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Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data 
of the reaction p(3.5 GeV) + p → pK +Λ. This reaction might contain information about the kaonic 
cluster “ppK −” (with quantum numbers J P = 0− and total isospin I = 1/2) via its decay into pΛ. Due to 
interference effects in our coherent description of the data, a hypothetical K N N (or, specifically “ppK −”) 
cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass 
spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states 
and delivers a good description of our data (various angular distributions and two-hadron invariant mass 
spectra) without a contribution of a K N N cluster. At a confidence level of CLs = 95% such a cluster cannot
contribute more than 2–12% to the total cross section with a pK +Λ final state, which translates into a 
production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends 
on the assumed cluster mass, width and production process.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Quantum chromodynamics (QCD), in the low energy sector, is 
also a theory of hadrons. To describe such degrees of freedom 
one can use effective theories, which allow among other issues for 
the quantitative handling of meson baryon interactions. Restricting 
further the considerations to the SU(3) flavor sub-sector, the K N
interaction is of long standing interest [1–3]. Since the interaction 
of K (anti-kaon) and N (nucleons) was found to be attractive, par-
ticularly in the I = 0 channel, speculation about the existence of 
bound systems, like the three-body state K N N , emerged [4]. Most 
of the employed K N potentials are based on the chiral meson–
baryon (MB) interaction which is evaluated by coupled-channel 
calculations [1–3]. Experimentally, the K N interaction in vacuum 
is probed by K − p scattering experiments and capture at rest ex-
periments [5,6]. The so-obtained potentials can be used as input 
to solve few-body problems like the K N N bound state in Fad-
deev or variational calculations. An overview thereof is given in the 
tables of Refs. [7,8]. Nowadays, the discussion in this field concen-
trates mainly on the question whether the K N N system is bound 
deeply (40–100 MeV [9–14]) or shallow (10–30 MeV [15–19]). The 
predicted widths generally exceed 40 MeV which complicates an 
experimental observation. Moreover, many theoretical works only 
discuss the mesonic (Y Nπ ) decay width of the K N N state, while 
experimental analyses focus on the non-mesonic (Y N) decay chan-
nel pΛ.

The discovery of kaonic nuclear bound states would deliver 
quantitative information about the strength of the binding of K to 
nucleons. This information could also help to understand a partic-
ular aspect of astronomical objects namely the interior of neutron 
stars [20,21]. In the inner core of these objects strange degrees 
of freedom could be favored to decrease the Fermi pressure by a 
condensation of kaons. The discovered neutron stars with masses 
around 2M� [22,23] put, however, tight constraints on the stiff-
ness of neutron star matter which is hardly compatible with a 
large fraction of condensed kaons [24], as this generally softens 
the equation of state. In this context, the depth of the K N poten-
tial determines the maximum neutron star mass so that the study 
of kaonic nuclear bound states might help to answer the question 
on possible kaon condensation in neutron stars [25].

So far, the discovery of a K N N bound state was claimed by 
three experiments on the basis of measured pΛ invariant mass 
(MpΛ) spectra. The signal from FINUDA (M =
2255+6

−5(stat)+3
−4(syst) MeV/c2, Γ = 67+14

−11(stat)+2
−3(syst) MeV/c2) 

was reconstructed from stopped K − on thin nuclear targets 
[26]. The OBELIX signal (M = 2212.2 ± 4.9 MeV/c2, Γ < 24.4 ±
8 MeV/c2) was extracted from a multi-particle final state in 
p + 4He reactions [27], and the DISTO signal [28] was deduced 
from the same reaction as in our work by searching for devi-
ations of the measured spectra from phase space distributions. 
A deviation in the MpΛ spectra was found and associated with 
a K N N signal (M = 2267 ± 3(stat) ± 5(syst) MeV/c2, Γ = 118 ±
8(stat) ± 10(syst) MeV/c2). This deviation was found only for the 
reaction p + p at a beam energy of 2.85 GeV, while absent at 
2.5 GeV [29]. Since all the reported signals differ from each other 
and are, moreover, criticized [30–34], an experimental confirma-
tion of the theoretical predictions is far from being established. 
Besides these findings, recently the LEPS and J-Parc E15 Collabora-
tions have reported on upper limits for the differential production 
cross section of a K N N bound state in the d(γ , K +π−)X reaction 
and via the in-flight 3He(K −, n)X reaction, respectively. The re-
ported upper limits depend on the assumed mass and width [35,
36]. There are further results in this topic awaited, as the prelim-
inary reports from the E27 (d(π+, K +)X) and LEPS (d(γ , K +)X) 
experiments show [37,38].

In the present work, open strangeness production via the reac-
tion

p + p 3.5 GeV−−−−→ p + K + + Λ (1)

p + π−

is studied. This final state might reveal information of an inter-
mediate production of the lightest kaonic nuclear cluster (K N N), 
named “ppK −” with quantum numbers J P = 0− and total isospin 
I = 1/2 [4], via its decay into a pΛ pair. The underlying hypoth-
esis for this reaction is that the possible formation of the K N N
cluster could proceed through the so-called Λ(1405) doorway [9,
39], i.e. the final state Λ(1405) + p + K + is formed in a first step 
while, subsequently, the final state interaction of the Λ(1405) and 
the proton leads to the formation of a Λ(1405)–p bound state. The 
hypothesis stated in Ref. [39] claims that the cross section for this 
process is very high due to the large momentum transfer and the 
resulting short range p–p interaction. The Λ(1405)–p system is 
well known from variational calculations, where the density distri-
butions of the K N N constituents suggests that the meson–baryon 
structure of the Λ(1405) is nearly unchanged in the three-body 
system, making it essentially a Λ(1405)–p bound state [16,39]. 
The groundwork of the analysis, presented here, was a measure-
ment of the Λ(1405) production cross section and its kinematics 
in the very same reaction [40]. Conclusions out of this result and 
the ones presented here are discussed at the end of this work.

Since several experiments have studied reaction (1) and dis-
covered that it is dominated by the presence of N∗ resonances 
which decay into a K +Λ pair via p + p → p + (N∗ → Λ + K +)

http://creativecommons.org/licenses/by/4.0/
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[41–44], the dynamics of this process have to be modeled with 
care. A phase space model description of the data, without taking 
into account the dynamics of the process, is, thus, insufficient [45,
46]. A very appropriate tool for such studies is a partial wave anal-
ysis, since it allows a description of the data taking into account 
intermediate resonant and non-resonant processes. In addition, it 
allows to include the possible contribution of a kaonic nuclear 
cluster in a consistent way which respects the quantum numbers 
of the latter. One of the previous experiments has measured pro-
cess (1) at 30 and 50 GeV/c incident momentum and performed 
a partial wave analysis (PWA) of the experimental data [41]. Be-
side this attempt, the work presented here constitutes the first 
application of a PWA to open strangeness production in p + p
collisions in the few GeV region. In order to understand qualita-
tively how the different intermediate resonant and non-resonant 
processes contribute to the production of final state (1), we utilize 
the Bonn–Gatchina PWA framework [47,48]. This understanding is 
important, as these processes are the main contributions for the 
kaonic cluster search.

The analysis starts with the selection of those p + p collisions 
which produce the exclusive final state pK +Λ. Then a PWA with 
different intermediate N∗ resonant and non-resonant production 
processes is used to describe our data. Any deviation of the so-
obtained PWA-based model from the experimental data, particu-
larly in the pΛ mass spectrum, might indicate the presence of a 
new signal. The observation of no significant deviation leads to the 
establishment of an upper limit on its production strength for a 
set of assumptions about the postulated “ppK −” state.

2. The experiment

The p + p experiment was carried out with the High-Acceptance
Di-Electron Spectrometer (HADES) at the SIS18 synchrotron (GSI 
Helmholtzzentrum in Darmstadt, Germany). A Forward Wall ho-
doscope (FW) has been installed 7 m downstream the HADES 
target. It delivers a time information with a resolution of around 
700 ps and covers polar angles from 0.33◦ to 7.17◦ . This detector 
was partially utilized to detect the decay proton from the Λ in re-
action (1). For more information about the experimental setup and 
particle identification we refer to Ref. [49].

In the present experiment, a beam of protons with 3.5 GeV ki-
netic energy was incident on a liquid hydrogen target. The total 
recorded statistic contains 1.2 × 109 events which fulfill the first-
level trigger condition demanding at least three hits in the TOF 
detectors.

Out of these events the final state of (1) has been selected. Two 
data-sets have been defined for the exclusive analysis: one, where 
all four particles were detected by the main HADES spectrometer 
(called HADES data-set) and one, where the secondary proton from 
the Λ decay hit the FW, while the other three particles were de-
tected by HADES (called WALL data-set). In both cases a kinematic 
fit was applied to select the pK +Λ final state exclusively, and the 
kaon mass distribution was used to reject part of the remaining 
background [46]. The main source of physical background after the 
event selection comes from

p + p → p + K + + Σ0, (2)

that contributes to the selected events with 1% and 3% in the 
HADES and WALL data-sets, respectively. Additional background 
originates from the mis-identification of pions and protons as 
kaons. This background amounts to 6.5% (HADES case), and 11.7% 
(WALL case). After the event selection a total number of 22,000 
pK +Λ events1 remains for the analysis which is a sufficiently large 
statistic.

3. The partial wave analysis

The analysis of the measured pK +Λ events was performed 
with the Bonn–Gatchina partial wave analysis framework [47,48]. 
This PWA allows to decompose the baryon–baryon scattering am-
plitude into separate sub-processes characterized by different in-
termediate states. For the investigated process, where three parti-
cles with four-momenta q j are produced from a collision of two 
particles with four-momenta k j , the production cross-section can 
be written as [50]

dσ = (2π)4|A|2
4|k|√s

dΦ3(P ,q1,q2,q3), (3)

with P = k1 + k2. (4)

Here, A is the transition amplitude, |k| the beam momentum in 
the p–p center-of-mass system, 

√
s the center-of-mass energy of 

the reaction and dΦ3 the phase space element of the three-particle 
final state. The transition amplitude A is decomposed into partial 
waves according to [50]

A =
∑

α

Aα
tr Q in

μ1...μ J
(S, L, J )Aα

2b(S2, L2, J2)(s j)

× Q fin
μ1...μ J

(
j, S2, L2, J2, S ′, L′, J

)
. (5)

Where S , L, J represent the combined spin, orbital momentum 
and total angular momentum of the initial p + p system. For our 
experiment, we only consider states with J < 3 which translates in 
the following allowed initial states: 2S+1 L J = {1 S0, 3 P0, 3 P1, 3 P2,
1 D2, 3 F2}.

Aα
tr is the transition amplitude from the initial to the inter-

mediate quasi-two-body state, where the index α runs over all 
allowed combinations of the final state quantum numbers. As our 
data were taken at a fixed energy the amplitude is parametrized 
as follows

Aα
tr = aα

1 eiaα
2 . (6)

This description shows a production constant aα
1 with a phase aα

2 . 
The nonzero phase is necessary due to three body interaction pro-
cesses (e.g. triangle diagrams which have logarithmic singularities), 
see Ref. [47].

The production of the pK +Λ final state might proceed either 
directly or via intermediate N∗ resonances. In the former case a 
pΛ subsystem is constructed, and the kaon is treated with re-
spect to this system. In the latter case, the K + and the Λ form 
the N∗ resonance, and the proton is treated with respect to this 
system. s j is the invariant mass of the two-particle subsystem: 
s j = (P − q j)

2, given q j the four-momentum of the third parti-
cle. In our case only the two particle systems pΛ and K +Λ are 
considered. The quantum numbers S2, L2, J2 contain the informa-
tion about the subsystem, while the third particle K + or proton 
is assigned with the quantum numbers S ′ , L′ , J , respectively. The 
quantities Q in

μ1...μ J
(S, L, J ) and Q fin

μ1...μ J ( j, S2, L2, J2, S ′, L′, J ) are 
the spin-momentum operators of the initial and final states re-
spectively, which amongst others contain the angular dependence 
of the scattering amplitude [47,48,51].

The amplitude Aα
2b(S2, L2, J2)(s j) of the two-body subsystem in 

Eq. (5) contains either: the elastic scattering of the proton and the 

1 13,000 events from the HADES data-set and 9000 events from the WALL data-
set.
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Fig. 1. Angular correlations for the pK +Λ final state, within the detector acceptance, shown for the HADES data-set. Black dots are the experimental data with their statistical 
uncertainty while the gray band shows the four best solutions of the PWA and displays their systematic differences. The upper index at the angle indicates the rest frame 
(RF) in which the angle is displayed. The lower index names the two particles between which the angle is evaluated. CM stands for the center-of-mass system. B and T 
denote the beam and target vectors, respectively. The observables are: CMS angles (upper row), Gottfied–Jackson angles (middle), and helicity angles (lower row). For further 
details on the observables see Ref. [55].
Λ in non-resonant production processes or the production of N∗
resonances parametrized by a relativistic Breit–Wigner amplitude 
[47].

The Bonn–Gatchina PWA performs a global fit of the data which 
implies that external resonance parameters are needed. In fact, 
the parameters aα

1 and aα
2 in Eq. (6) are the only free fit pa-

rameters. The parameters of resonances with an observed decay 
into the K +Λ channel and masses accessible in the probed en-
ergy regime are taken from Ref. [52]: N(1650) 1

2
−

, N(1710) 1
2

+
, 

N(1720) 3
2

+
, N(1875) 3

2
−

, N(1880) 1
2

+
, N(1895) 1

2
−

, and N(1900) 3
2

+

(the N(1880) and N(1895) only have a two star rating). The input 
waves build an ansatz for the PWA which is fitted on an event-
by-event basis to the data. The angular dependencies of the partial 
wave amplitudes are constructed using the four-vectors measured 
inside of the detector acceptance. The fitted parameters aα

1 and aα
2

in Eq. (6) are optimized to gain the maximum of the likelihood 
function. This value is calculated as the product of probabilities for 
all measured events normalized to the total cross section obtained 
within the HADES acceptance. The retrieved solutions allow us to 
reconstruct the multi dimensional detector acceptance using a set 
of full-scale phase space simulations.
Table 1
Different sets of non-resonant and resonant waves used as PWA input. The non-
resonant waves are described by an (pΛ) isobar with the quantum numbers written 
in the spectroscopic notation (2S+1) L J and displayed in the brackets. Additionally, 
the kaon can have various angular momenta with respect to the pΛ system in each 
displayed wave.

No. Non-resonant contributions No. Resonant contributions

0 no waves 0 N(1650), N(1710), N(1720)

1 (1 S0) 1 No. 0 + N(1900)

2 No. 1 + (3 S1) 2 No. 0 + N(1895)

3 No. 2 + (1 P1) 3 No. 0 + N(1880)

4 No. 3 + (3 P0) 4 No. 0 + N(1875)

5 No. 4 + (3 P1) 5 No. 0 + N(1900), N(1880)

6 No. 5 + (3 P2) 6 No. 0 + N(1900), N(1895)

7 No. 6 + (1 D2) 7 No. 0 + N(1900), N(1875)

8 No. 7 + (3 D1) 8 No. 0 + N(1895), N(1880)

9 No. 8 + (3 D2) 9 No. 0 + N(1895), N(1875)

10 No. 0 + N(1880), N(1875)

11 all resonances w/o No. 0

To account for the uncertainties on the existence and proper-
ties of some of the listed resonances, different ansatzes have been 
fitted to the data. Table 1 contains ten versions of non-resonant 
production waves (left part) and twelve versions of N∗ resonances 
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Fig. 2. Two-particle mass distributions for the pK +Λ final state, within the detector acceptance, shown for the HADES (upper panels) and WALL data-sets (lower panels), 
respectively. Black dots are the experimental data with their statistical uncertainty while the gray band shows the four best solutions of the PWA and displays their systematic 
differences.
(right part) which were used as intermediate states. Their combi-
nation yields 120 different ansatzes that were fitted to the data. 
The goodness of a fit is characterized by the negative of the log-
likelihood value that has been minimized in the fitting procedure. 
To account for the systematic uncertainty on the choice of the 
included waves in the fit result, the four best solutions of this 
systematic variation were taken as the result of the fit. These so-
lutions are: Nos. 8/1, 8/3, 9/6, and 8/8 (Non-resonant/Resonant 
combination), of which solution 9/6 had the best log-likelihood 
value. The fact that these combinations describe the data equally 
well, although the resonances used in the ansatz of the PWA were 
different, shows that the two data-sets are not sufficient for the 
PWA to determine the unique resonance contributions to the con-
sidered final state. To exhibit the quality of the four PWA solutions, 
the theoretical differential cross sections, calculated within the 
HADES acceptance, are scaled to the experimental data in Figs. 1
and 2, which show several angle and mass distributions. The gray 
band includes the four best solutions and displays their system-
atic differences which are small despite their content differs quite 
strongly from one another. The agreement between data and the 
PWA solutions is excellent. To test effects that might bias the re-
sult of the PWA fit, several checks have been performed. These 
are discussed in Refs. [53,54]. One check shows that the fraction 
of background events in the data does not decrease the predictive 
power of the fit [53] and the other check was performed to test 
whether an unknown signal that is in the data might bias the re-
sult of the PWA [54].

4. The hypothesis tests and the upper limit

The four best PWA solutions were used as a null hypothesis 
H0 for the existence of the kaonic nuclear bound state with its 
decay into pΛ. A significant deviation of the data from the PWA 
results might indicate the presence of an additional signal, like the 
K N N . The discrepancy between the measured data and the null 
hypothesis as a function of the pΛ invariant mass was determined 
based on a local p0-value [54]. The combined result of this hypoth-
Fig. 3. The local p0 value and the equivalent significance for different masses of pΛ. 
It is calculated based on the mass spectra from the HADES and WALL data. The gray 
hatched range is due to the systematic uncertainty between the four best solutions 
of the PWA.

esis test including both mass spectra (HADES and WALL data) is 
shown in Fig. 3. The different p0-values of the four PWA solutions 
were combined to a gray band. The local p0-value and its accord-
ing equivalent significance, shown in units of nσ , reveals a good 
agreement between H0 and the data.2 In the possible mass range 
of the kaonic nuclear bound state 2054–2370 MeV/c2 the agree-
ment is always within 2σ . Hence, the data are consistent with 
H0 and we do not observe any significant contribution of a yet 
unknown signal, like the K N N , to the data. This conclusion does 
also hold for the separate local p0-values for the HADES and WALL 
data, as shown in Ref. [54].

In a next step the data were tested against several signal hy-
potheses to determine an upper limit of the K N N contribution 
to the data. For that purpose, the K N N signal has been included 
as a wave to the PWA solution. The K N N was parametrized as 

2 A correct hypothesis will produce p-values uniformly distributed between 0 
and 1. If the H0 hypothesis is false the p-values should be distributed more likely 
at very small values. This is a necessary condition for the presence of a new signal 
in the data.
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Fig. 4. The upper limit of the K N N production strength at a CLs value of 95%. The limit is quoted in % of the total pK +Λ production cross section of the investigated reaction. 
The three figures display the limits for the three transition amplitudes in which the cluster can be produced (0+ left panel, 1− middle panel, and 2+ right panel).
a Breit–Wigner in the pΛ system. As the mass and width of 
the state are not known, we have tested signals with masses of 
2220–2370 MeV/c2 in steps of 10 MeV/c2. For the width, values of 
30, 50, and 70 MeV/c2 were combined with each mass. The K N N
state with the quantum numbers J P = 0− [4] can be produced 
out of three initial p + p configurations: 2S+1 L J = {1 S0, 3 P1, 1 D2}
which corresponds to waves with J P = 0+, 1−, and 2+ , respec-
tively. The K N N has been included in the fit in these three waves 
separately. In the new PWA solution the amplitude aα

1 in Eq. (6)
was increased step-wise, while the phase of the K N N wave was 
freely varied. This phase determines the interference patterns that 
are caused by the wave. Due to this effect a larger signal can be 
included into the solution with a less pronounced appearance in 
the mass spectrum.

The upper limit was determined with the CLs method (confi-
dence level of the signal), which is ideal for setting signal limits in 
case of low sensitivity [52,56–58], and was calculated based on the 
pΛ invariant mass distribution. An amplitude strength that corre-
sponds approximately to the less than 5% most likely outcomes of 
the measured data, given the signal hypothesis, was rejected by 
the test (CLs-value higher than 95%). This amplitude scan was re-
peated for each of the four PWA solutions and the highest of the 
four limits is presented in Fig. 4. It shows an upper limit of the 
K N N cluster production as a function of the hypothetical mass in % 
of the total pK +Λ production cross section. This cross section was 
determined to σpK +Λ(3.5 GeV) = 38.12 ± 0.43+3.55

−2.83 ± 2.67–2.86 μb
(statistical, systematical and normalization uncertainty are given 
with the result, as well as the contribution from background that 
needs to be subtracted) [53] and allows thus to quote the upper 
limit of a K N N bound state production cross section, which reads 
1.8–3.9 μb, 2.1–4.2 μb, and 0.7–2.1 μb, respectively.

5. Summary and conclusion

We have performed a partial wave analysis (PWA) of pK +Λ

events to search for signals of the hypothetical kaonic nuclear clus-
ter “ppK −”. The two analyzed data-sets do not allow to pin down 
the exact contribution of the N∗ resonances to the pK +Λ final 
state. Our approach, together with a more comprehensive analysis 
of many pK +Λ data-sets at several beam energies, could, however, 
be the right way to resolve this issue. The description of the data 
by PWA solutions, including only known sources, is satisfactory, so 
that no convincing argument requesting a new signal is needed. 
Adding, nevertheless, an assumed K N N signal into the PWA we 
tested quantitatively a signal hypothesis against the data. This test 
was performed at a CLs level of 95%. Due to this limit we have ac-
cepted the about 5% most unlikely data outcomes, given the model, 
to set the upper limit. The limit on the kaonic cluster production 
strength in the mass range M = 2220–2370 MeV/c2 and assum-
ing widths of Γ = 30, 50, and 70 MeV/c2 is given for the three 
possible production waves J P = {0+, 1−, 2+}. The limits lie be-
tween 5–11% (0+), 6–12% (1−), and 2–6% (2+) of the total pK +Λ

production cross section. Using the extracted cross section from 
σpK +Λ(3.5 GeV), this translates into upper limits of 1.8–3.9 μb, 
2.1–4.2 μb, and 0.7–2.1 μb for the K N N cluster production cross 
section, respectively. These limits are not comparable to searches 
[35,36] which rely on incoherent analyses, as in these analyses a 
cross section is defined as an observed, rather than a produced 
yield. We emphasize, therefore, that our analysis includes, for the 
first time, interference between the waves. This allows to include a 
larger fraction of produced K N N cluster without a visible appear-
ance e.g. as peaks in the pΛ mass spectrum. We also note that 
our upper limit is given specifically for the pΛ decay channel of 
the kaonic nuclear cluster with the quantum numbers J P = 0− .

The upper limit of about 4 μb can be compared to the extracted 
production cross section of the Λ(1405) of about 10 μb from the 
same experiment [40]. This connects, also for the first time, two 
quantities that constrain the predicted dominance of the Λ(1405)

doorway scenario for the kaonic cluster formation in p + p reac-
tions [39]. Our results put at question scenarios where the proba-
bility of the Λ(1405)–p final state to form a K N N cluster is very 
large.

With this work there are, meanwhile, as many reports of up-
per limits as signals published. This leaves us at a situation where 
the experimentalists rather create new puzzles than solve the the-
oretical controversy. Thus, in order to test low energy QCD and 
determine the strength of the K N interaction, more data and more 
advanced analysis techniques like the introduced PWA are certainly 
needed.
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