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1 Introduction

The photoproduction of charm quarks at HERA is a rich testing ground for the predictions

of perturbative quantum chromodynamics (pQCD). The predictions are expected to be

reliable since the charm mass provides a hard scale in the perturbative expansion. The

dominant production mechanism is boson-gluon fusion. Many measurements of charm

photoproduction at high ep centre-of-mass energies,
√
s = 318 GeV or

√
s = 300 GeV, have

been made at HERA [1–16] and compared with QCD predictions at next-to-leading order

(NLO). The description of the data is generally reasonable, although the uncertainties on

the theory are often large.

Previous results on charm photoproduction were obtained at a single ep centre-of-mass

energy; the dependence on the ep centre-of-mass energy is presented here for the first time.

The variation of the cross section with centre-of-mass energy is sensitive to the gluon dis-

tribution in the proton, as different values of Bjorken x are probed. Measurements of D∗±

production at three different centre-of-mass energies,
√
s = 318, 251 and 225 GeV, are

presented in this paper. The variation of
√
s was achieved by varying the proton beam

energy, Ep, while keeping the electron1 beam energy constant, Ee = 27.5 GeV. The data

were collected in 2006 and 2007 with Ep = 920, 575 and 460 GeV, referred to, respectively,

1Hereafter “electron” refers to both electrons and positrons unless otherwise stated.
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as the high- (HER), medium- (MER) and low-energy-running (LER) samples. The cor-

responding luminosities of the HER, MER and LER samples are 144, 6.3 and 13.4 pb−1,

respectively. A common analysis procedure is used for all samples and the cross sections

at different
√
s are presented normalised to that for the HER data, thereby leading to a

cancellation of a number of systematic uncertainties both in data and theory.

2 Experimental set-up

A detailed description of the ZEUS detector can be found elsewhere [17]. A brief outline

of the components that are most relevant for this analysis is given below.

In the kinematic range of the analysis, charged particles were tracked in the central

tracking detector (CTD) [18–20] and the microvertex detector (MVD) [21]. These compo-

nents operated in a magnetic field of 1.43 T provided by a thin superconducting solenoid.

The CTD consisted of 72 cylindrical drift-chamber layers, organised in nine superlayers cov-

ering the polar-angle2 region 15◦ < θ < 164◦. The MVD silicon tracker consisted of a barrel

(BMVD) and a forward (FMVD) section. The BMVD contained three layers and provided

polar-angle coverage for tracks from 30◦ to 150◦. The four-layer FMVD extended the polar-

angle coverage in the forward region to 7◦. For CTD-MVD tracks that pass through all nine

CTD superlayers, the momentum resolution was σ(pT )/pT = 0.0029pT⊕0.0081⊕0.0012/pT ,

with pT in GeV.

The high-resolution uranium-scintillator calorimeter (CAL) [22–25] consisted of three

parts: the forward (FCAL), the barrel (BCAL) and the rear (RCAL) calorimeters. Each

part was subdivided transversely into towers and longitudinally into one electromagnetic

section (EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections

(HAC). The smallest subdivision of the calorimeter was called a cell. The CAL energy res-

olutions, as measured under test-beam conditions, were σ(E)/E = 0.18/
√
E for electrons

and σ(E)/E = 0.35/
√
E for hadrons, with E in GeV.

The luminosity was measured using the Bethe-Heitler reaction ep → eγp by a lu-

minosity detector which consisted of independent lead-scintillator calorimeter [26–28] and

magnetic spectrometer [29] systems. The fractional systematic uncertainty on the mea-

sured luminosity [30] was 1.8 %, composed of correlated and uncorrelated uncertainties of,

respectively, 1.5% and 1%.

3 Event selection and signal extraction

3.1 Photoproduction event selection

A three-level trigger system [17, 31, 32] was used to select events online. The first- and

second-level trigger used CAL and CTD data to select ep collisions and to reject beam-gas

2The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the proton

beam direction, referred to as the “forward direction”, and the X axis pointing towards the centre of HERA.

The coordinate origin is at the centre of the CTD. The pseudorapidity is defined as η = − ln
(

tan θ
2

)

, where

the polar angle, θ, is measured with respect to the Z axis.
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events. At the third level, the full event information was available. In this analysis, triggers

containing a D-meson candidate and/or two jets were used.

In order to remove non-ep background, the Z position of the primary vertex of an

event, Zvtx, was required to be in the range |Zvtx| < 30 cm. Photoproduction events were

selected by requiring that no scattered electron with energy larger than 5 GeV was found

in the CAL [33].

The fraction of the incoming electron momentum carried by the photon, y, was recon-

structed via the Jacquet-Blondel [34] estimator, yJB, using energy-flow objects (EFOs) [35,

36]. Energy-flow objects combine track and calorimeter information to optimise the reso-

lution of the variable. The value of yJB is given by yJB =
∑

iEi(1−cos θi)/2Ee where Ee is

the energy of the electron beam, Ei is the energy of the i-th EFO, θi is its polar angle and

the sum runs over all EFOs. The range 0.167 < yJB < 0.802 was used, where the lower cut

was set by the trigger requirements and the upper cut suppressed remaining events from

deep inelastic scattering with an unidentified low-energy scattered electron in the CAL.

The range in yJB corresponds to reconstructed photon-proton centre-of-mass energy, WJB,

ranges of 130 < WJB < 285 GeV, 103 < WJB < 225 GeV and 92 < WJB < 201 GeV for the

HER, MER and LER samples, respectively.

3.2 Selection of D∗± candidates and signal extraction

The D∗+ mesons3 were identified using the decay channel D∗+ → D0π+
s with the subse-

quent decay D0 → K−π+, where π+
s refers to a low-momentum (“slow”) pion accompa-

nying the D0. Tracks from the D∗+ decay products were required to have at least one hit

in the MVD and in the inner superlayer of the CTD and to reach at least the third CTD

superlayer. Tracks with opposite charge and with transverse momentum pK,π
T > 0.4 GeV

were combined in pairs to form D0 candidates. The tracks were alternately assigned the

kaon and pion mass and the invariant mass of the pair, M(Kπ), was calculated. Each ad-

ditional track with charge opposite to that of the kaon track and a transverse momentum

pπs

T > 0.12 GeV was assigned the pion mass and combined with the D0 candidate to form

a D∗+ candidate. Since more combinatorial background exists in the forward direction

as well as at low pD
∗

T [14], this was suppressed by requiring pD
∗

T /Eθ>10◦

T > 0.12, where

pD
∗

T is the transverse momentum of the D∗+ meson and Eθ>10◦

T is the transverse energy

measured using all CAL cells outside a cone of 10◦ around the forward direction. The

mass difference ∆M ≡ M(Kππs) −M(Kπ) was used to extract the D∗+ signal. The D∗+

candidates were required to have 1.83 < M(Kπ) < 1.90 GeV, 0.143 < ∆M < 0.148 GeV,

1.9 < pD
∗

T < 20 GeV and pseudorapidity, |ηD∗ | < 1.6. To allow the background to be de-

termined, D0 candidates with wrong-sign combinations, in which both tracks forming the

D0 candidates have the same charge and the third track has the opposite charge, were also

retained. The same kinematic restrictions were applied as for those D0 candidates with

correct-charge combinations.

The distributions of ∆M for D∗+ candidates in the HER, MER and LER periods,

without the requirement on ∆M , are shown in figures 1–3. Clear D∗+ peaks are seen.

3Hereafter the charge conjugated states are implied.
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Figure 1. Distribution of the mass difference, ∆M ≡ M(Kππs)−M(Kπ), for the D∗± candidates

for the HER (
√
s = 318 GeV) data sample. The candidates are shown for correct-sign (filled circles)

and wrong-sign combinations (empty circles). The background fit is shown as a short-dashed (long-

dashed) line for correct-sign (wrong-sign) combinations. The D∗± signal region is marked as a

shaded area.

The D∗+ signal was extracted by subtracting the correct-sign background estimate from

the number of candidates in the signal window 0.143 < ∆M < 0.148 GeV. The shape of

the background was determined by performing a simultaneous fit to the correct-sign and

wrong-sign distributions, as outlined in a previous publication [37]. The fit was performed

in the region ∆M < 0.168 GeV; the region with a possible signal contribution, 0.140 <

∆M < 0.150 GeV, was removed from the fit to the correct-sign distribution. The total

signals are ND∗

HER
= 12256 ± 191, ND∗

MER
= 417 ± 37 and ND∗

LER
= 859 ± 49 for the HER,

MER and LER samples, respectively.

4 Monte Carlo samples

The acceptance and effects of detector response were determined using samples of simulated

events. The Monte Carlo (MC) programme Pythia 6.221 [38, 39], which implements

leading-order matrix elements, followed by parton showers and hadronisation, was used.

Different subprocesses were generated separately [15]. The CTEQ5L [40] and GRV-LO [41,
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Figure 2. Distribution of the mass difference, ∆M ≡ M(Kππs)−M(Kπ), for the D∗± candidates

for the MER (
√
s = 251 GeV) data sample. Other details as in figure 1.

42] sets were used for the proton and photon parton density functions (PDFs), respectively.

Samples of charm and beauty events were generated with quark masses, mc = 1.5 GeV and

mb = 4.75 GeV.

The generated MC events were passed through the ZEUS detector and trigger simula-

tion programmes based on Geant 3.21 [43]. They were then reconstructed and analysed

using the same programmes as used for the data.

5 QCD calculations

The data are compared with an NLO QCD prediction from Frixione et al. [44, 45] in the

fixed-flavour-number scheme (FFNS), in which only light flavours and gluons are present

as partons in the proton and heavy quarks are produced in the hard interaction [46]. The

following input parameters were set in the calculation: the renormalisation and factori-

sation scales were set to µ =
√

m2
c + p̂2T , where p̂T is the average transverse momentum

of the charm quarks and the pole mass was mc = 1.5 GeV; the proton and photon PDFs

were ZEUS-S 3-flavour FFNS [47] and GRV-G HO [41, 42]; the value of the strong cou-

pling constant was αs(MZ) = 0.118 for five flavours; and the parameter, ǫ, in the Peterson

fragmentation function [48] was ǫ = 0.079 [49]. The contribution to the D∗+ visible cross

– 5 –
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Figure 3. Distribution of the mass difference, ∆M ≡ M(Kππs)−M(Kπ), for the D∗± candidates

for the LER (
√
s = 225 GeV) data sample. Other details as in figure 1.

section from beauty production is predicted by MC to be about 2.5%. This value was the

same to within 0.1% for all three data sets. Therefore, the beauty contribution cancelled

and the uncertainty was negligible when the cross sections were normalised. Hence, the

beauty component was not included in the predictions.

Several sources of theoretical uncertainty were investigated and are listed in the fol-

lowing, with the respective effects on the (MER, LER) samples normalised to the HER

data given in parentheses:

• the renormalisation and factorisation scales were changed independently to 0.5 and 2

times their nominal value. The largest change in the positive and negative direction

was taken as the systematic uncertainty (+3.5
−1.6%, +5.2

−2.3%);

• the fragmentation parameter ǫ was varied in the range [49, 50] from 0.006 to 0.092

(+1.5
−0.1%, +2.3

−0.2%);

• the proton PDF was changed to the ABM11 3-flavour FFNS [51] parametrisations

(+0.9%, +1.3%);

• the value of mc was changed to 1.35 and 1.65 GeV (+0.1
−0.2%, +0.1

−0.3%).
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Figure 4. Distributions of (a) pD
∗

T , (b) ηD
∗

and (c) WJB for D∗ mesons in the HER (
√
s = 318 GeV)

data sample (points) compared with a mixture of charm and beauty events from the Pythia MC

simulation (histogram).

6 Determination of normalised cross sections

Visible D∗+ photoproduction cross sections in the kinematic region 1.9 < pD
∗

T < 20 GeV,

|ηD∗ | < 1.6, Q2 < 1 GeV2 and 0.167 < y < 0.802 were obtained using the formula

σvis =
ND∗

data

A ·BR · L ,

where ND∗

data
is the number of D∗+ mesons in the data, BR is the product of the branching

fractions of the decay D∗+ → D0π+
s with D0 → K−π+ and L is the integrated luminosity

of the respective sample. The acceptance, A, is given by the ratio of the number of

reconstructed to generated D∗+ mesons in the MC simulation, using a mix of charm and

beauty production. The sample of beauty MC events, both reconstructed and generated,

was scaled by a factor of 1.6, consistent with previous ZEUS measurements [15, 16, 52].

In order to optimise the description of the data and hence determine the acceptances as

accurately as possible, the MC was reweighted in WJB for the HER sample and in pD
∗

T

for the HER, MER and LER data samples. The comparison of background-subtracted

data and MC after these reweightings is shown in figures 4, 5 and 6, for the HER, MER

and LER samples, respectively. The description of the data is reasonable, also for the ηD
∗

distributions, for which no reweighting was performed.
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Figure 5. Distributions of (a) pD
∗

T , (b) ηD
∗

and (c) WJB for D∗ mesons in the MER (
√
s = 251 GeV)

data sample (points) compared with a mixture of charm and beauty events from the Pythia MC

simulation (histogram).

The measured cross sections were normalised to the HER data sample:

RHER,MER,LER
σ = σHER,MER,LER

vis
/σHER

vis .

This allowed the energy dependence of the cross section to be studied to higher preci-

sion as a number of systematic uncertainties in data and theory cancel.

The following sources of systematic uncertainty were considered [53], with the effect

on RMER
σ and RLER

σ given in parentheses:

• the lower and upper WJB cuts for data and reconstructed MC events were changed

by ±5 GeV in order to assess the effects of the resolution of WJB and the impact of

any residual backgrounds (+0.7
−0.8%, +2.1

−2.1%);

• the forms of the functions used for MC reweighting in WJB (HER only) and pD
∗

T were

varied within the uncertainties determined from the quality of the description of the

data (+1.4
−1.4%, +3.2

−1.3%);

• the lower and upper mass requirements for the D0 were varied to 1.80 GeV and

1.93 GeV, both in data and MC. This and the following two sources were performed

to assess the uncertainty coming from estimation of the combinatorial background

(−6.7%, +0.7
−4.1%);
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Figure 6. Distributions of (a) pD
∗

T , (b) ηD
∗

and (c) WJB for D∗ mesons in the LER (
√
s = 225 GeV)

data sample (points) compared with a mixture of charm and beauty events from the Pythia MC

simulation (histogram).

• the upper edge of the fit range in the ∆M distribution was changed to 0.165 GeV,

both in data and MC (−0.7%, −1.9%);

• the minimum requirement on the ratio pD
∗

T /Eθ>10◦

T was varied between 0.05 and 0.20,

both in data and MC (+2.0
−2.3%, +2.1

−1.1%);

• the uncorrelated uncertainty in the luminosity determination (±1.4%, ±1.4%).

The above systematic uncertainties were added in quadrature separately for positive

and negative variations. Other sources of systematic uncertainty were found to be negli-

gible and were ignored. These included the uncertainties on the track-finding efficiency,

additional reweighting of the MC samples in ηD
∗

as well as from the fraction of beauty

events used in the acceptance correction. As a cross-check, the number of D∗+ mesons was

also extracted by subtracting the wrong-sign from the correct-sign distribution; the result

was consistent with the nominal procedure.

The statistical uncertainties for RMER
σ and RLER

σ include that from the HER sample,

although the uncertainties from the MER and LER dominate. The systematic uncertainties

also contain contributions from the HER result which are fully correlated between the LER

and MER measurements.
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7 Energy dependence of D∗+ cross sections

Ratios of visible D∗+ photoproduction cross sections have been measured in the kinematic

region 1.9 < pD
∗

T < 20 GeV, |ηD∗ | < 1.6, Q2 < 1 GeV2 and 0.167 < y < 0.802. The range in

y corresponds to photon-proton centre-of-mass energy, W , ranges of 130 < W < 285 GeV,

103 < W < 225 GeV and 92 < W < 201 GeV in the HER, MER and LER samples,

respectively. The ratios of the visible cross sections for the MER and LER samples to that

of the HER sample are:

RMER
σ = 0.780 ± 0.074(stat.)+0.022

−0.058(syst.)

RLER
σ = 0.786 ± 0.049(stat.)+0.037

−0.043(syst.) .

These values, along with RHER
σ (by constraint equal to unity), are shown in figure 7.

The cross sections for the MER and LER samples are compatible within uncertainties, but

significantly smaller than the cross section for the HER data. This behaviour of increasing

cross section with increasing ep centre-of-mass energy is predicted well by Pythia MC

simulations and NLO QCD, although the predictions have a somewhat different slope. This

shows that the proton PDFs constrained primarily from inclusive deep inelastic scattering

data are able to describe this complementary process which probes in particular the gluon

distribution. The physics possibilities of future colliders such as the Large Hadron Electron

Collider (LHeC) [54, 55] are studied using current NLO QCD calculations. The results

shown here enhance confidence in the NLO QCD predictions of charm production rates,

specifically, and QCD processes, in general, for a future TeV-scale ep collider.

8 Summary

Photoproduction of D∗± mesons has been measured at HERA at three different ep centre-

of-mass energies,
√
s = 318, 251 and 225 GeV. For D∗± mesons in the range 1.9 < pD

∗

T <

20 GeV and |ηD∗ | < 1.6, cross sections normalised to the result at
√
s = 318 GeV were

measured. Photoproduction events were selected in the range Q2 < 1 GeV2 and 0.167 <

y < 0.802 where the range in y corresponds to the photon-proton centre-of-mass energies

of 130 < W < 285 GeV, 103 < W < 225 GeV and 92 < W < 201 GeV. The cross sections,

normalised to that for the highest
√
s, show an increase with increasing

√
s. This is

predicted well by perturbative QCD, demonstrating consistency of the gluon distribution

probed here with that extracted in PDF fits to inclusive deep inelastic scattering data.
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Figure 7. Normalised D∗ visible photoproduction cross sections as a function of the ep centre-

of-mass energy. The data (points) are shown with statistical uncertainties (inner error bars) and

statistical and systematic uncertainties added in quadrature (outer error bars). The predictions

from NLO QCD (solid line) are shown with the uncertainties given in section 5 added in quadrature

separately for positive and negative variations (band). A prediction from the Pythia MC simulation

is also shown (dashed line). The data and theory at
√
s = 318 GeV are constrained by definition

to be at unity, with no uncertainty. At each data point, the average photon-proton centre-of-mass

energy, 〈W 〉, is also given.
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