exploring these issues could be applying state-of-the-art organisation-oriented
models and programming frameworks. In the case of JaCaMo, for instance,
MOISE [13] could be exploited for that purpose.

Security, Privacy, Ethics – if these aspects are important and problematic in
current Internet/social-network based society, they are even more delicate and
challenging in MW, where the coupling with the physical world is a primary
aspect—like in scenarios based on Internet-of-Things, smart environments. In
the MW case, the discussion of such aspects cannot be fully developed indepen-
dently from another long-standing discussion about living within systems with

165

some significant degree of autonomy—which in MW is explicitly modelled in
terms of the mirror agents. In MW such an autonomy is useful not so much
to increase automation, but to human augmentation (individual and social) –
which is strongly related to the augmentation of the physical reality. The idea of
human augmentation puts forth interesting questions, which are more and more
important as soon as such augmentation becomes essential for people in their
everyday life.

5.3 Related Work

In literature, the integration of agents and multi-agent systems and
augmented/mixed-reality has been already explored in different ways.

A survey of existing approaches is provided in [12, 3]. In [12], agents embodied
in a Mixed Reality Environment (referred as MiRAs, Mixed Reality Agents) are
classified as along three axes: agency, weak or strong; corporeal presence, which
describes the degree of virtual or physical presence and interactive capacity,
which is about the ability of MiRAs to sense and act on the virtual and physical
environment. Given that taxonomy, [3] discusses the features in particular of
AuRAs (Augmented Reality Agents), which can be categorised as MiRA that
can both sense and act in the virtual component of the reality but can only
sense in the physical. Among the platforms available for developing AuRAs, the
AFAR toolkit makes it possible to develop BDI agents for AR applications on the
NeXuS mixed reality framework [16], using AgentFactory as agent programming
language [15]. Conceptually, the MW toolkit based on JaCaMo presented in this
paper is strongly related to AFAR, since it aims at providing a general-purpose
framework and API for developing agent-based applications exploiting various
degrees of augmented/mixed reality, and adopting a BDI agent programming
language for implementing agents. A main difference is that in MW, the virtual
layer is not based only on agents, but also on artifacts, which play a key role
also for creating the coupling with the physical world, besides representing the
augmented world itself.

The main objectives of AuRAs as described in [3] are to function as embodied
interfaces and design paradigm. The former mainly concerns the development
of anthropomorphic interfaces, while the latter concerns software agents tasked
with delivering relevant content to the user in a AR scenario. The MW idea con-
ceptually extends these objectives by conceiving AR as one of the ingredients to
develop – more generally – smart environment applications, integrating AR with
pervasive/ubiquitous computing, context-aware computing, Internet of Things.

Finally, recent works have emphasized the value of (serious) mixed-reality
games as a platform to explore scenarios in the real world that are typically
hard to study in realistic settings, such as disaster response, to study the joint
activities of human-agent collectives [9]. Similarly, mixed-reality testbeds have
been deployed for the incremental development of human-agent robot applica-
tions [4].

166

6 Conclusion

In this paper we presented a first programming model for developing mirror
worlds, and its implementation on top of the JaCaMo platform. Actually, the
model is not specifically bound to JaCaMo, but refers in general to the A&A
meta-model and agents based on a BDI-like model. Given such orthogonality
between the agent/environment/organization dimensions, in principle it is pos-
sible to exploit the same API with agents written in different agent programming
languages, not only Jason.

As remarked in Section 5, these are just the first steps of the overall MW re-
search agenda [20], which include different kinds of challenges and investigations
to be done in future work. However, the availability of a first platform that allows
for designing and developing simple MW could be important both for investi-
gating the applicability of the idea to real-world applications, and for exploring
further features that concern the future work, by extending and enriching the
platform itself.

References

1. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with jacamo. Science of Computer Programming 78(6), 747–
761 (2013)

2. Bordini, R.H., Hübner, J.F., Wooldrige, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley Series in Agent Technology, John Wiley & Sons
(2007), http://jason.sf.net/jBook

3. Campbell, A.G., Stafford, J.W., Holz, T., OHare, G.M.: Why, when and how to
use augmented reality agents (auras). Virtual Reality 18(2), 139–159 (2014)

4. Cap, M., Pechoucek, M., Jakob, M., Novak, P., Vanek, O.: Mixed-reality testbeds
for incremental development of hart applications. IEEE Intelligent Systems 27(2),
19–25 (2012)

5. Castelfranchi, C., Piunti, M., Ricci, A., Tummolini, L.: Ami systems as agent-based
mirror worlds: Bridging humans and agents through stigmergy. In: Bosse, T. (ed.)
Agents and Ambient Intelligence, Ambient Intelligence and Smart Environments,
vol. 12, pp. 17–31. IOS Press (2012)

6. Costanza, E., Kunz, A., Fjeld, M.: Mixed reality: A survey. In: Lalanne, D., Kohlas,
J. (eds.) Human Machine Interaction, Lecture Notes in Computer Science, vol.
5440, pp. 47–68. Springer Berlin Heidelberg (2009)

7. Dey, A.K.: Understanding and using context. Personal and ubiquitous computing
5(1), 4–7 (2001)

8. PSLAB team at DISI, C.: JacaMo-MW – mirror worlds in JaCaMo – open source
distribution. https://bitbucket.org/pslabteam/mirrorworlds (2015)

9. Fischer, J., Jiang, W., Kerne, A., Greenhalgh, C., Ramchurn, S.D., Reece, S., Pan-
tidi, N., Rodden, T.: Supporting team coordination on the ground: Requirements
from a mixed reality game. In: 11th Int. Conference on the Design of Cooperative
Systems (COOP ’14) (2014)

10. Gelernter, D.H.: Mirror Worlds: or the Day Software Puts the Universe in a Shoe-
box...How It Will Happen and What It Will Mean. Oxford (1992)

167

11. Holz, T., Campbell, A.G., O’Hare, G.M., Stafford, J.W., Martin, A., Dragone, M.:
MiRA – Mixed Reality Agents. International Journal of Human-Computer Studies
69(4), 251 – 268 (2011)

12. Holz, T., Campbell, A.G., OHare, G.M., Stafford, J.W., Martin, A., Dragone, M.:
Miramixed reality agents. International journal of human-computer studies 69(4),
251–268 (2011)

13. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing Organised Multi-Agent Sys-
tems Using the MOISE+ Model: Programming Issues at the System and Agent
Levels. Agent-Oriented Software Engineering 1(3/4), 370–395 (2007)

14. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE
Trans. Information Systems E77-D(12), 1321–1329 (Dec 1994)

15. Muldoon, C., OHare, G.P., Collier, R.W., OGrady, M.: Towards pervasive intelli-
gence: Reflections on the evolution of the agent factory framework. In: Multi-Agent
Programming:, pp. 187–212. Springer (2009)

16. O’Hare, G.M., Campbell, A.G., Stafford, J.W.: Nexus: delivering behavioural re-
alism through intentional agents. In: Proceedings of the 2005 International Con-
ference on Active Media Technology, 2005.(AMT 2005). IEEE (2005)

17. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

18. Rao, A.S.: Agentspeak (l): Bdi agents speak out in a logical computable language.
In: Agents Breaking Away, pp. 42–55. Springer (1996)

19. Ricci, A., Omicini, A., Denti, E.: Activity theory as a framework for mas coor-
dination. In: Engineering societies in the agents world III, pp. 96–110. Springer
(2003)

20. Ricci, A., Piunti, M., Tummolini, L., Castelfranchi, C.: The mirror world: Preparing
for mixed-reality living. IEEE Pervasive Computing (2015), to appear. Available
here: http://goo.gl/qasjDA

21. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23(2),
158–192 (2011)

22. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: Multi-Agent Programming: Languages, Platforms and Applications,
Vol. 2, pp. 259–288. Springer (2009)

23. Ricci, A., Tummolini, L., Piunti, M., Boissier, O., Castelfranchi, C.: Mirror worlds
as agent societies situated in mixed reality environments. In: 13th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014): The
17th International Workshop on Coordination, Organisations, Institutions and
Norms. pp. AAMAS2014–W22 (2014)

24. Roberts, D.C., Snarski, S., Sherrill, T., Menozzi, A., Clipp, B., Russler, P.: Soldier-
worn augmented reality system for tactical icon visualization. In: SPIE Defense,
Security, and Sensing. pp. 838305–838305. International Society for Optics and
Photonics (2012)

25. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30 (2007)

168

Evaluating Different Concurrency Configurations for
Executing Multi-Agent Systems?

Maicon R. Zatelli1, Alessandro Ricci2, Jomi F. Hübner1

1 Federal University of Santa Catarina (UFSC), Brazil
xsplyter@gmail.com, jomi.hubner@ufsc.br

2 University of Bologna, Italy
a.ricci@unibo.it

Abstract. Reactiveness and performance are important features of Multi-Agent
Systems (MAS) and the underlying concurrency model can have a direct impact
on them. In multicore programming it is interesting to exploit all the computer
cores in order to improve these desirable features. In this paper we perform an
experiment to evaluate different concurrency configurations that can be adopted
to run an MAS and analyse the effect caused by each configuration on variables
like deliberation time and response time. As a result, we identify the advantages
and disadvantages for each configuration thus allowing an MAS developer to
choose a suitable one depending upon the priorities for the application.

1 Introduction

In MAS applications it is desired that agents react promptly to changes in the environ-
ment, reply messages fast, process other high-cost activities, and all that at the same
time [23]. The model of concurrency adopted in the MAS can have a direct impact on
these issues. However, most researches in MAS focus on high level issues, while the
low level issues still need a deeper investigation and advances. Multicore processors,
multi-threaded operating systems, thread mapping, context switch overheads are exam-
ples of issues that are not comprehensively addressed by MAS platforms [17, 18, 27].

Current agent languages adopt different choices of concurrency features for the
MAS developer. Some allow the use of a certain number of threads to exploit the cores
of a computer by means of thread pools [30, 4], and such threads are shared among all
agents in the MAS in order to maximize the parallelism. Other approaches create sepa-
rated executions lines (physical threads or processes) for each intention [10, 23, 41, 35,
29]. Yet, others prefer to avoid the internal concurrency3 [8, 9, 33]. In addition, some
proposals break the agent reasoning cycle in different components (such as the sense,
deliberate, and act) and execute them concurrently [39, 22, 11].

When programming an MAS, different concurrency configurations can lead to dif-
ferent results in terms of performance and reactivity. For concurrency configuration we

? The authors are grateful for the support given by CNPq, grants 140261/2013-3, 448462/2014-
1, and 306301/2012-1.

3 Internal concurrency means that agents can perform several activities concurrently (e.g. exe-
cute more than one intention at the same time).

169

mean here the set of concurrency features, including their parameters, that are used to
run the MAS. The analysis and comparison between these configurations — in spite of
the specific agent language adopted — is interesting in order to decide which one is the
most suitable for the specific application to be developed. While the overall MAS ex-
ecution time is the main concern for some applications, for others a fast response time
of an individual agent is desirable (i.e. the time necessary for the agent to handle some
percept or message). However, a configuration that provides a suitable overall MAS
execution time could not be good regarding the response time, and vice-versa.

In this paper we develop such analysis and comparison by adopting an abstract MAS
architecture (Sec. 2) which allows us to experiment and tune different concurrent con-
figurations. We are interested in evaluating MAS composed of several agents by testing
different forms to launch intentions, to perform the reasoning cycle, and to distribute
threads among the agents. For this paper, we focus on BDI agents because it is a highly
adopted model in current agent languages.

We identify some main concurrency configurations (Sec. 3), which reflect the choices
adopted by some agent programming platforms available in literature. We evaluate their
performance using a test case, which has been specifically designed in order to stress the
impact of concurrency configurations on some variables of interest such as the response
time, overall execution time, and deliberation time. The obtained results (Sec. 4) are
useful to understand the importance of developing MAS platforms that allow to choose
or tune the concurrency configuration to be adopted when running an MAS application.
Finally, we present conclusions and further work in Sec. 5.

2 Conceptual Model

In this section, we describe a conceptual model including the main elements that con-
cern BDI agents and MAS that are relevant for a concurrency point of view. While
Sec. 2.1 presents a conceptual model for MAS, Sec. 2.2 presents a conceptual model
for BDI agents, and Sec. 2.3 presents an agent architecture and a simplified version of
the agent reasoning cycle.

2.1 MAS Conceptual Model

An MAS is composed of agents, environment, and thread pools (Fig. 1). Agents are
executed by thread pools composed of one or more threads. Multiple agents can be
executed by the same threads of a pool and multiple threads of a pool can be used
to execute a single agent. The environment can be executed by as many threads as
necessary and the form that it uses threads is out of the scope of our work, remaining as
a future work. Fig. 2 illustrates the threads, agents, environment, and how they can be
related to one another at run-time. Several threads can be used by the MAS in order to
better exploit the computer cores. The number of threads can be greater than the number
of computer cores, which means that while some threads “own the CPU”, others are
“sleeping”. The pentagons represent threads that are being used, while threads without
pentagons represent threads that are not currently being used.

170

Fig. 1: MAS conceptual model. Fig. 2: MAS snapshot.

Threads can be grouped in thread pools or be independent (e.g. dedicated threads to
run some intentions). p1, p2, and p3 represent thread pools, each one composed of five
threads, while the system also has four independent threads. Three different relations
among agents and threads can be defined. The first relation is the use of dedicated
thread pools, which allows each agent to have its own thread pool. This configuration
is especially important if the system is composed of few agents that must perform few
activities in multi-core computers. In the figure, ag1 and ag2 have their own thread
pools, p1 and p2 respectively.

The second relation allows the use of shared thread pools (i.e. different agents share
the same threads). It is important when the number of agents increases compared to
the number of available cores in the computer. Thus, the overhead caused due context
switches can be reduced. In the figure, ag3 and ag4 share p3.

Besides the use of thread pools, agents can also use other threads for more spe-
cific works (e.g. to run some intention). This configuration can be especially useful in
cases where activities do not depend on the same resources and the number of activi-
ties still do not cause a high context-switch overhead. In the figure, while ag1 uses one
independent thread, ag3 uses two, besides their thread pools. By default, intentions run
concurrently even if they do not have one dedicated thread for each one.

2.2 Agent Conceptual Model

The agent model (Fig. 3) considers several BDI elements already adopted in BDI agent
languages, such as 2APL [13] and Jason [4]. Thus, we consider concepts like beliefs,
goals, intentions, desires, events, and plans. In our model, an agent is basically com-
posed of a belief base, goals, and plan library. For beliefs in the belief base are in-
formation that the agent has at some moment. They can be about the agent itself, the
environment, or other agents. Goals are state of affairs that the agent wants to pursue
(e.g. an environmental state). While intentions represent the goals that the agent has
already deliberated and it is committed to achieve, desires represent the goals still not
being pursued by the agent, which means that no intention was created for it yet.

171

Fig. 3: Agent conceptual model.

The plan library is composed of plans, which are a means to handle some event
or achieve some goal, and their conflicts. A plan is composed of a unique identifier, a
trigger, a context, and a body. The trigger is an event that the plan can handle (e.g. the
adoption of some goal). The context is used to specify the conditions for the application
of the plan and is a logical formula that must be evaluated according to the agent beliefs.
The body is a sequence of deeds4. Plans can conflict with other plans, which means that
some plans may not be executed concurrently. The aim of defining conflicts is to avoid
an undesirable behavior of the system [24]. As plans can be added and removed at run-
time, conflicts among plans can also be added and removed at run-time. The policy for
adding and removing conflicts are defined by the MAS developer and it is out of the
scope of this paper.

At run-time, when an agent intends something, it should start acting in order to
achieve that intention. The proper actions for an intention comes from plans that the
agent has in its plan library. An intention is thus achieved by means of the execution of
plans. Intentions can be created, suspended, or resumed at any time, and it is considered
terminated when either the plan was executed successfully, the execution of the plan
failed (e.g. the agent failed to perform an action), or the intention was dropped by the
agent (e.g. the agent does not intend something anymore).

Several events can happen at run-time. Events can produce desires for the agent (e.g.
a message received by the agent can contain a request for the agent to do something,
which produces a desire to be pursued). In our model we consider five kinds of events:
(1) addition and deletion of beliefs; (2) messages that are sent and received by the agent;
(3) percepts that are produced by the environment and perceived by the agent; (4) goals
that are adopted, dropped, achieved, failed, suspended, or resumed; and (5) detection
of conflicts among intentions (i.e. a new intention becomes active but it conflicts with
another already running intention).

4 The term deed is used in the same form as in [15] and it refers to several kinds of formulae
that can appear in a plan body.

172

Fig. 4: Agent architecture.

2.3 Agent Architecture

The agent architecture (Fig. 4) is inspired on some BDI models [37,22,11,13,4]. While
Beliefs, Plans, Threaded Intentions, and Suspended Intentions are placed in data sets
(represented by the horizontal rectangles in Fig. 4), Messages, Percepts, Events, and
Pooled Intentions are placed in queues (represented by the vertical rectangles in Fig. 4)
and processed by the threads in their respective components. These queues are priority
queues in order to process emergencies promptly (e.g. an event notifying low battery
in a robot). The priority policy is customizable by the MAS developer and agents can
perform operations to retrieve and change the priority for events at run-time. The archi-
tecture has some functions (represented by octagons in Fig. 4) that define some steps
of the reasoning cycle of the agent. Such functions are used, for example, to act in the
environment or manipulate the data sets.

while TRUE do
cPercepts← Percepts.clone()
cMessages←Messages.clone()
while cPercepts 6= /0 and cMessages 6= /0 do

Sense(cPercepts,cMessages)

Deliberate()
Act()

Code 1: Synchronous execution.

parallel
while TRUE do Sense(Percepts,Messages) ||
while TRUE do Deliberate() ||
while TRUE do Act()

Code 2: Asynchronous execution.

The agent is divided in three main components that can run concurrently, depending
on the configuration. The aim of the concurrent architecture is to improve reactivity by
allowing the agent to concurrently handle messages and percepts from the environment;
handle internal events, belief updates, goal adoptions, etc; and continue executing its
intentions. The Sense Component (SC) is responsible for receiving the inputs from the
environment (percepts) and from other agents (messages), updating the belief base, and
generating events. The Deliberate Component (DC) is responsible for reasoning about

173

the events and producing new intentions to handle them. The Act Component (AC) is
responsible for executing the intentions. Each component can have its own thread pool,
named Sense Threads (ST), Deliberate Threads (DT), and Act Threads (AT).

The three components can also be configured to share the same thread pool. It is
especially useful to reduce the number of threads in applications with more agents. For
example, the MAS developer can define one single thread for each agent by configuring
the ST, DT, and AT to use the same thread pool that has only one thread. In addition, all
agents in the MAS could share a common thread pool. Thus, we can run the agent rea-
soning cycle in two distinct forms: synchronous (Code. 1) and asynchronous (Code. 2).
In the synchronous form, each component finishes its execution before the other compo-
nent starts its execution (i.e. the sense-deliberate-act cycle is executed sequentially). In
the asynchronous form, the three components run concurrently and do not wait for other
components to finish their execution before doing something, whether they already have
something to do. However, differently from the synchronous execution, where the rea-
soning cycle is explicit, in the asynchronous execution the reasoning cycle is implicit
by a producer-consumer strategy, where each component produces inputs for the other
components. For example, the SC produces events for the DC and the DC produces in-
tentions for the AC. Thus, the reasoning cycle is ensured because for a component to be
executed it will depend on the execution of the previous component. Furthermore, if the
agent must handle a whole set of percepts before to make decisions, the asynchronous
configuration cannot be used. Some concurrency control mechanism or strategy must
be also adopted to avoid interferences and races, given the concurrent read/write access
to e.g. the belief base, caused by the concurrent execution of the sense, deliberate, act
components. A simplified version of each component is explained as follows, however
implementation details are not presented in this paper due lack of space.

Procedure Sense(pPercepts, pMessages)
if lastInputKind = MESSAGE and pPercepts
6= /0 then

input ← pPercepts.dequeue()
lastInputKind ← PERCEPT

else if pMessages 6= /0 then
input ← pMessages.dequeue()
lastInputKind ← MESSAGE

if input 6= NULL then
IHF(input)

Code 3: Sense.

Procedure Deliberate
event ← Events.dequeue()
if event 6= NULL then

relevantPlans←UE(event, PlanLibrary)
applicablePlans←CC(relevantPlans,
BeliefBase)
intention←CP(applicablePlans)
EI(intention)

Code 4: Deliberate.

Procedure Act
intention← PooledIntentions.dequeue()
if intention 6= NULL then

PI(intention)

Code 5: Act.

The Sense Component. The SC is responsible for the first steps of the agent reasoning
cycle (Code 3). The environment enqueues the messages and percepts for the agent.
Percepts and messages are then processed by the available threads in the ST. Each

174

thread in the ST processes one message or percept at once. Thus, each thread executes
the Input Handler Function (IHF) for the percepts, messages, and belief updates.

The IHF adds new beliefs related to percepts that are not currently in the belief
base and removes beliefs that are no longer in the percepts from the environment (i.e.
outdated information). The addition and removal of beliefs always produce events that
are enqueued in the Events queue (by means of the function Enqueue Event (EE)) to be
processed afterwards. According to some kinds of message, the IHF adds or removes
the beliefs (e.g. agents can induce other agents to believe or to disbelieve something).
In addition, all received messages produce events, even if they do not change the belief
base (e.g. a message asking for some information). In the synchronous execution, all the
percepts and messages in the queue are processed before the DC starts its execution.

The Deliberate Component. The DC is responsible for processing new events by
producing new intentions to handle them (Code 4). The events in the Events queue
are individually processed by the available threads in the DT. Each thread in the DT
processes one event at once. The first step to process an event is to find the relevant
plans to handle the event. It is done by retrieving all plans where the trigger can be
unified with the event. The function Unify Event (UE) is responsible for finding these
plans.

The relevant plans are verified according to the their context, by means of the func-
tion Check Context (CC). The context of a plan determines if the plan can be applied or
not in certain moments. Thus, the CC function selects which plans, from the relevant
plans, are applicable considering the current state of the agent (e.g. its beliefs).

Several applicable plans can still be used to handle the event, which means that the
agent could choose any of them to handle the event successfully. The function Choose
Plan (CP), by default, selects the first non-conflicting plan considering the order in
which they appear in the plan library. If all applicable plans conflict with some already
running intention, the first one is chosen.

An intention is then produced with the chosen plan and it is added in some of the
Intentions data sets of the agent (by means of the function Enqueue Intention (EI)) for
a further execution. The EI adds the produced intention in the Threaded Intentions if it
is configured as a threaded intention, otherwise, the produced intention is enqueued in
the Pooled Intentions queue. In the synchronous execution, only one event is processed
in each reasoning cycle, and after that, the execution moves to the AC.

The Act Component. The AC is responsible for the execution of intentions. They can
be executed in two different forms: intentions can be executed by the available threads
in the AT (Pooled Intentions) or be executed by dedicated threads (Threaded Intentions).
In addition, intentions can be suspended and be placed in the Suspended Intentions

set, remaining there until the agent resumes or drops their execution.
Each thread in the AT (Code 5) executes one deed related to certain pooled intention

at once by means of the function Process Intention (PI). In execution of PI, the agent
can perform some action in the environment, send messages to other agents, update
its beliefs, adopt or drop goals, or execute any other internal action. When a deed is
executed, it can also produce events. For example, when an agent adopts a new goal, an

175

event related to it is produced and enqueued in the Events queue. The intention is then
updated and placed at the end of the Pooled Intentions queue for the execution of
the remaining deeds. In the synchronous execution, only one intention is processed in
each reasoning cycle. After processing such intention, the execution moves to the SC
and the cycle begins again.

Threaded intentions also executes the PI and produce events. The main difference
is that they do not compete with other intentions to use threads, since each threaded
intention has its own thread. Even in the synchronous execution, threaded intentions
run independently and do not follow the default reasoning cycle.

3 Evaluation of Different Concurrency Configurations

We have implemented a prototype following the model and architecture presented in
Sec. 2.3 in order to perform an experiment to evaluate different concurrency configura-
tions. The scenario for the experiment consists on executing agents that must perform
certain activities, in this case we use the computation of Fibonacci numbers. The imple-
mentation of the plan to compute Fibonacci numbers follows the traditional recursive
approach. Thus, while the computation of big Fibonacci numbers demand more time
to be executed, the computation of small Fibonacci numbers can be executed in a short
time.

All requests to compute the first n Fibonacci numbers are given to the agents in a
single shot and placed in the agents perception queue at the beginning of the execution.
No new requests are given to the agents during the rest of the execution and all agents
work on all requests at once. The concurrent computation of Fibonacci numbers occurs
without any interference among themselves. Sec. 3.1 describes how the experiment was
conducted and Sec. 3.2 presents an analysis of the results.

3.1 Configurations and Experiment Setup

The experiment was performed on a computer Intel(R) Core(TM) i5-2500 CPU @
3.30GHz (4 CPU cores) running Linux version 3.9.10-100.fc17.x86 64. Four different
concurrency configurations were chosen to run the aforementioned scenario. In Conf.
1, the agent components run sequentially (synchronous execution), like the traditional
PRS cycle [21], and each agent has only one thread. Examples of languages that adopt
such approach are 2APL [13] and Jason [4]. In Conf. 2, the agent components run se-
quentially (synchronous execution), like the traditional PRS, and all the agents share the
same thread pool composed of four threads (same number of cores in the computer).
The use of thread pools is the approach adopted in simpAL [30], but it is also possible in
Jason [4]. In Conf. 3, the agent components (SC, DC, and AC) run concurrently (asyn-
chronous execution) and each one has its own thread pool composed of four threads.
Moreover, the thread pools are shared among all agents. The asynchronous execution
is an approach adopted in works like [39, 22]. In Conf. 4, each intention is launched in
different threads, which is an approach adopted in [23, 41].

The configurations are also evaluated according to the number of agents in the MAS.
We varied the number of agents from 5 to 10000, using the numbers of 5, 10, 50, 100,

176

500, 1000, 5000, and 10000. The aim is to evaluate how each configuration behaves
when the number of agents changes.

The experiment was designed to analyse three variables. (1) The overall MAS ex-
ecution time for the whole number of Fibonacci numbers to be computed by all the
agents, which is the difference between the arrival time of the first percept and the time
when the last intention has terminated. (2) The response time for each Fibonacci num-
ber, which is the difference between the arrival time of the percept and the time when
the intention related to that percept has terminated. (3) The deliberation time for each
Fibonacci number, which is the difference between the arrival time of the percept and
the time when an intention is created to handle it. We chose the Fibonacci test case to
evaluate such variables because we can easily simulate activities that demand a different
execution time, stress the agent with different work loads, and simplify the experiment
by using a scenario where interferences or races do not happen.

3.2 Results

The resulting data of the experiment is presented by a series of graphs. Fig. 5 and Fig. 6
present the average response time for each Fibonacci number comparing the impact
caused by the number of agents in each configuration. While Conf. 1, 2, and 3 showed
the expected exponential growth of the response time to compute Fibonacci numbers5,
Conf. 4 still does not show a perceptible exponential growth considering the maximum
number of Fibonacci used in the experiment. Moreover, the exponential growth behav-
ior is only possible because each agent computes the Fibonacci numbers concurrently,
by interleaving among the several computations that it must perform. Even in cases
where intentions are not launched in dedicated threads, the agent executes a bit of a
different intention in each turn. In this case, the interleaving mechanism is controlled in
the agent architecture.

The different behavior for Conf. 4 is explained by the thread competition. While
Conf. 1, 2, and 3 have fewer threads, Conf. 4 can produce a high number of threads
that compete for the same resources (computer cores), resulting in delays to deliber-
ate about new percepts. Thus, while the arrival order of the percepts does not seem to
be an important aspect for Conf. 1, 2, and 3, it is important for Conf. 4. As another
consequence, with fewer active intentions due to the delay for the thread creation, big
Fibonacci numbers can be computed faster than in the other configurations, as shown in
Fig. 5. The opposite behavior happens for small Fibonacci numbers. Even if the compu-
tation of small Fibonacci numbers is faster than big Fibonacci numbers, the deliberation
time can harm the whole response time for small Fibonacci numbers. Therefore, as also
shown in Fig. 6, Conf. 4 presents an almost constant response time independently of
the Fibonacci number (considering the range of Fibonacci numbers used in this exper-
iment) to be computed because the response time strongly depends on the deliberation
time.

The reactivity of the agents could be measured by the experiment in this aspect.
Small Fibonacci numbers can be thought as emergencies that the agents must react

5 This exponential growth is an expected behavior for the configurations used in this experi-
ment because the computation of Fibonacci numbers, implemented following the traditional
recursive approach, has an exponential complexity.

177

5 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
50

0
15

00

2 7 12 17 22

● ● ● ●
●

Cfg
● 1

2
3
4

10 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
50

0
10

00

2 7 12 17 22

● ● ●
●

●

Cfg
● 1

2
3
4

50 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
20

00
50

00

2 7 12 17 22

● ● ●
●

●

Cfg
● 1

2
3
4

100 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
40

00
10

00
0

2 7 12 17 22

● ● ●
●

●

Cfg
● 1

2
3
4

500 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
20

00
0

50
00

0

2 7 12 17 22

● ● ●
●

● Cfg
● 1

2
3
4

1000 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
50

00
0

15
00

00

2 7 12 17 22

● ● ●
●

● Cfg
● 1

2
3
4

5000 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
10

00
00

0
20

00
00

0

2 7 12 17 22

● ● ●
●

● Cfg
● 1

2
3
4

10000 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0e
+

00
2e

+
06

4e
+

06

2 7 12 17 22

● ● ●

●

● Cfg
● 1

2
3
4

Fig. 5: Impact of the number of agents on the response time for each Fibonacci number
according to each configuration (cfg).

promptly. We can see that for Conf. 1, 2, and 3 the agents can respond fast to them even
if they are concurrently performing other high cost activities (represented by the big
Fibonacci numbers). Conf. 4, instead, takes more time to react to emergencies, demon-
strating a worse result if reactivity is an underlying requirement for the application.

Fairness is also better in Conf. 1, 2, and 3. If an agent must perform a low cost
activity it is fair to think that the agent must respond faster than the execution of a high
cost activity. In addition, the computation of big Fibonacci numbers showed that Conf.
2 has the worst response time considering the number of agents lower than 500, while
Conf. 1 has the worst response times considering the number of agents higher than
1000. In this point of view, Conf. 3 showed middle term behavior between Conf. 1 and
Conf. 2.

Fig. 7 presents the deliberation time for each configuration according to the number
of agents. While Conf. 1, 2, and 3 have a fast deliberation time, Conf. 4 can take more

178

Configuration 1

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0e
+

00
2e

+
06

4e
+

06

2 7 12 17 22

● ● ● ● ●

Agents
● 5

10
50
100
500
1000
5000
10000

Configuration 2

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
10

00
00

0
25

00
00

0

2 7 12 17 22

● ● ● ● ●

Agents
● 5

10
50
100
500
1000
5000
10000

Configuration 3

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
10

00
00

0
25

00
00

0

2 7 12 17 22

● ● ● ● ●

Agents
● 5

10
50
100
500
1000
5000
10000

Configuration 4

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
10

00
00

20
00

00

2 7 12 17 22

● ● ● ● ●

Agents
● 5

10
50
100
500
1000
5000
10000

Fig. 6: Impact of the configuration on the response time for each Fibonacci number
according to the number of Fibonacci numbers.

time until the creation of some intention to compute a Fibonacci number. This result
also highlights the contrast between Conf. 1, 2, and 3 (on the right). Thus, we can see
that, after Conf. 4, Conf. 1 has the worst deliberation time, while Conf. 2 has some
improvements, and Conf. 3 has the fastest deliberation time. This comparison helps the
MAS developer to decide which configuration to adopt for an application where a fast
deliberation time is necessary, for example, to handle some emergency.

Another interesting descriptor to evaluate the data produced by the experiment is
the standard deviation. Fig. 8 presents the standard deviation of the response time for
each Fibonacci number according to the number of agents. By means of the standard
deviation we can have an idea of how the response times spreads out for each Fibonacci
number. While Conf. 4 has a high and unstable standard deviation, Conf. 1 showed an
increasing standard deviation according to the Fibonacci number to compute, and Conf.
2 and 3 showed a lower and more stable standard deviation. A lower standard deviation
shows that data are more reliable and it is clustered closely around the mean, which
means that we can expect that the computation of new Fibonacci numbers would be
close to the mean too.

Finally, Fig. 9 presents a graphic where the overall MAS execution time for each
configuration is compared according to the number of agents. While Conf. 4 presents
the fastest overall MAS execution time, Conf. 1, 2, and 3 have very close times, with
Conf. 1 showing the worst overall MAS execution time. The faster overall MAS ex-
ecution time for Conf. 4 is explained because each intention runs in an independent

179

Agents

D
el

ib
er

at
io

n
T

im
e

(m
s)

0
50

00
0

15
00

00
25

00
00

5 10 50 100 500 1000 5000 10000

● ● ● ● ● ● ● ●

Configuration

● 1
2
3
4

Agents

D
el

ib
er

at
io

n
T

im
e

(m
s)

0
10

00
20

00
30

00
40

00

5 10 50 100 500 1000 5000 10000

● ● ● ● ●
●

●

●Configuration

● 1
2
3

Fig. 7: Impact of the configuration on the deliberation time for each number of agents.

thread and they are not enqueued in the Pooled intentions queue to be shared with other
threads. The only overhead is caused by the context switch. In the other configurations,
threads select intentions from the Pooled intentions queue. After finishing the execution
of the current deed, threads need to enqueue the intention in Pooled intentions queue
again. A synchronizing mechanism is necessary to control the access to the Pooled in-
tentions queue in order to keep a consistent execution. Threads need to wait for the
Pooled intentions queue be released by the thread that currently owns the access. Thus,
up to 10,000 agents, the overhead caused by the Pooled intentions queue is higher than
the context switch overheads.

4 Discussion

The experiment showed that each configuration has its advantages and disadvantages.
On the one hand, launching intentions in dedicated threads (Conf. 4) showed better
results for an overall MAS execution time and when the response time should not con-
sider the size of the task, but the order in which the agents receive the percepts. On
the other hand, configurations that do not launch intentions in dedicated threads (Conf.
1, 2, and 3) showed better results to react to emergencies. Moreover, considering an
asynchronous execution for the reasoning cycle (Conf. 3), the agents showed the fastest
deliberation time, while sharing thread pools among the agents (Conf. 2 and 3) is a
more suitable configuration if a low standard deviation is important.

The MAS developer should be able to choose the most suitable configuration for
the MAS based on the priorities for the application (e.g. fast response time). However,
because most of the current agent languages have a limited set of concurrency features,
the MAS developer is not able to choose the best configuration. For example, on the
one hand, languages like 2APL [13], GOAL [20], JACK [16], JADE [3], Jadex [28], Ja-
son [4], JIAC [36], simpAL [30], among others, do not provide any option to execute the
reasoning cycle asynchronously. On the other hand, works that adopt an asynchronous
reasoning cycle [39, 22, 19, 11, 12], do not provide any option for a synchronous exe-

180

5 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
20

40
60

80

2 7 12 17 22

● ● ●
●

●

Cfg
● 1

2
3
4

10 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
50

10
0

15
0

2 7 12 17 22

● ● ●
●

●

Cfg
● 1

2
3
4

50 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
20

0
40

0
60

0

2 7 12 17 22

● ● ●
●

●

Cfg
● 1

2
3
4

100 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
50

0
10

00
15

00

2 7 12 17 22

● ● ●
●

●

Cfg
● 1

2
3
4

500 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
20

00
50

00

2 7 12 17 22

● ● ●

●

●

Cfg
● 1

2
3
4

1000 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
50

00
10

00
0

2 7 12 17 22

● ●
●

●

●

Cfg
● 1

2
3
4

5000 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
20

00
0

50
00

0

2 7 12 17 22

● ●
●

●

● Cfg
● 1

2
3
4

10000 Agents

Fibonacci

R
es

po
ns

e
T

im
e

(m
s)

0
40

00
0

10
00

00

2 7 12 17 22

● ●
●

●

●

Cfg
● 1

2
3
4

Fig. 8: Impact of the number of agents on the standard deviation of the response time
for each Fibonacci number according to each configuration (cfg).

cution. The number of threads are also defined differently among the different works.
While some languages use a fixed number of threads for running an MAS based on the
number of agents (Jadex [28], 2APL [13], GOAL [20]), computer cores (simpAL [30]),
or any other policy, other works launch intentions using dedicated threads [23, 41, 12].

Several other features related to concurrency can be identified in the literature, how-
ever they were not included in the experiment performed for this paper. For example,
some works provide operations that can be performed over intentions at run-time, such
as suspend and resume their execution, and inspect their current state [30, 4, 3, 28].
Mechanisms for join/fork are also provided by other works. Hence, it is possible to
write a plan A that calls the plan B and C to run concurrently (in the same or different
threads) and waits for both plans (B and C) to get done to proceed with the execution
of the current plan (plan A) [13, 26]. Another feature is the use of priorities to allow
the agent, based on some policy, to decide which activities to prioritize if it needs to

181

Agents

O
ve

ra
ll

E
xe

cu
tio

n
T

im
e

(m
s)

0e
+

00
2e

+
06

4e
+

06

5 10 50 100 500 1000 5000 10000

● ● ● ● ● ●

●

●Configuration
● 1

2
3
4

Fig. 9: Impact of the configuration on the overall MAS execution time varying the num-
ber of agents.

execute several ones concurrently [40, 14, 32]. Finally, agents can also be composed of
other agents. Sub-agents can be responsible for controlling specific parts of higher level
agent, such as its beliefs or its reactive behavior [19, 12, 31].

The experiment presented in the paper demonstrated evidences that an agent lan-
guage that provides richer options regarding to concurrency allows the MAS developer
to achieve this aim and improve the MAS execution. It is important to notice that the
effects caused by each configuration used in the experiment is strictly related to the sce-
nario of the experiment. Thus, the developer will need to identify the best configuration
always based on the application and its priorities. Moreover, even with the possibil-
ity to specify a wide set of concurrency configurations, some of these configurations
could not be applied in all kinds of scenarios. For example, it does not make sense to
run two threaded intentions that compete to use the same resources (e.g. updating the
same element of the environment). At some point, one intention would need to wait for
the other to release the resource. However, it is possible to use threaded intentions if
they do not compete to use the same resources (e.g. working with different elements
of the environment). In the case of running threaded intentions it would also be nec-
essary to perform deeper experiments adopting other kinds of configurations to clearly
see if it has some advantage or not. The same can be done when the MAS developer
intend to run the agent components concurrently (asynchronously). Sometimes all the
beliefs must be updated before the agent makes decisions. Otherwise, the agent could
use some already outdated belief to select the applicable plans for some event that just
happened. In the Fibonacci scenario, there is no need for the agents to handle all the
percepts before to deliberate. Therefore, the MAS developer must consider not only the
concurrency configuration, but also the characteristics of the MAS application (i.e. the
result of the execution must be consistent).

In this paper, we used a very simple reasoning cycle for both synchronous and asyn-
chronous execution, which were enough to run the experiment. Several issues still need

182

to be addressed in order to execute more complex scenarios. Some of them are how to
deal with new percepts if the agent has not finished to handle the internal events pro-
duced by the old ones; guarantee that the agent will handle emergencies promptly; and
ensure a consistent context especially when the agent is selecting plans to be executed.

Other works that perform some experiments related to agents are presented in [7,6,
1, 17, 2, 25, 5, 34, 38]. However, such works are mostly focused on comparing different
languages, except by the work presented in [38], which makes an comparison among a
parallel BDI agent architecture against sequential BDI agent architectures. As in [38],
the aim of our work is to compare different configurations for agents instead of compar-
ing different languages. The use of different languages to compare different configura-
tions is not possible due effects caused by both variables (language and configuration).
They can be mixed and the results are not reliable to evaluate the configurations.

5 Conclusions and Future Works

In this paper, we performed an experiment to evaluate different concurrency configu-
rations for an MAS. By means of the experiment, we identified the effects caused by
the use of such configurations and demonstrated the importance for an agent language
to provide richer options regarding to concurrency configurations. In the future, we in-
tend to perform further richer/more complex test cases than the Fibonacci described in
the paper to enhance the evaluation and analysis. Finally, we plan to consider further
configurations, with more specific and complex strategies in handling concurrency. For
example, thread pools with a dynamic number of threads, which is chosen and allocated
at run-time so as to optimize the MAS execution according to some objective function.

References
1. J. M. Alberola, J. M. Such, A. Garcia-Fornes, A. Espinosa, and V. Botti. A performance

evaluation of three multiagent platforms. Artif. Intell. Rev., 34(2):145–176, Aug. 2010.
2. T. M. Behrens, K. Hindriks, J. Hubner, and M. M. Dastani. Putting apl platforms to the

test: Agent similarity and execution performance. Technical report, Clausthal University of
Technology, 2010.

3. F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. JADE - a Java agent development frame-
work. In R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors, Multi-
Agent Programming, volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, pages 125–147. Springer, 2005.

4. R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming multi-agent systems in
AgentSpeak using Jason. Wiley, Liverpool, 2007.

5. K. Burbeck, D. Garpe, and S. Nadjm-Tehrani. Scale-up and performance studies of three
agent platforms. In IPCCC 2004: IEEE International Conference on Performance, Comput-
ing, and Communications, Phoenix, AZ, USA, pages 857–863, 2004.

6. R. C. Cardoso, J. F. Hübner, and R. H. Bordini. Benchmarking communication in actor-
and agent-based languages. In M. Cossentino, A. E. Fallah-Seghrouchni, and M. Winikoff,
editors, EMAS@AAMAS, volume 8245 of LNCS, pages 58–77. Springer, 2013.

7. R. C. Cardoso, M. R. Zatelli, J. F. Hübner, and R. H. Bordini. Towards benchmarking actor-
and agent-based programming languages. In Proceedings of the 2013 Workshop on Program-
ming Based on Actors, Agents, and Decentralized Control, AGERE! ’13, pages 115–126,
New York, NY, USA, 2013. ACM.

183

8. F. Cicirelli, A. Furfaro, A. Giordano, and L. Nigro. Performance of a multi-agent system
over a multi-core cluster managed by Terracotta. In Proceedings of the 2011 Symposium
on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, TMS-DEVS ’11,
pages 125–133, San Diego, CA, USA, 2011. Society for Computer Simulation International.

9. F. Cicirelli, A. Furfaro, and L. Nigro. An agent infrastructure over HLA for distributed
simulation of reconfigurable systems and its application to UAV coordination*. Simulation,
85(1):17–32, Jan. 2009.

10. K. Clark and F. McCabe. Go! - a multi-paradigm programming language for implementing
multi-threaded agents. Annals of Mathematics and Artificial Intelligence, 41(2-4):171–206,
2004.

11. A. L. Costa and G. Bittencourt. From a concurrent architecture to a concurrent autonomous
agents architecture. In M. Veloso, E. Pagello, and H. Kitano, editors, RoboCup-99: Robot
Soccer World Cup III, volume 1856 of LNCS, pages 274–285. Springer Berlin Heidelberg,
2000.

12. M. Costa and B. Feijó. An architecture for concurrent reactive agents in real-time animation.
In Brazilian Symposium on Computer Graphics and Image Processing, 1996.

13. M. Dastani. 2APL: A practical agent programming language. Autonomous Agents and
Multi-Agent Systems, 16(3):214–248, June 2008.

14. G. de Giacomo, Y. Lespérance, and H. J. Levesque. ConGolog, a concurrent programming
language based on the situation calculus. Artif. Intell., 121(1-2):109–169, Aug. 2000.

15. L. A. Dennis, M. Fisher, M. P. Webster, and R. H. Bordini. Model checking agent program-
ming languages. Automated Software Engg., 19(1):5–63, Mar. 2012.

16. R. Evertsz, M. Fletcher, R. Jones, J. Jarvis, J. Brusey, and S. Dance. Implementing industrial
multi-agent systems using JACK. In M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni,
editors, PROMAS, volume 3067 of LNCS, pages 18–48. Springer, 2003.

17. V. Fernández, F. Grimaldo, M. Lozano, and J. M. Ordua. Evaluating Jason for distributed
crowd simulations. In J. Filipe, A. L. N. Fred, and B. Sharp, editors, ICAART (2), pages
206–211. INSTICC Press, 2010.

18. V. Fernández-Bauset, F. Grimaldo, M. Lozano, and J. M. Ordua. Tuning java to run interac-
tive multiagent simulations over Jason. In J. Li, editor, Australasian Conference on Artificial
Intelligence, volume 6464 of LNCS, pages 354–363. Springer, 2010.

19. A. Gonzalez, R. Angel, and E. Gonzalez. BDI concurrent architecture oriented to goal man-
agment. In Computing Colombian Conference (8CCC), 2013 8th, pages 1–6, Aug 2013.

20. K. V. Hindriks. Programming rational agents in GOAL. In A. El Fallah Seghrouchni, J. Dix,
M. Dastani, and R. H. Bordini, editors, Multi-Agent Programming:, pages 119–157. Springer
US, 2009.

21. F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time reasoning and
system control. IEEE Expert: Intelligent Systems and Their Applications, 7(6):34–44, Dec.
1992.

22. K. Kostiadis and H. Hu. A multi-threaded approach to simulated soccer agents for the
RoboCup competition. In RoboCup-99: Robot Soccer World Cup III, pages 366–377, Lon-
don, UK, UK, 2000. Springer-Verlag.

23. S.-K. Lee, M. Cho, H.-J. Yoon, S.-B. Eun, H. Yoon, J.-W. Cho, and J. Lee. Design and
implementation of a multi-threaded TMN agent system. In Parallel Processing, 1999. Pro-
ceedings. 1999 International Workshops on, pages 332–337, 1999.

24. M. S. Miller, E. D. Tribble, and J. Shapiro. Concurrency among strangers: Programming in
E as plan coordination. In Proceedings of the 1st International Conference on Trustworthy
Global Computing, TGC’05, pages 195–229, Berlin, Heidelberg, 2005. Springer-Verlag.

25. L. Mulet, J. M. Such, and J. M. Alberola. Performance evaluation of open-source multiagent
platforms. In Proceedings of the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’06, pages 1107–1109, New York, NY, USA, 2006. ACM.

184

26. A. Muscar. Exploring the Design Space of Agent-Oriented Programming Languages. PhD
thesis, University of Craiova, 2013.

27. P. Pérez-Carro, F. Grimaldo, M. Lozano, and J. M. Orduòa. Characterization of the Jason
multiagent platform on multicore processors. Sci. Program., 22(1):21–35, Jan. 2014.

28. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning engine. In R. H. Bor-
dini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors, Multi-Agent Programming,
volume 15 of Multiagent Systems, Artificial Societies, and Simulated Organizations, pages
149–174. Springer, 2005.

29. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
Proceedings of the 7th European Workshop on Modelling Autonomous Agents in a Multi-
agent World : Agents Breaking Away: Agents Breaking Away, MAAMAW ’96, pages 42–55,
Secaucus, NJ, USA, 1996. Springer-Verlag New York, Inc.

30. A. Ricci and A. Santi. Programming abstractions for integrating autonomous and reactive
behaviors: An agent-oriented approach. In Proceedings of the 2Nd Edition on Programming
Systems, Languages and Applications Based on Actors, Agents, and Decentralized Control
Abstractions, AGERE! ’12, pages 83–94, New York, NY, USA, 2012. ACM.

31. S. A. Rodriguez. From analysis to design of holonic multi-agent systems: A framework,
methodological guidelines and applications. PhD thesis, Universit de Technologie de
Belfort-Montbliard and Universit de Franche-Compt, December 2005.

32. S. Sardina, G. De Giacomo, Y. Lespérance, and H. J. Levesque. On the semantics of de-
liberation in Indigolog&Mdash;from theory to implementation. Annals of Mathematics and
Artificial Intelligence, 41(2-4):259–299, Aug. 2004.

33. D. Sislák, M. Rehák, M. Pechoucek, and D. Pavlı́cek. Deployment of A-globe multi-agent
platform. In Proceedings of the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’06, pages 1447–1448, New York, NY, USA, 2006. ACM.

34. P. Vrba. JAVA-based agent platform evaluation. In V. Mark, D. C. McFarlane, and P. Valck-
enaers, editors, HoloMAS, volume 2744 of LNCS, pages 47–58. Springer, 2003.

35. D. Weerasooriya, A. Rao, and K. Ramamohanarao. Design of a concurrent agent-oriented
language. In M. Wooldridge and N. Jennings, editors, Intelligent Agents, volume 890 of
LNCS, pages 386–401. Springer Berlin Heidelberg, 1995.

36. D. Wieczorek and S. Albayrak. Open scalable agent architecture for telecommunication
applications. In S. Albayrak and F. Garijo, editors, Intelligent Agents for Telecommunication
Applications, volume 1437 of LNCS, pages 233–249. Springer Berlin Heidelberg, 1998.

37. H. Zhang and S.-Y. Huang. A parallel BDI agent architecture. In Intelligent Agent Technol-
ogy, IEEE/WIC/ACM International Conference on, pages 157–160, Sept 2005.

38. H. Zhang and S. Y. Huang. Are parallel BDI agents really better? In Proceedings of the 2006
Conference on ECAI 2006: 17th European Conference on Artificial Intelligence August 29
– September 1, 2006, Riva Del Garda, Italy, pages 305–309, Amsterdam, The Netherlands,
The Netherlands, 2006. IOS Press.

39. H. Zhang and S.-Y. Huang. A general framework for parallel BDI agents. In IAT, pages
103–112. IEEE Computer Society, 2006.

40. H. Zhang and S.-Y. Huang. A general framework for parallel BDI agents in dynamic envi-
ronments. Web Intelligence and Agent Systems: An International Journal, 6:327–351, 2008.

41. G.-P. Zheng, Z.-Y. Hou, and X.-N. Yin. Research of the agent technology based on multi-
thread in transformer substation communication. In Machine Learning and Cybernetics,
2006 International Conference on, pages 56–60, 2006.

185

EMAS 2015 Author Index

Author Index

Albayrak, Sahin 117
Alexander, Rob 100

Bagosi, Timea 1
Brunetti, Pietro 152

Ceballos, Hector G. 19
Costantini, Stefania 37
Croatti, Angelo 152
Cuartero-Soler, Nuria 70

Delias, Pavlos 134
Dunin-Keplicz, Barbara 53

Flores-Solorio, Victor 19

Garcia-Rodriguez, Sandra 70
Garćıa-Vázquez, Juan Pablo 19
Gomez-Sanz, Jorge J. 70
Greeff, Joachim De 1

Herd, Benjamin 83
Hindriks, Koen V. 1
Huang, Zhan 100
Hübner, Jomi Fred 169

Küster, Tobias 117

Luck, Michael 83
Lützenberger, Marco 117

McBurney, Peter 83
Miles, Simon 83
Mitakidis, Nektarios 134

Neerincx, Mark A. 1

Ricci, Alessandro 152, 169

Spanoudakis, Nikolaos 134
Strachocka, Alina 53

Viroli, Mirko 152

1
186

EMAS 2015 Author Index

Zatelli, Maicon Rafael 169

2
187

